RRG-Proxmark3/client/src/util.c

1642 lines
42 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
// utilities
//-----------------------------------------------------------------------------
// ensure gmtime_r is available even with -std=c99; must be included before
#if !defined(_WIN32) && !defined(__APPLE__)
#define _POSIX_C_SOURCE 200112L
#endif
#include "util.h"
#include <stdarg.h>
#include <inttypes.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h> // Mingw
#include "ui.h" // PrintAndLog
#define UTIL_BUFFER_SIZE_SPRINT 8196
// global client debug variable
uint8_t g_debugMode = 0;
// global client enable/disable printing/logging/grabbing variable
uint8_t g_printAndLog = PRINTANDLOG_PRINT | PRINTANDLOG_LOG;
// global pointer to grabbed output
grabbed_output g_grabbed_output = {NULL, 0, 0};
// global client tell if a pending prompt is present
bool g_pendingPrompt = false;
// global CPU core count override
int g_numCPUs = 0;
#ifdef _WIN32
#include <windows.h>
#endif
#define MAX_BIN_BREAK_LENGTH (3072 + 384 + 1)
#ifndef _WIN32
#include <unistd.h>
#include <fcntl.h>
int kbd_enter_pressed(void) {
int flags;
if ((flags = fcntl(STDIN_FILENO, F_GETFL, 0)) < 0) {
PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed");
return -1;
}
//non-blocking
flags |= O_NONBLOCK;
if (fcntl(STDIN_FILENO, F_SETFL, flags) < 0) {
PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed");
return -1;
}
int c;
int ret = 0;
do { //get all available chars
c = getchar();
ret |= c == '\n';
} while (c != EOF);
//blocking
flags &= ~O_NONBLOCK;
if (fcntl(STDIN_FILENO, F_SETFL, flags) < 0) {
PrintAndLogEx(ERR, "fcntl failed in kbd_enter_pressed");
return -1;
}
return ret;
}
#else
#include <conio.h>
int kbd_enter_pressed(void) {
int ret = 0;
while (kbhit()) {
ret |= getch() == '\r';
}
return ret;
}
#endif
static char inv_b2s(char v, bool uppercase) {
if (isxdigit(v) == 0) {
return '.';
}
uint8_t lut[] = {
'f', 'e', 'd', 'c',
'b', 'a', '9', '8',
'7', '6', '5', '4',
'3', '2', '1', '0'
};
uint8_t tmp = (tolower(v) - 'a' + 10);
if (isdigit(v)) {
tmp = (v - 0x30);
}
if (uppercase)
return toupper(lut[tmp]);
else
return lut[tmp];
}
static char b2s(uint8_t v, bool uppercase) {
// clear higher bits
v &= 0xF;
switch (v) {
case 0xA :
return (uppercase ? 'A' : 'a') ;
case 0xB :
return (uppercase ? 'B' : 'b') ;
case 0xC :
return (uppercase ? 'C' : 'c') ;
case 0xD :
return (uppercase ? 'D' : 'd') ;
case 0xE :
return (uppercase ? 'E' : 'e') ;
case 0xF :
return (uppercase ? 'F' : 'f') ;
default:
return (char)(v + 0x30);
}
}
// create filename on hex uid.
// param *fn - pointer to filename char array
// param *uid - pointer to uid byte array
// param *ext - ".log"
// param uidlen - length of uid array.
void FillFileNameByUID(char *filenamePrefix, const uint8_t *uid, const char *ext, const int uidlen) {
if (filenamePrefix == NULL || uid == NULL || ext == NULL) {
return;
}
int len = strlen(filenamePrefix);
for (int i = 0; i < uidlen; i++) {
// This is technically not the safest option, but there is no way to make this work without changing the function signature
// Possibly todo for future PR, but given UID lenghts are defined by program and not variable, should not be an issue
snprintf(filenamePrefix + len + i * 2, 3, "%02X", uid[i]);
}
strcat(filenamePrefix, ext);
}
// fill buffer from structure [{uint8_t data, size_t length},...]
int FillBuffer(uint8_t *data, size_t maxDataLength, size_t *dataLength, ...) {
*dataLength = 0;
va_list valist;
va_start(valist, dataLength);
uint8_t *vdata = NULL;
do {
vdata = va_arg(valist, uint8_t *);
if (!vdata)
break;
size_t vlength = va_arg(valist, size_t);
if (*dataLength + vlength > maxDataLength) {
va_end(valist);
return 1;
}
memcpy(&data[*dataLength], vdata, vlength);
*dataLength += vlength;
} while (vdata);
va_end(valist);
return 0;
}
bool CheckStringIsHEXValue(const char *value) {
if (strlen(value) % 2) {
return false;
}
for (size_t i = 0; i < strlen(value); i++) {
if (isxdigit(value[i]) == 0) {
return false;
}
}
return true;
}
void ascii_to_buffer(uint8_t *buf, const uint8_t *hex_data, const size_t hex_len,
const size_t hex_max_len, const size_t min_str_len) {
if (buf == NULL) return;
char *tmp_base = (char *)buf;
char *tmp = tmp_base;
size_t max_len = (hex_len > hex_max_len) ? hex_max_len : hex_len;
size_t i = 0;
for (i = 0; i < max_len; ++i, tmp++) {
char c = hex_data[i];
*tmp = ((c < 32) || (c == 127)) ? '.' : c;
}
size_t m = (min_str_len > i) ? min_str_len : 0;
if (m > hex_max_len) {
m = hex_max_len;
}
for (; i < m; i++, tmp++) {
*tmp = ' ';
}
// remove last space
*tmp = '\0';
}
void hex_to_buffer(uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len,
const size_t min_str_len, const size_t spaces_between, bool uppercase) {
// sanity check
if (buf == NULL || hex_len < 1) {
return;
}
// 1. hex string length.
// 2. byte array to be converted to string
//
size_t max_byte_len = (hex_len > hex_max_len) ? hex_max_len : hex_len;
size_t max_str_len = (max_byte_len * (2 + spaces_between)) + 1;
char *tmp_base = (char *)buf;
char *tmp = tmp_base;
size_t i;
for (i = 0; (i < max_byte_len) && (max_str_len > strlen(tmp_base)) ; ++i) {
*(tmp++) = b2s((hex_data[i] >> 4), uppercase);
*(tmp++) = b2s(hex_data[i], uppercase);
for (size_t j = 0; j < spaces_between; j++) {
*(tmp++) = ' ';
}
}
i *= (2 + spaces_between);
size_t m = (min_str_len > i) ? min_str_len : 0;
if (m > hex_max_len) {
m = hex_max_len;
}
while (m--) {
*(tmp++) = ' ';
}
// remove last space
*tmp = '\0';
}
// printing and converting functions
void print_hex(const uint8_t *data, const size_t len) {
if (data == NULL || len == 0) return;
for (size_t i = 0; i < len; i++) {
PrintAndLogEx(NORMAL, "%02x " NOLF, data[i]);
}
PrintAndLogEx(NORMAL, "");
}
void print_hex_break(const uint8_t *data, const size_t len, uint8_t breaks) {
if (data == NULL || len == 0 || breaks == 0) return;
uint16_t rownum = 0;
int i;
for (i = 0; i < len; i += breaks, rownum++) {
if (len - i < breaks) { // incomplete block, will be treated out of the loop
break;
}
PrintAndLogEx(INFO, "%02u | %s", rownum, sprint_hex_ascii(data + i, breaks));
}
// the last odd bytes
uint8_t mod = len % breaks;
if (mod) {
char buf[UTIL_BUFFER_SIZE_SPRINT + 3] = {0};
hex_to_buffer((uint8_t *)buf, data + i, mod, (sizeof(buf) - 1), 0, 1, true);
// add the spaces...
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%*s", ((breaks - mod) * 3), " ");
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, mod));
PrintAndLogEx(INFO, "%02u | %s", rownum, buf);
}
}
void print_hex_noascii_break(const uint8_t *data, const size_t len, uint8_t breaks) {
if (data == NULL || len == 0 || breaks == 0) return;
int i;
for (i = 0; i < len; i += breaks) {
if (len - i < breaks) { // incomplete block, will be treated out of the loop
break;
}
PrintAndLogEx(INFO, "%s", sprint_hex_inrow_spaces(data + i, breaks, 0));
}
// the last odd bytes
uint8_t mod = len % breaks;
if (mod) {
char buf[UTIL_BUFFER_SIZE_SPRINT + 3] = {0};
hex_to_buffer((uint8_t *)buf, data + i, mod, (sizeof(buf) - 1), 0, 0, true);
// add the spaces...
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%*s", ((breaks - mod) * 3), " ");
PrintAndLogEx(INFO, "%s", buf);
}
}
static void print_buffer_ex(const uint8_t *data, const size_t len, int level, uint8_t breaks) {
// sanity checks
if ((data == NULL) || (len < 1))
return;
char buf[UTIL_BUFFER_SIZE_SPRINT + 3] = {0};
int i;
for (i = 0; i < len; i += breaks) {
memset(buf, 0x00, sizeof(buf));
if (len - i < breaks) { // incomplete block, will be treated out of the loop
break;
}
// (16 * 3) + (16) + + 1
snprintf(buf, sizeof(buf), "%*s%02x: ", (level * 4), " ", i);
hex_to_buffer((uint8_t *)(buf + strlen(buf)), data + i, breaks, (sizeof(buf) - strlen(buf) - 1), 0, 1, true);
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, breaks));
PrintAndLogEx(INFO, "%s", buf);
}
// the last odd bytes
uint8_t mod = len % breaks;
if (mod) {
snprintf(buf, sizeof(buf), "%*s%02x: ", (level * 4), " ", i);
hex_to_buffer((uint8_t *)(buf + strlen(buf)), data + i, mod, (sizeof(buf) - strlen(buf) - 1), 0, 1, true);
// add the spaces...
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "%*s", ((breaks - mod) * 3), " ");
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), "| %s", sprint_ascii(data + i, mod));
PrintAndLogEx(INFO, "%s", buf);
}
}
void print_buffer(const uint8_t *data, const size_t len, int level) {
print_buffer_ex(data, len, level, 16);
}
void print_buffer_with_offset(const uint8_t *data, const size_t len, int offset, bool print_header) {
if (print_header) {
PrintAndLogEx(INFO, " Offset | Data | Ascii");
PrintAndLogEx(INFO, "----------------------------------------------------------------------------");
}
for (uint32_t i = 0; i < len; i += 16) {
uint32_t l = len - i;
PrintAndLogEx(INFO, "%3d/0x%02X | %s" NOLF, offset + i, offset + i, sprint_hex(&data[i], l > 16 ? 16 : l));
if (l < 16)
PrintAndLogEx(NORMAL, "%*s" NOLF, 3 * (16 - l), " ");
PrintAndLogEx(NORMAL, "| %s", sprint_ascii(&data[i], l > 16 ? 16 : l));
}
}
void print_blocks(uint32_t *data, size_t len) {
PrintAndLogEx(SUCCESS, "Blk | Data ");
PrintAndLogEx(SUCCESS, "----+------------");
if (!data) {
PrintAndLogEx(ERR, "..empty data");
} else {
for (size_t i = 0; i < len; i++)
PrintAndLogEx(SUCCESS, " %02zd | %08X", i, data[i]);
}
}
char *sprint_hex(const uint8_t *data, const size_t len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
memset(buf, 0x00, sizeof(buf));
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, 1, true);
return buf;
}
char *sprint_hex_inrow_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
memset(buf, 0x00, sizeof(buf));
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, min_str_len, 0, true);
return buf;
}
char *sprint_hex_inrow(const uint8_t *data, const size_t len) {
return sprint_hex_inrow_ex(data, len, 0);
}
char *sprint_hex_inrow_spaces(const uint8_t *data, const size_t len, size_t spaces_between) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
memset(buf, 0x00, sizeof(buf));
hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, spaces_between, true);
return buf;
}
char *sprint_bytebits_bin_break(const uint8_t *data, const size_t len, const uint8_t breaks) {
// make sure we don't go beyond our char array memory
size_t rowlen = (len > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len;
// 3072 + end of line characters if broken at 8 bits
static char buf[MAX_BIN_BREAK_LENGTH] = {0};
memset(buf, 0, sizeof(buf));
char *tmp = buf;
// loop through the out_index to make sure we don't go too far
for (int i = 0; i < rowlen; i++) {
char c = data[i];
// manchester wrong bit marker
if (c == 7) {
c = '.';
} else if (c < 2) {
c += '0';
} else {
PrintAndLogEx(ERR, "Invalid data passed to sprint_bytebits_bin_break()");
return buf;
}
*(tmp++) = c;
// check if a line break is needed and we have room to print it in our array
if (breaks > 1) {
if (((i + 1) % breaks) == 0) {
*(tmp++) = '\n';
}
}
}
return buf;
}
/*
void sprint_bin_break_ex(uint8_t *src, size_t srclen, char *dest , uint8_t breaks) {
if ( src == NULL ) return;
if ( srclen < 1 ) return;
// make sure we don't go beyond our char array memory
size_t in_index = 0, out_index = 0;
int rowlen;
if (breaks==0)
rowlen = ( len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len;
else
rowlen = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks);
PrintAndLogEx(NORMAL, "(sprint_bin_break) rowlen %d", rowlen);
// 3072 + end of line characters if broken at 8 bits
dest = (char *)calloc(MAX_BIN_BREAK_LENGTH, sizeof(uint8_t));
if (dest == NULL) return;
//clear memory
memset(dest, 0x00, sizeof(dest));
// loop through the out_index to make sure we don't go too far
for (out_index=0; out_index < rowlen-1; out_index++) {
// set character
sprintf(dest++, "%u", src[in_index]);
// check if a line break is needed and we have room to print it in our array
if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != rowlen) ) {
// increment and print line break
out_index++;
sprintf(dest++, "%s","\n");
}
in_index++;
}
// last char.
sprintf(dest++, "%u", src[in_index]);
}
*/
char *sprint_bytebits_bin(const uint8_t *data, const size_t len) {
return sprint_bytebits_bin_break(data, len, 0);
}
char *sprint_bin(const uint8_t *data, const size_t len) {
size_t binlen = (len * 8 > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len * 8;
static uint8_t buf[MAX_BIN_BREAK_LENGTH] = {0};
bytes_to_bytebits(data, binlen / 8, buf);
return sprint_bytebits_bin_break(buf, binlen, 0);
}
char *sprint_hex_ascii(const uint8_t *data, const size_t len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT + 20] = {0};
memset(buf, 0x00, sizeof(buf));
char *tmp = buf;
size_t max_len = (len > 1010) ? 1010 : len;
int ret = snprintf(buf, sizeof(buf) - 1, "%s| ", sprint_hex(data, max_len));
if (ret < 0) {
goto out;
}
size_t i = 0;
size_t pos = (max_len * 3) + 2;
while (i < max_len) {
unsigned char c = (unsigned char)data[i];
tmp[pos + i] = (isprint(c) && c != 0xff) ? c : '.';
++i;
}
out:
return buf;
}
char *sprint_ascii_ex(const uint8_t *data, const size_t len, const size_t min_str_len) {
static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0};
memset(buf, 0x00, sizeof(buf));
char *tmp = buf;
size_t max_len = (len > 1010) ? 1010 : len;
size_t i = 0;
while (i < max_len) {
unsigned char c = (unsigned char)data[i];
tmp[i] = (isprint(c) && c != 0xff) ? c : '.';
++i;
}
size_t m = min_str_len > i ? min_str_len : 0;
for (; i < m; ++i) {
tmp[i] = ' ';
}
return buf;
}
char *sprint_ascii(const uint8_t *data, const size_t len) {
return sprint_ascii_ex(data, len, 0);
}
char *sprint_breakdown_bin(color_t color, const char *bs, int width, int padn, int bits, const char *msg) {
if (bs == NULL || width > 32) {
return NULL;
}
const char *prepad = "................................";
const char *postmarker = " ................................";
static char buf[32 + 120] = {0};
memset(buf, 0, sizeof(buf));
int8_t end = (width - padn - bits);
if (end < 0) {
end = 0;
}
switch (color) {
case C_GREEN: {
snprintf(buf, sizeof(buf), "%.*s" _GREEN_("%.*s") "%.*s - " _GREEN_("%s")
, padn, prepad
, bits, bs + padn
, end, postmarker
, msg
);
break;
}
case C_RED: {
snprintf(buf, sizeof(buf), "%.*s" _RED_("%.*s") "%.*s - " _RED_("%s")
, padn, prepad
, bits, bs + padn
, end, postmarker
, msg
);
break;
}
case C_YELLOW: {
snprintf(buf, sizeof(buf), "%.*s" _YELLOW_("%.*s") "%.*s - " _YELLOW_("%s")
, padn, prepad
, bits, bs + padn
, end, postmarker
, msg
);
break;
}
case C_NONE:
default: {
snprintf(buf, sizeof(buf), "%.*s%.*s%.*s - %s"
, padn, prepad
, bits, bs + padn
, end, postmarker
, msg
);
break;
}
}
return buf;
}
int hex_to_bytes(const char *hexValue, uint8_t *bytesValue, size_t maxBytesValueLen) {
char buf[4] = {0};
int indx = 0;
int bytesValueLen = 0;
while (hexValue[indx]) {
if (hexValue[indx] == '\t' || hexValue[indx] == ' ') {
indx++;
continue;
}
if (isxdigit(hexValue[indx])) {
buf[strlen(buf)] = hexValue[indx];
} else {
// if we have symbols other than spaces and hex
return -1;
}
if (maxBytesValueLen && bytesValueLen >= maxBytesValueLen) {
// if we don't have space in buffer and have symbols to translate
return -2;
}
if (strlen(buf) >= 2) {
uint32_t temp = 0;
sscanf(buf, "%x", &temp);
bytesValue[bytesValueLen] = (uint8_t)(temp & 0xff);
memset(buf, 0, sizeof(buf));
bytesValueLen++;
}
indx++;
}
if (strlen(buf) > 0) {
//error when not completed hex bytes
return -3;
}
return bytesValueLen;
}
// takes a number (uint64_t) and creates a binarray in dest.
void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) {
while (len--) {
dest[len] = n & 1;
n >>= 1;
}
}
// least significant bit (lsb) first
void num_to_bytebitsLSBF(uint64_t n, size_t len, uint8_t *dest) {
for (size_t i = 0 ; i < len ; ++i) {
dest[i] = n & 1;
n >>= 1;
}
}
void bytes_to_bytebits(const void *src, const size_t srclen, void *dest) {
uint8_t *s = (uint8_t *)src;
uint8_t *d = (uint8_t *)dest;
uint32_t i = srclen * 8;
size_t j = srclen;
while (j--) {
uint8_t b = s[j];
d[--i] = (b >> 0) & 1;
d[--i] = (b >> 1) & 1;
d[--i] = (b >> 2) & 1;
d[--i] = (b >> 3) & 1;
d[--i] = (b >> 4) & 1;
d[--i] = (b >> 5) & 1;
d[--i] = (b >> 6) & 1;
d[--i] = (b >> 7) & 1;
}
}
// aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp
// to
// hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii
// up to 64 bytes or 512 bits
uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize) {
static uint8_t buf[64] = {0};
memset(buf, 0x00, 64);
uint8_t *tmp = buf;
for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) {
for (size_t i = 0; i < blockSize; i++) {
tmp[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)];
}
}
return buf;
}
// takes a uint8_t src array, for len items and reverses the byte order in blocksizes (8,16,32,64),
// returns: the dest array contains the reordered src array.
void SwapEndian64ex(const uint8_t *src, const size_t len, const uint8_t blockSize, uint8_t *dest) {
for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) {
for (size_t i = 0; i < blockSize; i++) {
dest[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)];
}
}
}
// -------------------------------------------------------------------------
// string parameters lib
// -------------------------------------------------------------------------
// -------------------------------------------------------------------------
// line - param line
// bg, en - symbol numbers in param line of beginning and ending parameter
// paramnum - param number (from 0)
// -------------------------------------------------------------------------
int param_getptr(const char *line, int *bg, int *en, int paramnum) {
int i;
if (line == NULL) {
return 1;
}
int len = strlen(line);
*bg = 0;
*en = 0;
// skip spaces
while (line[*bg] == ' ' || line[*bg] == '\t') {
(*bg)++;
}
if (*bg >= len) {
return 1;
}
for (i = 0; i < paramnum; i++) {
while (line[*bg] != ' ' && line[*bg] != '\t' && line[*bg] != '\0') {
(*bg)++;
}
while (line[*bg] == ' ' || line[*bg] == '\t') {
(*bg)++;
}
if (line[*bg] == '\0') {
return 1;
}
}
*en = *bg;
while (line[*en] != ' ' && line[*en] != '\t' && line[*en] != '\0') {
(*en)++;
}
(*en)--;
return 0;
}
int param_getlength(const char *line, int paramnum) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 0;
}
return en - bg + 1;
}
char param_getchar(const char *line, int paramnum) {
return param_getchar_indx(line, 0, paramnum);
}
char param_getchar_indx(const char *line, int indx, int paramnum) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 0;
}
if (bg + indx > en) {
return '\0';
}
return line[bg + indx];
}
uint8_t param_get8(const char *line, int paramnum) {
return param_get8ex(line, paramnum, 0, 10);
}
/**
* @brief Reads a decimal integer (actually, 0-254, not 255)
* @param line
* @param paramnum
* @return -1 if error
*/
uint8_t param_getdec(const char *line, int paramnum, uint8_t *destination) {
uint8_t val = param_get8ex(line, paramnum, 255, 10);
if ((int8_t) val == -1) {
return 1;
}
(*destination) = val;
return 0;
}
/**
* @brief Checks if param is decimal
* @param line
* @param paramnum
* @return
*/
uint8_t param_isdec(const char *line, int paramnum) {
int bg, en;
//TODO, check more thorougly
if (!param_getptr(line, &bg, &en, paramnum)) {
return 1;
}
// return strtoul(&line[bg], NULL, 10) & 0xff;
return 0;
}
uint8_t param_get8ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum) == 0) {
return strtoul(&line[bg], NULL, base) & 0xff;
} else {
return deflt;
}
}
uint32_t param_get32ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum) == 0) {
return strtoul(&line[bg], NULL, base);
} else {
return deflt;
}
}
uint64_t param_get64ex(const char *line, int paramnum, int deflt, int base) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum) == 0) {
return strtoull(&line[bg], NULL, base);
} else {
return deflt;
}
}
float param_getfloat(const char *line, int paramnum, float deflt) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum) == 0) {
return strtof(&line[bg], NULL);
} else {
return deflt;
}
}
int param_gethex_ex(const char *line, int paramnum, uint8_t *data, int *hexcnt) {
int bg, en, i;
uint32_t temp;
if (param_getptr(line, &bg, &en, paramnum)) {
return 1;
}
*hexcnt = en - bg + 1;
// error if not complete hex bytes
if (*hexcnt & 1) {
return 1;
}
for (i = 0; i < *hexcnt; i += 2) {
if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) {
return 1;
}
sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp);
data[i / 2] = temp & 0xff;
}
return 0;
}
int param_gethex_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 1;
}
*datalen = 0;
char buf[5] = {0};
int indx = bg;
while (line[indx]) {
if (line[indx] == '\t' || line[indx] == ' ') {
indx++;
continue;
}
if (isxdigit(line[indx])) {
buf[strlen(buf) + 1] = 0x00;
buf[strlen(buf)] = line[indx];
} else {
// if we have symbols other than spaces and hex
return 1;
}
if (*datalen >= maxdatalen) {
// if we don't have space in buffer and have symbols to translate
return 2;
}
if (strlen(buf) >= 2) {
uint32_t temp = 0;
sscanf(buf, "%x", &temp);
data[*datalen] = (uint8_t)(temp & 0xFF);
*buf = 0;
(*datalen)++;
}
indx++;
}
if (strlen(buf) > 0) {
//error when not completed hex bytes
return 3;
}
return 0;
}
int param_getbin_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 1;
}
*datalen = 0;
char buf[5] = {0};
int indx = bg;
while (line[indx]) {
if (line[indx] == '\t' || line[indx] == ' ') {
indx++;
continue;
}
if (line[indx] == '0' || line[indx] == '1') {
buf[strlen(buf) + 1] = 0x00;
buf[strlen(buf)] = line[indx];
} else {
// if we have symbols other than spaces and 0/1
return 1;
}
if (*datalen >= maxdatalen) {
// if we don't have space in buffer and have symbols to translate
return 2;
}
if (strlen(buf) > 0) {
uint32_t temp = 0;
sscanf(buf, "%u", &temp);
data[*datalen] = (uint8_t)(temp & 0xff);
*buf = 0;
(*datalen)++;
}
indx++;
}
return 0;
}
int param_getstr(const char *line, int paramnum, char *str, size_t buffersize) {
int bg, en;
if (param_getptr(line, &bg, &en, paramnum)) {
return 0;
}
// Prevent out of bounds errors
if (en - bg + 1 >= buffersize) {
PrintAndLogEx(ERR, "out of bounds error: want %d bytes have %zu bytes\n", en - bg + 1 + 1, buffersize);
return 0;
}
memcpy(str, line + bg, en - bg + 1);
str[en - bg + 1] = 0;
return en - bg + 1;
}
/*
The following methods comes from Rfidler sourcecode.
https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/
*/
// convert hex to sequence of 0/1 bit values
// returns number of bits converted
int hextobinarray(char *target, char *source) {
return hextobinarray_n(target, source, strlen(source));
}
int hextobinarray_n(char *target, char *source, int sourcelen) {
int i, count = 0;
char *start = source;
// process 4 bits (1 hex digit) at a time
while (sourcelen--) {
char x = *(source++);
// capitalize
if (x >= 'a' && x <= 'f') {
x -= 32;
}
// convert to numeric value
if (x >= '0' && x <= '9') {
x -= '0';
} else if (x >= 'A' && x <= 'F') {
x -= 'A' - 10;
} else {
PrintAndLogEx(INFO, "(hextobinarray) discovered unknown character %c %d at idx %d of %s", x, x, (int16_t)(source - start), start);
return 0;
}
// output
for (i = 0 ; i < 4 ; ++i, ++count) {
*(target++) = (x >> (3 - i)) & 1;
}
}
return count;
}
// convert hexstring to human readable binary string
int hextobinstring(char *target, char *source) {
return hextobinstring_n(target, source, strlen(source));
}
// convert hexstring to human readable binary string
int hextobinstring_n(char *target, char *source, int sourcelen) {
int length = hextobinarray_n(target, source, sourcelen);
if (length == 0) {
return 0;
}
binarray_2_binstr(target, target, length);
return length;
}
// convert bytes to binary string
void bytes_2_binstr(char *target, const uint8_t *source, size_t sourcelen) {
//uint8_t *p = *source;
for (int i = 0 ; i < sourcelen; ++i) {
uint8_t b = *(source++);
*(target++) = ((b >> 7) & 0x1) + '0';
*(target++) = ((b >> 6) & 0x1) + '0';
*(target++) = ((b >> 5) & 0x1) + '0';
*(target++) = ((b >> 4) & 0x1) + '0';
*(target++) = ((b >> 3) & 0x1) + '0';
*(target++) = ((b >> 2) & 0x1) + '0';
*(target++) = ((b >> 1) & 0x1) + '0';
*(target++) = (b & 0x1) + '0';
}
*target = '\0';
}
// convert binary array of 0x00/0x01 values to hex
// return number of bits converted
int binarray_2_hex(char *target, const size_t targetlen, const char *source, size_t srclen) {
uint8_t i = 0, x = 0;
uint32_t t = 0; // written target chars
uint32_t r = 0; // consumed bits
uint8_t w = 0; // wrong bits separator printed
for (size_t s = 0 ; s < srclen; s++) {
if ((source[s] == 0) || (source[s] == 1)) {
w = 0;
x += (source[s] << (3 - i));
i++;
if (i == 4) {
if (t >= targetlen - 2) {
return r;
}
snprintf(target + t, targetlen - t, "%X", x);
t++;
r += 4;
x = 0;
i = 0;
}
} else {
if (i > 0) {
if (t >= targetlen - 5) {
return r;
}
snprintf(target + t, targetlen - t, "%X[%i]", x, i);
t += 4;
r += i;
x = 0;
i = 0;
w = 1;
}
if (w == 0) {
if (t >= targetlen - 2) {
return r;
}
snprintf(target + t, targetlen - t, " ");
t++;
}
r++;
}
}
return r;
}
// convert binary array to human readable binary
void binarray_2_binstr(char *target, char *source, int length) {
for (int i = 0 ; i < length; ++i) {
*(target++) = *(source++) + '0';
}
*target = '\0';
}
int binstr_2_binarray(uint8_t *target, char *source, int length) {
int count = 0;
char *start = source;
while (length--) {
char x = *(source++);
// convert from binary value
if (x >= '0' && x <= '1') {
x -= '0';
} else {
PrintAndLogEx(WARNING, "(binstring2binarray) discovered unknown character %c %d at idx %d of %s", x, x, (int16_t)(source - start), start);
return 0;
}
*(target++) = x;
count++;
}
return count;
}
void binstr_2_bytes(uint8_t *target, size_t *targetlen, const char *src) {
size_t binlen = strlen(src);
if (binlen == 0) {
*targetlen = 0;
return;
}
// Calculate padding needed
size_t padding = (8 - (binlen % 8)) % 8;
// Determine the size of the hexadecimal array
*targetlen = (binlen + padding) / 8;
uint8_t b = 0;
size_t bit_cnt = padding;
size_t idx = 0;
// Process binary string
for (size_t i = 0; i < binlen; ++i) {
b = (b << 1) | (src[i] == '1');
++bit_cnt;
if (bit_cnt == 8) {
target[idx++] = b;
b = 0;
bit_cnt = 0;
}
}
}
void hex_xor(uint8_t *d, const uint8_t *x, int n) {
while (n--) {
d[n] ^= x[n];
}
}
void hex_xor_token(uint8_t *d, const uint8_t *x, int dn, int xn) {
while (dn--) {
d[dn] ^= x[dn % xn];
}
}
// return parity bit required to match type
uint8_t GetParity(const uint8_t *bits, uint8_t type, int length) {
int x;
for (x = 0 ; length > 0 ; --length) {
x += bits[length - 1];
}
x %= 2;
return x ^ type;
}
// add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half
void wiegand_add_parity(uint8_t *target, const uint8_t *source, uint8_t length) {
*(target++) = GetParity(source, EVEN, length / 2);
memcpy(target, source, length);
target += length;
*(target) = GetParity(source + length / 2, ODD, length / 2);
}
// add HID parity to binary array: ODD prefix for 1st half of ID, EVEN suffix for 2nd half
void wiegand_add_parity_swapped(uint8_t *target, const uint8_t *source, uint8_t length) {
*(target++) = GetParity(source, ODD, length / 2);
memcpy(target, source, length);
target += length;
*(target) = GetParity(source + length / 2, EVEN, length / 2);
}
// Pack a bitarray into a uint32_t.
uint32_t PackBits(uint8_t start, uint8_t len, const uint8_t *bits) {
if (len > 32) {
return 0;
}
int i = start;
int j = len - 1;
uint32_t tmp = 0;
for (; j >= 0; --j, ++i) {
tmp |= bits[i] << j;
}
return tmp;
}
uint64_t HornerScheme(uint64_t num, uint64_t divider, uint64_t factor) {
uint64_t remaind = 0, quotient = 0, result = 0;
remaind = num % divider;
quotient = num / divider;
if (!(quotient == 0 && remaind == 0)) {
result += HornerScheme(quotient, divider, factor) * factor + remaind;
}
return result;
}
int num_CPUs(void) {
if (g_numCPUs > 0) {
return g_numCPUs;
}
return detect_num_CPUs();
}
// determine number of logical CPU cores (use for multithreaded functions)
int detect_num_CPUs(void) {
#if defined(_WIN32)
#include <sysinfoapi.h>
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
#else
int count = sysconf(_SC_NPROCESSORS_ONLN);
if (count <= 0) {
count = 1;
}
return count;
#endif
}
void str_lower(char *s) {
for (size_t i = 0; i < strlen(s); i++) {
s[i] = tolower(s[i]);
}
}
void str_upper(char *s) {
strn_upper(s, strlen(s));
}
void strn_upper(char *s, size_t n) {
for (size_t i = 0; i < n; i++) {
s[i] = toupper(s[i]);
}
}
// check for prefix in string
bool str_startswith(const char *s, const char *pre) {
return strncmp(pre, s, strlen(pre)) == 0;
}
// check for suffix in string
bool str_endswith(const char *s, const char *suffix) {
size_t ls = strlen(s);
size_t lsuffix = strlen(suffix);
if (ls >= lsuffix) {
return strncmp(suffix, s + (ls - lsuffix), lsuffix) == 0;
}
return false;
}
// Replace unprintable characters with a dot in char buffer
void clean_ascii(unsigned char *buf, size_t len) {
for (size_t i = 0; i < len; i++) {
if (isprint(buf[i]) == 0) {
buf[i] = '.';
}
}
}
// replace \r \n to \0
void str_cleanrn(char *buf, size_t len) {
str_creplace(buf, len, '\n', '\0');
str_creplace(buf, len, '\r', '\0');
}
// replace char in buffer
void str_creplace(char *buf, size_t len, char from, char to) {
for (size_t i = 0; i < len; i++) {
if (buf[i] == from) {
buf[i] = to;
}
}
}
char *str_dup(const char *src) {
return str_ndup(src, strlen(src));
}
char *str_ndup(const char *src, size_t len) {
char *dest = (char *) calloc(len + 1, sizeof(uint8_t));
if (dest != NULL) {
memcpy(dest, src, len);
dest[len] = '\0';
}
return dest;
}
size_t str_nlen(const char *src, size_t maxlen) {
size_t len = 0;
if (src) {
for (char c = *src; (len < maxlen && c != '\0'); c = *++src) {
len++;
}
}
return len;
}
void str_reverse(char *buf, size_t len) {
for (size_t i = 0; i < (len >> 1); i++) {
char tmp = buf[i];
buf[i] = buf[len - i - 1];
buf[len - i - 1] = tmp;
}
}
void str_inverse_hex(char *buf, size_t len) {
for (size_t i = 0; i < len; i++) {
buf[i] = inv_b2s(buf[i], true);
}
}
void str_inverse_bin(char *buf, size_t len) {
for (size_t i = 0; i < len; i++) {
char c = buf[i];
if (c == '1')
buf[i] = '0';
else if (c == '0')
buf[i] = '1';
else
buf[i] = '.';
}
}
void str_trim(char *s) {
if (s == NULL) {
return;
}
// handle empty string
if (!*s) {
return;
}
char *ptr;
for (ptr = s + strlen(s) - 1; (ptr >= s) && isspace(*ptr); --ptr);
ptr[1] = '\0';
}
/**
* Converts a hex string to component "hi2", "hi" and "lo" 32-bit integers
* one nibble at a time.
*
* Returns the number of nibbles (4 bits) entered.
*/
int hexstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) {
uint32_t n = 0, i = 0;
while (sscanf(&str[i++], "%1x", &n) == 1) {
*hi2 = (*hi2 << 4) | (*hi >> 28);
*hi = (*hi << 4) | (*lo >> 28);
*lo = (*lo << 4) | (n & 0xf);
}
return i - 1;
}
/**
* Converts a binary string to component "hi2", "hi" and "lo" 32-bit integers,
* one bit at a time.
*
* Returns the number of bits entered.
*/
int binstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) {
uint32_t n = 0, i = 0;
for (;;) {
int res = sscanf(&str[i], "%1u", &n);
if ((res != 1) || (n > 1)) {
break;
}
*hi2 = (*hi2 << 1) | (*hi >> 31);
*hi = (*hi << 1) | (*lo >> 31);
*lo = (*lo << 1) | (n & 0x1);
i++;
}
return i;
}
/**
* Converts a binary array to component "hi2", "hi" and "lo" 32-bit integers,
* one bit at a time.
*
* Returns the number of bits entered.
*/
int binarray_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const uint8_t *arr, int arrlen) {
int i = 0;
for (; i < arrlen; i++) {
uint8_t n = arr[i];
if (n > 1) {
break;
}
*hi2 = (*hi2 << 1) | (*hi >> 31);
*hi = (*hi << 1) | (*lo >> 31);
*lo = (*lo << 1) | (n & 0x1);
}
return i;
}
inline uint32_t bitcount32(uint32_t a) {
#if defined __GNUC__
return __builtin_popcountl(a);
#else
a = a - ((a >> 1) & 0x55555555);
a = (a & 0x33333333) + ((a >> 2) & 0x33333333);
return (((a + (a >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24;
#endif
}
inline uint64_t bitcount64(uint64_t a) {
#if defined __GNUC__
return __builtin_popcountll(a);
#else
PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64");
return 0;
#endif
}
inline uint32_t leadingzeros32(uint32_t a) {
#if defined __GNUC__
return __builtin_clz(a);
#else
PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64");
return 0;
#endif
}
inline uint64_t leadingzeros64(uint64_t a) {
#if defined __GNUC__
return __builtin_clzll(a);
#else
PrintAndLogEx(FAILED, "Was not compiled with fct bitcount64");
return 0;
#endif
}
// byte_strstr searches for the first occurrence of pattern in src
// returns the byte offset the pattern is found at, or -1 if not found
int byte_strstr(const uint8_t *src, size_t srclen, const uint8_t *pattern, size_t plen) {
size_t max = srclen - plen + 1;
for (size_t i = 0; i < max; i++) {
// compare only first byte
if (src[i] != pattern[0]) {
continue;
}
// try to match rest of the pattern
for (int j = plen - 1; j >= 1; j--) {
if (src[i + j] != pattern[j]) {
break;
}
if (j == 1) {
return i;
}
}
}
return -1;
}
// byte_strrstr is like byte_strstr except searches in reverse
// ie it returns the last occurrence of the pattern in src instead of the first
// returns the byte offset the pattern is found at, or -1 if not found
int byte_strrstr(const uint8_t *src, size_t srclen, const uint8_t *pattern, size_t plen) {
for (int i = srclen - plen; i >= 0; i--) {
// compare only first byte
if (src[i] != pattern[0]) {
continue;
}
// try to match rest of the pattern
for (int j = plen - 1; j >= 1; j--) {
if (src[i + j] != pattern[j]) {
break;
}
if (j == 1) {
return i;
}
}
}
return -1;
}
void sb_append_char(smartbuf *sb, unsigned char c) {
if (sb->idx >= sb->size) {
sb->size *= 2;
sb->ptr = realloc(sb->ptr, sb->size);
}
sb->ptr[sb->idx] = c;
sb->idx++;
}
uint8_t get_highest_frequency(const uint8_t *d, uint8_t n) {
uint8_t frequency[256] = {0};
uint8_t highest = 0;
uint8_t v = 0;
// Count the frequency of each byte
for (uint8_t i = 0; i < n; i++) {
frequency[d[i]]++;
if (frequency[d[i]] > highest) {
highest = frequency[d[i]];
v = d[i];
}
}
PrintAndLogEx(DEBUG, "highest occurance... %u xor byte... 0x%02X", highest, v);
return v;
}
size_t unduplicate(uint8_t *d, size_t n, const uint8_t item_n) {
if (n == 0) {
return 0;
}
int write_index = 0;
for (int read_index = 0; read_index < n; ++read_index) {
uint8_t *current = d + read_index * item_n;
bool is_duplicate = false;
// Check against all previous unique elements
for (int i = 0; i < write_index; ++i) {
uint8_t *unique = d + i * item_n;
if (memcmp(current, unique, item_n) == 0) {
is_duplicate = 1;
break;
}
}
// If not duplicate, move to the write_index position
if (is_duplicate == false) {
uint8_t *dest = d + write_index * item_n;
if (dest != current) {
memcpy(dest, current, item_n);
}
write_index++;
}
}
return write_index;
}