//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Utility functions used in many places, not specific to any piece of code. //----------------------------------------------------------------------------- #include "commonutil.h" #include #include "stdbool.h" /* Similar to FpgaGatherVersion this formats stored version information * into a string representation. It takes a pointer to the struct version_information_t, * verifies the magic properties, then stores a formatted string, prefixed by * prefix in dst. */ void FormatVersionInformation(char *dst, int len, const char *prefix, const void *version_info) { const struct version_information_t *v = (const struct version_information_t *)version_info; dst[0] = 0; strncat(dst, prefix, len - 1); if (v->magic != VERSION_INFORMATION_MAGIC) { strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1); return; } if (v->versionversion != 1) { strncat(dst, "Version information not understood", len - strlen(dst) - 1); return; } if (!v->present) { strncat(dst, "Version information not available", len - strlen(dst) - 1); return; } strncat(dst, v->gitversion, len - strlen(dst) - 1); if (v->clean == 0) { strncat(dst, "-unclean", len - strlen(dst) - 1); } else if (v->clean == 2) { strncat(dst, "-suspect", len - strlen(dst) - 1); } strncat(dst, " ", len - strlen(dst) - 1); strncat(dst, v->buildtime, len - strlen(dst) - 1); strncat(dst, " ", len - strlen(dst) - 1); strncat(dst, v->armsrc, len - strlen(dst) - 1); } void format_version_information_short(char *dst, int len, const void *version_info) { const struct version_information_t *v = (const struct version_information_t *)version_info; dst[0] = 0; if (v->magic != VERSION_INFORMATION_MAGIC) { strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1); return; } if (v->versionversion != 1) { strncat(dst, "Version information not understood", len - strlen(dst) - 1); return; } if (!v->present) { strncat(dst, "Version information not available", len - strlen(dst) - 1); return; } strncat(dst, v->gitversion, len - strlen(dst) - 1); strncat(dst, " ", len - strlen(dst) - 1); strncat(dst, v->buildtime, len - strlen(dst) - 1); } /* ref http://www.csm.ornl.gov/~dunigan/crc.html Returns the value v with the bottom b [0,32] bits reflected. Example: reflect(0x3e23L,3) == 0x3e26 */ uint32_t reflect(uint32_t v, int b) { uint32_t t = v; for (int i = 0; i < b; ++i) { if (t & 1) v |= BITMASK((b - 1) - i); else v &= ~BITMASK((b - 1) - i); t >>= 1; } return v; } // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable // Reverse the bits in a byte with 3 operations (64-bit multiply and modulus division): uint8_t reflect8(uint8_t b) { return (b * 0x0202020202ULL & 0x010884422010ULL) % 1023; } uint16_t reflect16(uint16_t v) { v = (reflect8(v) << 8) | (reflect8(v >> 8) & 0xFF); return v; } uint32_t reflect32(uint32_t v) { // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable // swap odd and even bits v = ((v >> 1) & 0x55555555) | ((v & 0x55555555) << 1); // swap consecutive pairs v = ((v >> 2) & 0x33333333) | ((v & 0x33333333) << 2); // swap nibbles ... v = ((v >> 4) & 0x0F0F0F0F) | ((v & 0x0F0F0F0F) << 4); // swap bytes v = ((v >> 8) & 0x00FF00FF) | ((v & 0x00FF00FF) << 8); // swap 2-byte long pairs v = (v >> 16) | (v << 16); return v; } uint64_t reflect48(uint64_t v) { uint64_t vhi = reflect16(v >> 32); uint64_t vlo = reflect32(v); v = (vlo << 32) | (vhi & 0xFFFF); return v; } uint64_t reflect64(uint64_t v) { // https://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable // swap 4-byte long pairs uint64_t v1 = reflect32(v >> 32); uint64_t v2 = reflect32(v); v = (v2 << 32) | (v1 & 0xFFFFFFFF); return v; } void num_to_bytes(uint64_t n, size_t len, uint8_t *dest) { while (len--) { dest[len] = (uint8_t) n; n >>= 8; } } uint64_t bytes_to_num(const uint8_t *src, size_t len) { uint64_t num = 0; while (len--) { num = (num << 8) | (*src); src++; } return num; } uint16_t MemLeToUint2byte(const uint8_t *data) { return (uint16_t)( (((uint16_t)(data[1])) << 8) + (((uint16_t)(data[0])) << 0) ); } uint32_t MemLeToUint3byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[2])) << 16) + (((uint32_t)(data[1])) << 8) + (((uint32_t)(data[0])) << 0) ); } uint32_t MemLeToUint4byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[3])) << 24) + (((uint32_t)(data[2])) << 16) + (((uint32_t)(data[1])) << 8) + (((uint32_t)(data[0])) << 0) ); } uint64_t MemLeToUint5byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[4])) << 32) + (((uint64_t)(data[3])) << 24) + (((uint64_t)(data[2])) << 16) + (((uint64_t)(data[1])) << 8) + (((uint64_t)(data[0])) << 0) ); } uint64_t MemLeToUint6byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[5])) << 40) + (((uint64_t)(data[4])) << 32) + (((uint64_t)(data[3])) << 24) + (((uint64_t)(data[2])) << 16) + (((uint64_t)(data[1])) << 8) + (((uint64_t)(data[0])) << 0) ); } uint64_t MemLeToUint7byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[6])) << 48) + (((uint64_t)(data[5])) << 40) + (((uint64_t)(data[4])) << 32) + (((uint64_t)(data[3])) << 24) + (((uint64_t)(data[2])) << 16) + (((uint64_t)(data[1])) << 8) + (((uint64_t)(data[0])) << 0) ); } uint64_t MemLeToUint8byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[7])) << 56) + (((uint64_t)(data[6])) << 48) + (((uint64_t)(data[5])) << 40) + (((uint64_t)(data[4])) << 32) + (((uint64_t)(data[3])) << 24) + (((uint64_t)(data[2])) << 16) + (((uint64_t)(data[1])) << 8) + (((uint64_t)(data[0])) << 0) ); } uint16_t MemBeToUint2byte(const uint8_t *data) { return (uint16_t)( (((uint16_t)(data[0])) << 8) + (((uint16_t)(data[1])) << 0) ); } uint32_t MemBeToUint3byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[0])) << 16) + (((uint32_t)(data[1])) << 8) + (((uint32_t)(data[2])) << 0) ); } uint32_t MemBeToUint4byte(const uint8_t *data) { return (uint32_t)( (((uint32_t)(data[0])) << 24) + (((uint32_t)(data[1])) << 16) + (((uint32_t)(data[2])) << 8) + (((uint32_t)(data[3])) << 0) ); } uint64_t MemBeToUint5byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << 32) + (((uint64_t)(data[1])) << 24) + (((uint64_t)(data[2])) << 16) + (((uint64_t)(data[3])) << 8) + (((uint64_t)(data[4])) << 0) ); } uint64_t MemBeToUint6byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << 40) + (((uint64_t)(data[1])) << 32) + (((uint64_t)(data[2])) << 24) + (((uint64_t)(data[3])) << 16) + (((uint64_t)(data[4])) << 8) + (((uint64_t)(data[5])) << 0) ); } uint64_t MemBeToUint7byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << 48) + (((uint64_t)(data[1])) << 40) + (((uint64_t)(data[2])) << 32) + (((uint64_t)(data[3])) << 24) + (((uint64_t)(data[4])) << 16) + (((uint64_t)(data[5])) << 8) + (((uint64_t)(data[6])) << 0) ); } uint64_t MemBeToUint8byte(const uint8_t *data) { return (uint64_t)( (((uint64_t)(data[0])) << 56) + (((uint64_t)(data[1])) << 48) + (((uint64_t)(data[2])) << 40) + (((uint64_t)(data[3])) << 32) + (((uint64_t)(data[4])) << 24) + (((uint64_t)(data[5])) << 16) + (((uint64_t)(data[6])) << 8) + (((uint64_t)(data[7])) << 0) ); } void Uint2byteToMemLe(uint8_t *data, uint16_t value) { data[0] = (uint8_t)((value >> 0) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); } void Uint3byteToMemLe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> 0) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); data[2] = (uint8_t)((value >> 16) & 0xffu); } void Uint4byteToMemLe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> 0) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); data[2] = (uint8_t)((value >> 16) & 0xffu); data[3] = (uint8_t)((value >> 24) & 0xffu); } void Uint5byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 0) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); data[2] = (uint8_t)((value >> 16) & 0xffu); data[3] = (uint8_t)((value >> 24) & 0xffu); data[4] = (uint8_t)((value >> 32) & 0xffu); } void Uint6byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 0) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); data[2] = (uint8_t)((value >> 16) & 0xffu); data[3] = (uint8_t)((value >> 24) & 0xffu); data[4] = (uint8_t)((value >> 32) & 0xffu); data[5] = (uint8_t)((value >> 40) & 0xffu); } void Uint7byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 0) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); data[2] = (uint8_t)((value >> 16) & 0xffu); data[3] = (uint8_t)((value >> 24) & 0xffu); data[4] = (uint8_t)((value >> 32) & 0xffu); data[5] = (uint8_t)((value >> 40) & 0xffu); data[6] = (uint8_t)((value >> 48) & 0xffu); } void Uint8byteToMemLe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 0) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); data[2] = (uint8_t)((value >> 16) & 0xffu); data[3] = (uint8_t)((value >> 24) & 0xffu); data[4] = (uint8_t)((value >> 32) & 0xffu); data[5] = (uint8_t)((value >> 40) & 0xffu); data[6] = (uint8_t)((value >> 48) & 0xffu); data[7] = (uint8_t)((value >> 56) & 0xffu); } void Uint2byteToMemBe(uint8_t *data, uint16_t value) { data[0] = (uint8_t)((value >> 8) & 0xffu); data[1] = (uint8_t)((value >> 0) & 0xffu); } void Uint3byteToMemBe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> 16) & 0xffu); data[1] = (uint8_t)((value >> 8) & 0xffu); data[2] = (uint8_t)((value >> 0) & 0xffu); } void Uint4byteToMemBe(uint8_t *data, uint32_t value) { data[0] = (uint8_t)((value >> 24) & 0xffu); data[1] = (uint8_t)((value >> 16) & 0xffu); data[2] = (uint8_t)((value >> 8) & 0xffu); data[3] = (uint8_t)((value >> 0) & 0xffu); } void Uint5byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 32) & 0xffu); data[1] = (uint8_t)((value >> 24) & 0xffu); data[2] = (uint8_t)((value >> 16) & 0xffu); data[3] = (uint8_t)((value >> 8) & 0xffu); data[4] = (uint8_t)((value >> 0) & 0xffu); } void Uint6byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 40) & 0xffu); data[1] = (uint8_t)((value >> 32) & 0xffu); data[2] = (uint8_t)((value >> 24) & 0xffu); data[3] = (uint8_t)((value >> 16) & 0xffu); data[4] = (uint8_t)((value >> 8) & 0xffu); data[5] = (uint8_t)((value >> 0) & 0xffu); } void Uint7byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 48) & 0xffu); data[1] = (uint8_t)((value >> 40) & 0xffu); data[2] = (uint8_t)((value >> 32) & 0xffu); data[3] = (uint8_t)((value >> 24) & 0xffu); data[4] = (uint8_t)((value >> 16) & 0xffu); data[5] = (uint8_t)((value >> 8) & 0xffu); data[6] = (uint8_t)((value >> 0) & 0xffu); } void Uint8byteToMemBe(uint8_t *data, uint64_t value) { data[0] = (uint8_t)((value >> 56) & 0xffu); data[1] = (uint8_t)((value >> 48) & 0xffu); data[2] = (uint8_t)((value >> 40) & 0xffu); data[3] = (uint8_t)((value >> 32) & 0xffu); data[4] = (uint8_t)((value >> 24) & 0xffu); data[5] = (uint8_t)((value >> 16) & 0xffu); data[6] = (uint8_t)((value >> 8) & 0xffu); data[7] = (uint8_t)((value >> 0) & 0xffu); } // Rotate Left - Ultralight, Desfire void rol(uint8_t *data, const size_t n) { uint8_t first = data[0]; for (size_t i = 0; i < n - 1; i++) { data[i] = data[i + 1]; } data[n - 1] = first; } // Rotate Right - Ultralight, Desfire void ror(uint8_t *data, const size_t n) { uint8_t last = data[n - 1]; for (int i = n - 1; i > 0; i--) { data[i] = data[i - 1]; } data[0] = last; } void xor(uint8_t *dest, const uint8_t *src, size_t n) { const uint8_t *s = src; uint8_t *d = dest; for (; n > 0; n--) { *d++ ^= *s++; } } // left shift an array of length one bit void lsl(uint8_t *d, size_t n) { for (size_t i = 0; i < n - 1; i++) { d[i] = (d[i] << 1) | (d[i + 1] >> 7); } d[n - 1] <<= 1; } void lslx(uint8_t *d, size_t n, uint8_t shifts) { for (uint8_t i = 0; i < shifts; i++) { for (size_t j = 0; j < n - 1; j++) { d[j] = (d[j] << 1) | (d[j + 1] >> 7); } d[n - 1] <<= 1; } } // right shift an array of length one bit void rsl(uint8_t *d, size_t n) { uint8_t carry = 0; for (size_t i = 0; i < n; i++) { // Save the LSB before shifting uint8_t new_carry = d[i] & 0x1; // Shift current byte right and incorporate previous carry d[i] = (d[i] >> 1) | (carry ? 0x80 : 0); // Update carry for next byte carry = new_carry; } } void rslx(uint8_t *d, size_t n, uint8_t shifts) { uint8_t carry = 0; for (uint8_t j = 0; j < shifts; j++) { for (size_t i = 0; i < n; i++) { // Save the LSB before shifting uint8_t new_carry = d[i] & 0x1; // Shift current byte right and incorporate previous carry d[i] = (d[i] >> 1) | (carry ? 0x80 : 0); // Update carry for next byte carry = new_carry; } } } // BSWAP24 of array[3] uint32_t le24toh(const uint8_t data[3]) { return (data[2] << 16) | (data[1] << 8) | data[0]; } // BSWAP24, take u32, output array void htole24(uint32_t val, uint8_t data[3]) { data[0] = (uint8_t) val; data[1] = (uint8_t)(val >> 8); data[2] = (uint8_t)(val >> 16); } // ROL on u32 uint32_t rotl(uint32_t a, uint8_t n) { n &= 31; return (a << n) | (a >> (32 - n)); } // ROR on u32 uint32_t rotr(uint32_t a, uint8_t n) { n &= 31; return (a >> n) | (a << (32 - n)); } uint16_t get_sw(const uint8_t *d, uint16_t n) { if (n < 2) return 0; n -= 2; return (d[n] << 8 | d[n + 1]); } // reverse same array void reverse_array(uint8_t *d, size_t n) { if (d == NULL || n < 2) { return; } for (int i = 0, j = n - 1; i < j; ++i, --j) { d[i] ^= d[j]; d[j] ^= d[i]; d[i] ^= d[j]; } } // reverse src array into dest array void reverse_array_copy(const uint8_t *src, int src_len, uint8_t *dest) { if (src == NULL || src_len == 0 || dest == NULL) { return; } for (int i = 0; i < src_len; i++) { dest[i] = src[(src_len - 1) - i]; } } static int hexchar_to_dec(char ch) { if (ch >= '0' && ch <= '9') { return ch - '0'; } if (ch >= 'a' && ch <= 'f') { return ch - 'a' + 10; } if (ch >= 'A' && ch <= 'F') { return ch - 'A' + 10; } return -1; } // no spaces allowed for input hex string bool hexstr_to_byte_array(const char *hexstr, uint8_t *d, size_t *n) { size_t hexstr_len = strlen(hexstr); if (hexstr_len & 1) { return false; } *n = (hexstr_len >> 1); for (int i = 0; i < *n; i++) { char c1 = *hexstr++; char c2 = *hexstr++; if (c1 == '\0' || c2 == '\0') { return false; } int b = (hexchar_to_dec(c1) << 4) | hexchar_to_dec(c2); if (b < 0) { // Error: invalid hex character return false; } d[i] = (uint8_t) b; } return true; } void reverse_arraybytes(uint8_t *arr, size_t len) { size_t i; for (i = 0; i < len ; i++) { arr[i] = reflect8(arr[i]); } } void reverse_arraybytes_copy(const uint8_t *arr, uint8_t *dest, size_t len) { for (size_t i = 0; i < len ; i++) { dest[i] = reflect8(arr[i]); } } // TODO: Boost performance by copying in chunks of 1, 2, or 4 bytes when feasible. /** * @brief Concatenate bits from src to dest, bitstream is stored MSB first * which means that the dest_offset=0 is the MSB of the dest[0] * */ size_t concatbits(uint8_t *dest, int dest_offset, const uint8_t *src, int src_offset, size_t nbits, bool src_lsb) { int i, end, step; // overlap if ((src - dest) * 8 + src_offset - dest_offset > 0) { i = 0; end = nbits; step = 1; } else { i = nbits - 1; end = -1; step = -1; } for (; i != end; i += step) { // equiv of dest_bits[dest_offset + i] = src_bits[src_offset + i] CLEAR_BIT_MSB(dest, dest_offset + i); if (src_lsb ? TEST_BIT_LSB(src, src_offset + i) : TEST_BIT_MSB(src, src_offset + i)) SET_BIT_MSB(dest, dest_offset + i); } return dest_offset + nbits; } int char2int(char c) { if (c >= '0' && c <= '9') return c - '0'; if (c >= 'A' && c <= 'F') return c - 'A' + 10; if (c >= 'a' && c <= 'f') return c - 'a' + 10; return -1; // Invalid character for hex } // returns the number of bytes written int hexstr2ByteArr(const char *hexstr, unsigned char *array, size_t asize) { size_t n = 0; while (hexstr[n] != '\0') { n++; } // Check if the input is valid and fits in the output array if (n % 2 != 0 || asize < n >> 1) { return -1; // Error: invalid length or insufficient byte array size } for (size_t i = 0; i < n; i += 2) { int high = char2int(hexstr[i]); int low = char2int(hexstr[i + 1]); if (high == -1 || low == -1) { return -1; // Error: invalid hex character } array[i >> 1] = (high << 4) | low; } return n >> 1; }