chg: adapted lfsampling, and swapped from 'silent' logic to the more natural 'verbose' logic

This commit is contained in:
iceman1001 2020-01-07 22:05:01 +01:00
commit f7156e7485
12 changed files with 236 additions and 166 deletions

View file

@ -15,6 +15,7 @@
#include "dbprint.h"
#include "util.h"
#include "lfdemod.h"
#include "string.h" // memset
/*
Default LF config is set to:
@ -32,7 +33,7 @@ void printConfig() {
uint32_t d = config.divisor;
DbpString(_BLUE_("LF Sampling config"));
Dbprintf(" [q] divisor.............%d ( "_GREEN_("%d.%02d kHz")")", d, 12000 / (d + 1), ((1200000 + (d + 1) / 2) / (d + 1)) - ((12000 / (d + 1)) * 100));
Dbprintf(" [b] bps.................%d", config.bits_per_sample);
Dbprintf(" [b] bits per sample.....%d", config.bits_per_sample);
Dbprintf(" [d] decimation..........%d", config.decimation);
Dbprintf(" [a] averaging...........%s", (config.averaging) ? "Yes" : "No");
Dbprintf(" [t] trigger threshold...%d", config.trigger_threshold);
@ -69,12 +70,6 @@ sample_config *getSamplingConfig() {
return &config;
}
struct BitstreamOut {
uint8_t *buffer;
uint32_t numbits;
uint32_t position;
};
/**
* @brief Pushes bit onto the stream
* @param stream
@ -88,6 +83,87 @@ void pushBit(BitstreamOut *stream, uint8_t bit) {
stream->numbits++;
}
// Holds bit packed struct of samples.
BitstreamOut data = {0, 0, 0};
// internal struct to keep track of samples gathered
sampling_t samples = {0, 0, 0, 0};
void initSampleBuffer(uint32_t *sample_size) {
if (sample_size == NULL || *sample_size == 0) {
*sample_size = BigBuf_max_traceLen();
} else {
*sample_size = MIN(*sample_size, BigBuf_max_traceLen());
}
// use a bitstream to handle the output
data.buffer = BigBuf_get_addr();
memset(data.buffer, 0, *sample_size);
//
samples.dec_counter = 0;
samples.sum = 0;
samples.counter = 0;
samples.total_saved = 0;
}
uint32_t getSampleCounter() {
return samples.total_saved;
}
void logSample(uint8_t sample, uint8_t decimation, uint32_t bits_per_sample, bool avg) {
if (!data.buffer) return;
if (bits_per_sample == 0) bits_per_sample = 1;
if (bits_per_sample > 8) bits_per_sample = 8;
if (decimation == 0) decimation = 1;
// keep track of total gather samples regardless how many was discarded.
samples.counter++;
if (avg) {
samples.sum += sample;
}
// check decimation
if (decimation > 1) {
samples.dec_counter++;
if (samples.dec_counter < decimation) return;
samples.dec_counter = 0;
}
// averaging
if (avg && decimation > 1) {
sample = samples.sum / decimation;
samples.sum = 0;
}
// store the sample
samples.total_saved++;
if (bits_per_sample == 8) {
data.buffer[samples.total_saved - 1] = sample;
// add number of bits.
data.numbits = samples.total_saved << 3;
} else {
pushBit(&data, sample & 0x80);
if (bits_per_sample > 1) pushBit(&data, sample & 0x40);
if (bits_per_sample > 2) pushBit(&data, sample & 0x20);
if (bits_per_sample > 3) pushBit(&data, sample & 0x10);
if (bits_per_sample > 4) pushBit(&data, sample & 0x08);
if (bits_per_sample > 5) pushBit(&data, sample & 0x04);
if (bits_per_sample > 6) pushBit(&data, sample & 0x02);
}
}
/**
* Setup the FPGA to listen for samples. This method downloads the FPGA bitstream
* if not already loaded, sets divisor and starts up the antenna.
@ -128,45 +204,39 @@ void LFSetupFPGAForADC(int divisor, bool lf_field) {
* value that will be used is the average value of the three samples.
* @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set
* to -1 to ignore threshold.
* @param silent - is true, now outputs are made. If false, dbprints the status
* @param verbose - is true, dbprints the status, else no outputs
* @return the number of bits occupied by the samples.
*/
uint32_t DoAcquisition(uint8_t decimation, uint32_t bits_per_sample, bool averaging, int trigger_threshold, bool silent, int bufsize, uint32_t cancel_after, uint32_t samples_to_skip) {
uint32_t DoAcquisition(uint8_t decimation, uint32_t bits_per_sample, bool avg, int trigger_threshold,
bool verbose, uint32_t sample_size, uint32_t cancel_after, uint32_t samples_to_skip) {
uint8_t *dest = BigBuf_get_addr();
bufsize = (bufsize > 0 && bufsize < BigBuf_max_traceLen()) ? bufsize : BigBuf_max_traceLen();
initSampleBuffer(&sample_size);
if (bits_per_sample < 1) bits_per_sample = 1;
if (bits_per_sample > 8) bits_per_sample = 8;
if (decimation < 1) decimation = 1;
// use a bit stream to handle the output
BitstreamOut data = { dest, 0, 0};
int sample_counter = 0;
uint8_t sample;
// if we want to do averaging
uint32_t sample_sum = 0 ;
uint32_t sample_total_numbers = 0;
uint32_t sample_total_saved = 0;
uint32_t cancel_counter = 0;
uint16_t checked = 0;
int16_t checked = 0;
while (true) {
// only every 1000th times, in order to save time when collecting samples.
if (checked == 1000) {
if (BUTTON_PRESS() || data_available())
if (BUTTON_PRESS() || data_available()) {
checked = -1;
break;
else
} else {
checked = 0;
}
}
++checked;
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
// AT91C_BASE_SSC->SSC_THR = 0x43;
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// Testpoint 8 (TP8) can be used to trigger oscilliscope
LED_D_OFF();
@ -188,57 +258,23 @@ uint32_t DoAcquisition(uint8_t decimation, uint32_t bits_per_sample, bool averag
continue;
}
sample_total_numbers++;
logSample(sample, decimation, bits_per_sample, avg);
if (averaging)
sample_sum += sample;
// check decimation
if (decimation > 1) {
sample_counter++;
if (sample_counter < decimation) continue;
sample_counter = 0;
}
// averaging
if (averaging && decimation > 1) {
sample = sample_sum / decimation;
sample_sum = 0;
}
// store the sample
sample_total_saved ++;
if (bits_per_sample == 8) {
dest[sample_total_saved - 1] = sample;
// Get the return value correct
data.numbits = sample_total_saved << 3;
if (sample_total_saved >= bufsize) break;
} else {
pushBit(&data, sample & 0x80);
if (bits_per_sample > 1) pushBit(&data, sample & 0x40);
if (bits_per_sample > 2) pushBit(&data, sample & 0x20);
if (bits_per_sample > 3) pushBit(&data, sample & 0x10);
if (bits_per_sample > 4) pushBit(&data, sample & 0x08);
if (bits_per_sample > 5) pushBit(&data, sample & 0x04);
if (bits_per_sample > 6) pushBit(&data, sample & 0x02);
if ((data.numbits >> 3) + 1 >= bufsize) break;
}
if (samples.total_saved >= sample_size) break;
}
}
if (!silent) {
Dbprintf("Done, saved " _YELLOW_("%d")"out of " _YELLOW_("%d")"seen samples at " _YELLOW_("%d")"bits/sample", sample_total_saved, sample_total_numbers, bits_per_sample);
Dbprintf("buffer samples: %02x %02x %02x %02x %02x %02x %02x %02x ...",
dest[0], dest[1], dest[2], dest[3], dest[4], dest[5], dest[6], dest[7]);
if (checked == -1 && verbose) {
Dbprintf("lf sampling aborted");
}
if (verbose) {
Dbprintf("Done, saved " _YELLOW_("%d")"out of " _YELLOW_("%d")"seen samples at " _YELLOW_("%d")"bits/sample", samples.total_saved, samples.counter, bits_per_sample);
}
// Ensure that DC offset removal and noise check is performed for any device-side processing
removeSignalOffset(dest, bufsize);
computeSignalProperties(dest, bufsize);
removeSignalOffset(data.buffer, samples.total_saved);
computeSignalProperties(data.buffer, samples.total_saved);
return data.numbits;
}
@ -247,32 +283,33 @@ uint32_t DoAcquisition(uint8_t decimation, uint32_t bits_per_sample, bool averag
* This method is typically used by tag-specific readers who just wants to read the samples
* the normal way
* @param trigger_threshold
* @param silent
* @param verbose
* @return number of bits sampled
*/
uint32_t DoAcquisition_default(int trigger_threshold, bool silent) {
return DoAcquisition(1, 8, 0, trigger_threshold, silent, 0, 0, 0);
uint32_t DoAcquisition_default(int trigger_threshold, bool verbose) {
return DoAcquisition(1, 8, 0, trigger_threshold, verbose, 0, 0, 0);
}
uint32_t DoAcquisition_config(bool silent, int sample_size) {
uint32_t DoAcquisition_config(bool verbose, uint32_t sample_size) {
return DoAcquisition(config.decimation
, config.bits_per_sample
, config.averaging
, config.trigger_threshold
, silent
, verbose
, sample_size
, 0
, config.samples_to_skip);
}
uint32_t DoPartialAcquisition(int trigger_threshold, bool silent, int sample_size, uint32_t cancel_after) {
return DoAcquisition(1, 8, 0, trigger_threshold, silent, sample_size, cancel_after, 0);
uint32_t DoPartialAcquisition(int trigger_threshold, bool verbose, uint32_t sample_size, uint32_t cancel_after) {
return DoAcquisition(1, 8, 0, trigger_threshold, verbose, sample_size, cancel_after, 0);
}
uint32_t ReadLF(bool activeField, bool silent, int sample_size) {
if (!silent)
uint32_t ReadLF(bool activeField, bool verbose, uint32_t sample_size) {
if (verbose)
printConfig();
LFSetupFPGAForADC(config.divisor, activeField);
uint32_t ret = DoAcquisition_config(silent, sample_size);
uint32_t ret = DoAcquisition_config(verbose, sample_size);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
return ret;
}
@ -281,9 +318,9 @@ uint32_t ReadLF(bool activeField, bool silent, int sample_size) {
* Initializes the FPGA for reader-mode (field on), and acquires the samples.
* @return number of bits sampled
**/
uint32_t SampleLF(bool silent, int sample_size) {
uint32_t SampleLF(bool verbose, uint32_t sample_size) {
BigBuf_Clear_ext(false);
return ReadLF(true, silent, sample_size);
return ReadLF(true, verbose, sample_size);
}
/**
* Initializes the FPGA for sniffer-mode (field off), and acquires the samples.
@ -310,7 +347,7 @@ void doT55x7Acquisition(size_t sample_size) {
if (bufsize > sample_size)
bufsize = sample_size;
uint8_t curSample, lastSample = 0;
uint8_t lastSample = 0;
uint16_t i = 0, skipCnt = 0;
bool startFound = false;
bool highFound = false;
@ -330,24 +367,24 @@ void doT55x7Acquisition(size_t sample_size) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
curSample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
LED_D_OFF();
// skip until the first high sample above threshold
if (!startFound && curSample > T55xx_READ_UPPER_THRESHOLD) {
//if (curSample > lastSample)
// lastSample = curSample;
if (!startFound && sample > T55xx_READ_UPPER_THRESHOLD) {
highFound = true;
} else if (!highFound) {
skipCnt++;
continue;
}
// skip until the first low sample below threshold
if (!startFound && curSample < T55xx_READ_LOWER_THRESHOLD) {
//if (curSample > lastSample)
lastSample = curSample;
if (!startFound && sample < T55xx_READ_LOWER_THRESHOLD) {
lastSample = sample;
lowFound = true;
} else if (!lowFound) {
skipCnt++;
@ -355,14 +392,14 @@ void doT55x7Acquisition(size_t sample_size) {
}
// skip until first high samples begin to change
if (startFound || curSample > T55xx_READ_LOWER_THRESHOLD + T55xx_READ_TOL) {
if (startFound || sample > T55xx_READ_LOWER_THRESHOLD + T55xx_READ_TOL) {
// if just found start - recover last sample
if (!startFound) {
dest[i++] = lastSample;
startFound = true;
}
// collect samples
dest[i++] = curSample;
dest[i++] = sample;
}
}
}
@ -388,7 +425,7 @@ void doCotagAcquisition(size_t sample_size) {
bufsize = sample_size;
dest[0] = 0;
uint8_t sample, firsthigh = 0, firstlow = 0;
uint8_t firsthigh = 0, firstlow = 0;
uint16_t i = 0;
uint16_t noise_counter = 0;
@ -406,8 +443,12 @@ void doCotagAcquisition(size_t sample_size) {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// find first peak
if (!firsthigh) {
@ -441,7 +482,6 @@ void doCotagAcquisition(size_t sample_size) {
// Ensure that DC offset removal and noise check is performed for any device-side processing
removeSignalOffset(dest, bufsize);
computeSignalProperties(dest, bufsize);
}
uint32_t doCotagAcquisitionManchester() {
@ -453,7 +493,7 @@ uint32_t doCotagAcquisitionManchester() {
bufsize = COTAG_BITS;
dest[0] = 0;
uint8_t sample, firsthigh = 0, firstlow = 0;
uint8_t firsthigh = 0, firstlow = 0;
uint16_t sample_counter = 0, period = 0;
uint8_t curr = 0, prev = 0;
uint16_t noise_counter = 0;
@ -471,8 +511,12 @@ uint32_t doCotagAcquisitionManchester() {
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
LED_D_ON();
}
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// find first peak
if (!firsthigh) {