RRG-Proxmark3/armsrc/pcf7931.c
iceman1001 a776f9a0bd style
2025-03-18 08:11:06 +01:00

683 lines
26 KiB
C

//-----------------------------------------------------------------------------
// Copyright (C) Proxmark3 contributors. See AUTHORS.md for details.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// See LICENSE.txt for the text of the license.
//-----------------------------------------------------------------------------
#include "pcf7931.h"
#include "proxmark3_arm.h"
#include "cmd.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#include "ticks.h"
#include "dbprint.h"
#include "util.h"
#include "lfsampling.h"
#include "string.h"
#define T0_PCF 8 //period for the pcf7931 in us
#define ALLOC 16
// IIR filter consts
#define IIR_CONST1 0.1f
#define IIR_CONST2 0.9f
// used to decimate samples. this allows DoAcquisition to sample for a longer duration.
// Decimation of 4 makes sure that all blocks can be sampled at once!
#define DECIMATION 4
#define CLOCK (64/DECIMATION) // this actually is 64, but since samples are decimated by 2, CLOCK is also /2
#define TOLERANCE (CLOCK / 8)
#define _16T0 (CLOCK/4)
#define _32T0 (CLOCK/2)
#define _64T0 (CLOCK)
// calculating the two possible pmc lengths, based on the clock. -4 at the end is to make sure not to increment too far
#define PMC_16T0_LEN ((128 + 127 + 16 + 32 + 33 + 16) * CLOCK/64);
#define PMC_32T0_LEN ((128 + 127 + 16 + 32 + 33 ) * CLOCK/64);
// theshold for recognition of positive/negative slope
#define THRESHOLD 80
size_t DemodPCF7931(uint8_t **outBlocks, bool ledcontrol) {
uint8_t bits[256] = {0x00};
uint8_t blocks[8][16];
uint8_t *dest = BigBuf_get_addr();
uint16_t g_GraphTraceLen = BigBuf_max_traceLen();
// limit g_GraphTraceLen to a little more than 2 data frames.
// To make sure a complete dataframe is in the dataset.
// 1 Frame is 16 Byte -> 128byte. at a T0 of 64 -> 8129 Samples per frame.
// + PMC -> 384T0 --> 8576 samples required for one block
// to make sure that one complete block is definitely being sampled, we need 2 times that
// which is ~17.xxx samples. round up. and clamp to this value.
// TODO: Doublecheck why this is being limited? - seems not to be needed.
// g_GraphTraceLen = (g_GraphTraceLen > 18000) ? 18000 : g_GraphTraceLen;
BigBuf_Clear_keep_EM();
LFSetupFPGAForADC(LF_DIVISOR_125, true);
DoAcquisition(DECIMATION, 8, 0, 0, false, 0, 0, 0, ledcontrol);
uint8_t j;
uint8_t half_switch;
uint8_t bitPos;
uint32_t sample; // to keep track of the current sample that is being analyzed
uint32_t samplePosLastEdge;
uint32_t samplePosCurrentEdge;
uint8_t lastClockDuration; // used to store the duration of the last "clock", for decoding. clock may not be the correct term, maybe bit is better. The duration between two edges is meant
uint8_t beforeLastClockDuration; // store the clock duration of the cycle before the last Clock duration. Basically clockduration -2
uint8_t block_done;
size_t num_blocks = 0;
EdgeType expectedNextEdge = FALLING; // direction in which the next edge is expected should go.
half_switch = 0;
samplePosLastEdge = 0;
block_done = 0;
bitPos = 0;
lastClockDuration = 0;
for (sample = 1 ; sample < g_GraphTraceLen - 4; sample++) {
// condition is searching for the next edge, in the expected diretion.
//todo: without flouz
dest[sample] = (uint8_t)(dest[sample - 1] * IIR_CONST1 + dest[sample] * IIR_CONST2); // apply IIR filter
if (((dest[sample] + THRESHOLD) < dest[sample - 1] && expectedNextEdge == FALLING) ||
((dest[sample] - THRESHOLD) > dest[sample - 1] && expectedNextEdge == RISING)) {
//okay, next falling/rising edge found
expectedNextEdge = (expectedNextEdge == FALLING) ? RISING : FALLING; //toggle the next expected edge
samplePosCurrentEdge = sample;
beforeLastClockDuration = lastClockDuration; // save the previous clock duration for PMC recognition
lastClockDuration = samplePosCurrentEdge - samplePosLastEdge;
samplePosLastEdge = sample;
// Dbprintf("%d, %d, edge found, len: %d, nextEdge: %d", sample, dest[sample], lastClockDuration*DECIMATION, expectedNextEdge);
// Switch depending on lastClockDuration length:
// 16T0
if (ABS(lastClockDuration - _16T0) < TOLERANCE) {
// if the clock before also was 16T0, it is a PMC!
if (ABS(beforeLastClockDuration - _16T0) < TOLERANCE) {
// It's a PMC
Dbprintf(_GREEN_("PMC 16T0 FOUND:") " bitPos: %d, sample: %d", bitPos, sample);
sample += PMC_16T0_LEN; // move to the sample after PMC
expectedNextEdge = FALLING;
samplePosLastEdge = sample;
block_done = 1;
}
// 32TO
} else if (ABS(lastClockDuration - _32T0) < TOLERANCE) {
// if the clock before also was 16T0, it is a PMC!
if (ABS(beforeLastClockDuration - _16T0) < TOLERANCE) {
// It's a PMC !
Dbprintf(_GREEN_("PMC 32T0 FOUND:") " bitPos: %d, sample: %d", bitPos, sample);
sample += PMC_32T0_LEN; // move to the sample after PMC
expectedNextEdge = FALLING;
samplePosLastEdge = sample;
block_done = 1;
// if no pmc, then its a normal bit.
// Check if its the second time, the edge changed if yes, then the bit is 0
} else if (half_switch == 1) {
bits[bitPos] = 0;
// reset the edge counter to 0
half_switch = 0;
bitPos++;
// if it is the first time the edge changed. No bit value will be set here, bit if the
// edge changes again, it will be. see case above.
} else
half_switch++;
// 64T0
} else if (ABS(lastClockDuration - _64T0) < TOLERANCE) {
// this means, bit here is 1
bits[bitPos] = 1;
bitPos++;
// Error
} else {
// some Error. maybe check tolerances.
// likeley to happen in the first block.
// In an Ideal world, this can be enabled. However, if only bad antenna field, this print will flood the output
// and one might miss some "good" frames.
//Dbprintf(_RED_("ERROR in demodulation") " Length last clock: %d - check threshold/tolerance/signal. Toss block", lastClockDuration*DECIMATION);
// Toss this block.
block_done = 1;
}
if (block_done == 1) {
// Dbprintf(_YELLOW_("Block Done") " bitPos: %d, sample: %d", bitPos, sample);
// check if it is a complete block. If bitpos <128, it means that we did not receive
// a complete block. E.g. at the first start of a transmission.
// only save if a complete block is being received.
if (bitPos == 128) {
for (j = 0; j < 16; ++j) {
blocks[num_blocks][j] =
128 * bits[j * 8 + 7] +
64 * bits[j * 8 + 6] +
32 * bits[j * 8 + 5] +
16 * bits[j * 8 + 4] +
8 * bits[j * 8 + 3] +
4 * bits[j * 8 + 2] +
2 * bits[j * 8 + 1] +
bits[j * 8]
;
}
num_blocks++;
}
// now start over for the next block / first complete block.
bitPos = 0;
block_done = 0;
half_switch = 0;
}
} else {
// Dbprintf("%d, %d", sample, dest[sample]);
}
// one block only holds 16byte (=128 bit) and then comes the PMC. so if more bit are found than 129, there must be an issue and PMC has not been identfied...
// TODO: not sure what to do in such case...
if (bitPos >= 129) {
Dbprintf(_RED_("PMC should have been found...") " bitPos: %d, sample: %d", bitPos, sample);
bitPos = 0;
}
}
memcpy(outBlocks, blocks, 16 * num_blocks);
return num_blocks;
}
bool IsBlock0PCF7931(uint8_t *block) {
// assuming all RFU bits are set to 0
// if PAC is enabled password is set to 0
if (block[7] == 0x01) {
if (!memcmp(block, "\x00\x00\x00\x00\x00\x00\x00", 7) &&
!memcmp(block + 9, "\x00\x00\x00\x00\x00\x00\x00", 7)) {
return true;
}
} else if (block[7] == 0x00) {
if (!memcmp(block + 9, "\x00\x00\x00\x00\x00\x00\x00", 7)) {
return true;
}
}
return false;
}
bool IsBlock1PCF7931(const uint8_t *block) {
// assuming all RFU bits are set to 0
uint8_t rb1 = block[14] & 0x80;
uint8_t rfb = block[14] & 0x7f;
uint8_t rlb = block[15];
if (block[10] == 0
&& block[11] == 0
&& block[12] == 0
&& block[13] == 0) {
// block 1 is sent only if (RLB >= 1 && RFB <= 1) or RB1 enabled
if (rfb <= rlb
&& rfb <= 9
&& rlb <= 9
&& ((rfb <= 1 && rlb >= 1) || rb1)) {
return true;
}
}
return false;
}
void ReadPCF7931(bool ledcontrol) {
uint8_t maxBlocks = 8; // readable blocks
int found_blocks = 0; // successfully read blocks
// TODO: Why 17 byte len? 16 should be good.
uint8_t memory_blocks[maxBlocks][17]; // PCF content
uint8_t single_blocks[maxBlocks][17]; // PFC blocks with unknown position
uint8_t tmp_blocks[4][16]; // temporary read buffer
int single_blocks_cnt = 0;
size_t n; // transmitted blocks
//uint8_t found_0_1 = 0; // flag: blocks 0 and 1 were found
int errors = 0; // error counter
int tries = 0; // tries counter
// reuse lenghts and consts to properly clear
memset(memory_blocks, 0, 8 * 17 * sizeof(uint8_t));
memset(single_blocks, 0, 8 * 17 * sizeof(uint8_t));
int i = 0;
//j = 0;
do {
Dbprintf("ReadPCF7931() -- Reading Loop ==========");
i = 0;
memset(tmp_blocks, 0, 4 * 16 * sizeof(uint8_t));
n = DemodPCF7931((uint8_t **)tmp_blocks, ledcontrol);
if (!n)
++errors;
// exit if no block is received
if (errors >= 10 && found_blocks == 0 && single_blocks_cnt == 0) {
Dbprintf("[!!] Error, no tag or bad tag");
return;
}
// exit if too many tries without finding the first block
if (tries > 10) {
Dbprintf("End after 10 tries");
if (g_dbglevel >= DBG_INFO) {
Dbprintf("[!!] Error reading the tag, only partial content");
}
goto end;
}
// This part was not working properly.
// So currently the blocks are not being sorted, but at least printed.
// // our logic breaks if we don't get at least two blocks
// if (n < 2) {
// // skip if all 0s block or no blocks
// if (n == 0 || !memcmp(tmp_blocks[0], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16))
// continue;
// // add block to single blocks list
// if (single_blocks_cnt < maxBlocks) {
// for (i = 0; i < single_blocks_cnt; ++i) {
// if (!memcmp(single_blocks[i], tmp_blocks[0], 16)) {
// j = 1;
// break;
// }
// }
// if (j != 1) {
// memcpy(single_blocks[single_blocks_cnt], tmp_blocks[0], 16);
// print_result("got single block", single_blocks[single_blocks_cnt], 16);
// single_blocks_cnt++;
// }
// j = 0;
// }
// ++tries;
// continue;
// }
// Dbprintf("(dbg) got %d blocks (%d/%d found) (%d tries, %d errors)", n, found_blocks, (maxBlocks == 0 ? found_blocks : maxBlocks), tries, errors);
// if (g_dbglevel >= DBG_EXTENDED)
// Dbprintf("(dbg) got %d blocks (%d/%d found) (%d tries, %d errors)", n, found_blocks, (maxBlocks == 0 ? found_blocks : maxBlocks), tries, errors);
// print blocks that have been found
for (i = 0; i < n; ++i) {
print_result("Block found: ", tmp_blocks[i], 16);
}
// i = 0;
// if (!found_0_1) {
// while (i < n - 1) {
// if (IsBlock0PCF7931(tmp_blocks[i]) && IsBlock1PCF7931(tmp_blocks[i + 1])) {
// found_0_1 = 1;
// memcpy(memory_blocks[0], tmp_blocks[i], 16);
// memcpy(memory_blocks[1], tmp_blocks[i + 1], 16);
// memory_blocks[0][ALLOC] = memory_blocks[1][ALLOC] = 1;
// // block 1 tells how many blocks are going to be sent
// maxBlocks = MAX((memory_blocks[1][14] & 0x7f), memory_blocks[1][15]) + 1;
// found_blocks = 2;
// Dbprintf("Found blocks 0 and 1. PCF is transmitting %d blocks.", maxBlocks);
// // handle the following blocks
// for (j = i + 2; j < n; ++j) {
// memcpy(memory_blocks[found_blocks], tmp_blocks[j], 16);
// memory_blocks[found_blocks][ALLOC] = 1;
// ++found_blocks;
// }
// break;
// }
// ++i;
// }
// } else {
// // Trying to re-order blocks
// // Look for identical block in memory blocks
// while (i < n - 1) {
// // skip all zeroes blocks
// if (memcmp(tmp_blocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) {
// for (j = 1; j < maxBlocks - 1; ++j) {
// if (!memcmp(tmp_blocks[i], memory_blocks[j], 16) && !memory_blocks[j + 1][ALLOC]) {
// memcpy(memory_blocks[j + 1], tmp_blocks[i + 1], 16);
// memory_blocks[j + 1][ALLOC] = 1;
// if (++found_blocks >= maxBlocks) goto end;
// }
// }
// }
// if (memcmp(tmp_blocks[i + 1], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) {
// for (j = 0; j < maxBlocks; ++j) {
// if (!memcmp(tmp_blocks[i + 1], memory_blocks[j], 16) && !memory_blocks[(j == 0 ? maxBlocks : j) - 1][ALLOC]) {
// if (j == 0) {
// memcpy(memory_blocks[maxBlocks - 1], tmp_blocks[i], 16);
// memory_blocks[maxBlocks - 1][ALLOC] = 1;
// } else {
// memcpy(memory_blocks[j - 1], tmp_blocks[i], 16);
// memory_blocks[j - 1][ALLOC] = 1;
// }
// if (++found_blocks >= maxBlocks) goto end;
// }
// }
// }
// ++i;
// }
// }
++tries;
if (BUTTON_PRESS()) {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("Button pressed, stopping.");
goto end;
}
} while (found_blocks < maxBlocks);
end:
/*
Dbprintf("-----------------------------------------");
Dbprintf("Memory content:");
Dbprintf("-----------------------------------------");
for (i = 0; i < maxBlocks; ++i) {
if (memory_blocks[i][ALLOC])
print_result("Block", memory_blocks[i], 16);
else
Dbprintf("<missing block %d>", i);
}
Dbprintf("-----------------------------------------");
if (found_blocks < maxBlocks) {
Dbprintf("-----------------------------------------");
Dbprintf("Blocks with unknown position:");
Dbprintf("-----------------------------------------");
for (i = 0; i < single_blocks_cnt; ++i)
print_result("Block", single_blocks[i], 16);
Dbprintf("-----------------------------------------");
}
*/
reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
}
static void RealWritePCF7931(
uint8_t *pass,
uint16_t init_delay,
int8_t offsetPulseWidth, int8_t offsetPulsePosition,
uint8_t address, uint8_t byte, uint8_t data,
bool ledcontrol) {
uint32_t tab[1024] = {0}; // data times frame
uint32_t u = 0;
uint8_t parity = 0;
//BUILD OF THE DATA FRAME
//alimentation of the tag (time for initializing)
// ToDo: This could be optimized/automated. e.g. Read one cycle, find PMC and calculate time.
// I dont understand, why 8192/2
AddPatternPCF7931(init_delay, 0, 8192 / 2 * T0_PCF, tab);
// why "... + 70"? Why not "... + x * T0"?
// I think he just added 70 to be somewhere in The PMC window, which is 32T0 (=32*8 = 256)
// 3*T0 = PMC width
// 29*T0 = rest of PMC window (total 32T0 = 3+29)
// after the PMC, it directly goes to the password indication bit.
AddPatternPCF7931(8192 / 2 * T0_PCF + 319 * T0_PCF + 70, 3 * T0_PCF, 29 * T0_PCF, tab);
//password indication bit
AddBitPCF7931(1, tab, offsetPulseWidth, offsetPulsePosition);
//password (on 56 bits)
AddBytePCF7931(pass[0], tab, offsetPulseWidth, offsetPulsePosition);
AddBytePCF7931(pass[1], tab, offsetPulseWidth, offsetPulsePosition);
AddBytePCF7931(pass[2], tab, offsetPulseWidth, offsetPulsePosition);
AddBytePCF7931(pass[3], tab, offsetPulseWidth, offsetPulsePosition);
AddBytePCF7931(pass[4], tab, offsetPulseWidth, offsetPulsePosition);
AddBytePCF7931(pass[5], tab, offsetPulseWidth, offsetPulsePosition);
AddBytePCF7931(pass[6], tab, offsetPulseWidth, offsetPulsePosition);
//programming mode (0 or 1) -> 0 = byte wise; 1 = block wise programming
AddBitPCF7931(0, tab, offsetPulseWidth, offsetPulsePosition);
//block address on 6 bits
for (u = 0; u < 6; ++u) {
if (address & (1 << u)) { // bit 1
++parity;
AddBitPCF7931(1, tab, offsetPulseWidth, offsetPulsePosition);
} else { // bit 0
AddBitPCF7931(0, tab, offsetPulseWidth, offsetPulsePosition);
}
}
//byte address on 4 bits
for (u = 0; u < 4; ++u) {
if (byte & (1 << u)) { // bit 1
parity++;
AddBitPCF7931(1, tab, offsetPulseWidth, offsetPulsePosition);
} else // bit 0
AddBitPCF7931(0, tab, offsetPulseWidth, offsetPulsePosition);
}
//data on 8 bits
for (u = 0; u < 8; u++) {
if (data & (1 << u)) { // bit 1
parity++;
AddBitPCF7931(1, tab, offsetPulseWidth, offsetPulsePosition);
} else //bit 0
AddBitPCF7931(0, tab, offsetPulseWidth, offsetPulsePosition);
}
//parity bit
if ((parity % 2) == 0)
AddBitPCF7931(0, tab, offsetPulseWidth, offsetPulsePosition); //even parity
else
AddBitPCF7931(1, tab, offsetPulseWidth, offsetPulsePosition);//odd parity
// time access memory (640T0)
// Not sure why 335*T0, but should not matter. Since programming should be finished at that point
AddPatternPCF7931((640 + 335)* T0_PCF, 0, 0, tab);
SendCmdPCF7931(tab, ledcontrol);
}
/* Write on a byte of a PCF7931 tag
* @param address : address of the block to write
* @param byte : address of the byte to write
* @param data : data to write
*/
void WritePCF7931(
uint8_t pass1, uint8_t pass2, uint8_t pass3, uint8_t pass4, uint8_t pass5, uint8_t pass6, uint8_t pass7,
uint16_t init_delay,
int8_t offsetPulseWidth, int8_t offsetPulsePosition,
uint8_t address, uint8_t byte, uint8_t data,
bool ledcontrol) {
if (g_dbglevel >= DBG_INFO) {
Dbprintf("Initialization delay : %d us", init_delay);
Dbprintf("Offsets : %d us on the low pulses width, %d us on the low pulses positions", offsetPulseWidth, offsetPulsePosition);
}
Dbprintf("Password (LSB first on each byte): %02x %02x %02x %02x %02x %02x %02x", pass1, pass2, pass3, pass4, pass5, pass6, pass7);
Dbprintf("Block address : %02x", address);
Dbprintf("Byte address : %02x", byte);
Dbprintf("Data : %02x", data);
uint8_t password[7] = {pass1, pass2, pass3, pass4, pass5, pass6, pass7};
RealWritePCF7931(password, init_delay, offsetPulseWidth, offsetPulsePosition, address, byte, data, ledcontrol);
}
/* Send a frame to a PCF7931 tags
* @param tab : array of the data frame
*/
void SendCmdPCF7931(uint32_t *tab, bool ledcontrol) {
uint16_t u = 0, tempo = 0;
if (g_dbglevel >= DBG_INFO) {
Dbprintf("Sending data frame...");
}
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); //125kHz
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
if (ledcontrol) LED_A_ON();
// rescale the values to match the time of the timer below.
for (u = 0; u < 500; ++u) {
tab[u] = (tab[u] * 3) / 2;
}
// compensation for the counter overflow
// only one overflow should be possible.
for (u = 0; tab[u] != 0; ++u)
if (tab[u] > 0xFFFF) {
tab[u] -= 0xFFFF;
break;
}
// steal this pin from the SSP and use it to control the modulation
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
//initialization of the timer
AT91C_BASE_PMC->PMC_PCER |= (0x1 << AT91C_ID_TC0);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; // clock at 48/32 MHz (48Mhz clock, 32 = prescaler (div3))
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN;
// Assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1;
tempo = AT91C_BASE_TC0->TC_CV;
for (u = 0; tab[u] != 0; u += 3) {
// modulate antenna
HIGH(GPIO_SSC_DOUT);
while ((uint32_t)tempo < tab[u]) {
tempo = AT91C_BASE_TC0->TC_CV;
}
// stop modulating antenna
LOW(GPIO_SSC_DOUT);
while ((uint32_t)tempo < tab[u + 1]) {
tempo = AT91C_BASE_TC0->TC_CV;
}
// modulate antenna
HIGH(GPIO_SSC_DOUT);
while ((uint32_t)tempo < tab[u + 2]) {
tempo = AT91C_BASE_TC0->TC_CV;
}
}
if (ledcontrol) LED_A_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
}
/* Add a byte for building the data frame of PCF7931 tags.
* See Datasheet of PCF7931 diagramm on page 8. This explains pulse widht & positioning
* Normally, no offset should be required.
* @param b : byte to add
* @param tab : array of the data frame
* @param offsetPulseWidth : offset on low pulse width in µs (default pulse widht is 6T0)
* @param offsetPulsePosition : offset on low pulse positioning in µs
*/
bool AddBytePCF7931(uint8_t byte, uint32_t *tab, int8_t offsetPulseWidth, int8_t offsetPulsePosition) {
uint32_t u;
for (u = 0; u < 8; ++u) {
if (byte & (1 << u)) { //bit is 1
AddBitPCF7931(1, tab, offsetPulseWidth, offsetPulsePosition);
} else { //bit is 0
AddBitPCF7931(0, tab, offsetPulseWidth, offsetPulsePosition);
}
}
return false;
}
/* Add a bits for building the data frame of PCF7931 tags.
* See Datasheet of PCF7931 diagramm on page 8. This explains pulse widht & positioning
* Normally, no offset should be required.
* @param b : bit to add
* @param tab : array of the data frame
* @param offsetPulseWidth : offset on low pulse width in µs (default pulse widht is 6T0)
* @param offsetPulsePosition : offset on low pulse positioning in µs
*/
bool AddBitPCF7931(bool b, uint32_t *tab, int8_t offsetPulseWidth, int8_t offsetPulsePosition) {
uint8_t u = 0;
//we put the cursor at the last value of the array
for (u = 0; tab[u] != 0; u += 3) { };
if (b == 1) { //add a bit 1
if (u == 0)
tab[u] = 34 * T0_PCF + offsetPulsePosition;
else
tab[u] = 34 * T0_PCF + tab[u - 1] + offsetPulsePosition;
tab[u + 1] = 6 * T0_PCF + tab[u] + offsetPulseWidth;
tab[u + 2] = 88 * T0_PCF + tab[u + 1] - offsetPulseWidth - offsetPulsePosition;
} else { //add a bit 0
if (u == 0)
tab[u] = 98 * T0_PCF + offsetPulsePosition;
else
tab[u] = 98 * T0_PCF + tab[u - 1] + offsetPulsePosition;
tab[u + 1] = 6 * T0_PCF + tab[u] + offsetPulseWidth;
tab[u + 2] = 24 * T0_PCF + tab[u + 1] - offsetPulseWidth - offsetPulsePosition;
}
return true;
}
/* Add a custom pattern in the data frame
* @param a : delay of the first high pulse
* @param b : delay of the low pulse
* @param c : delay of the last high pulse
* @param tab : array of the data frame
*/
bool AddPatternPCF7931(uint32_t a, uint32_t b, uint32_t c, uint32_t *tab) {
uint32_t u = 0;
for (u = 0; tab[u] != 0; u += 3) {} //we put the cursor at the last value of the array
tab[u] = (u == 0) ? a : a + tab[u - 1]; // if it is the first value of the array, nothing needs to be added.
tab[u + 1] = b + tab[u]; // otherwise always add up the values, because later on it is compared to a counter
tab[u + 2] = c + tab[u + 1];
return true;
}