Merge pull request #48 from marshmellow42/master

lf demod additions & bugfixes from marshmellow
This commit is contained in:
Martin Holst Swende 2015-01-27 10:21:22 +01:00
commit f50d457fa8
7 changed files with 1165 additions and 339 deletions

View file

@ -633,7 +633,7 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0; //, found=0;
size_t size=sizeof(BigBuf), idx=0; //, found=0;
uint32_t hi2=0, hi=0, lo=0;
// Configure to go in 125Khz listen mode
@ -646,11 +646,11 @@ void CmdHIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
DoAcquisition125k_internal(-1,true);
// FSK demodulator
size = HIDdemodFSK(dest, sizeof(BigBuf), &hi2, &hi, &lo);
idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo);
WDT_HIT();
if (size>0 && lo>0){
if (idx>0 && lo>0){
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
if (hi2 != 0){ //extra large HID tags
@ -721,7 +721,7 @@ void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
{
uint8_t *dest = (uint8_t *)BigBuf;
size_t size=0;
size_t size=0, idx=0;
int clk=0, invert=0, errCnt=0;
uint64_t lo=0;
// Configure to go in 125Khz listen mode
@ -741,7 +741,7 @@ void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol)
WDT_HIT();
if (errCnt>=0){
lo = Em410xDecode(dest,size);
lo = Em410xDecode(dest, &size, &idx);
//Dbprintf("DEBUG: EM GOT");
if (lo>0){
Dbprintf("EM TAG ID: %02x%08x - (%05d_%03d_%08d)",

View file

@ -22,21 +22,30 @@
#include "cmddata.h"
#include "lfdemod.h"
uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN];
uint8_t g_debugMode;
int DemodBufferLen;
static int CmdHelp(const char *Cmd);
//set the demod buffer with given array of binary (one bit per byte)
//by marshmellow
void setDemodBuf(uint8_t *buff,int size)
void setDemodBuf(uint8_t *buff, size_t size, size_t startIdx)
{
int i=0;
for (; i < size; ++i){
DemodBuffer[i]=buff[i];
size_t i = 0;
for (; i < size; i++){
DemodBuffer[i]=buff[startIdx++];
}
DemodBufferLen=size;
return;
}
int CmdSetDebugMode(const char *Cmd)
{
int demod=0;
sscanf(Cmd, "%i", &demod);
g_debugMode=(uint8_t)demod;
return 1;
}
//by marshmellow
void printDemodBuff()
{
@ -206,7 +215,7 @@ void printEM410x(uint64_t id)
{
if (id !=0){
uint64_t iii=1;
uint64_t id2lo=0; //id2hi=0,
uint64_t id2lo=0;
uint32_t ii=0;
uint32_t i=0;
for (ii=5; ii>0;ii--){
@ -216,7 +225,7 @@ void printEM410x(uint64_t id)
}
//output em id
PrintAndLog("EM TAG ID : %010llx", id);
PrintAndLog("Unique TAG ID: %010llx", id2lo); //id2hi,
PrintAndLog("Unique TAG ID: %010llx", id2lo);
PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF);
PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFF);
PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF));
@ -233,12 +242,17 @@ void printEM410x(uint64_t id)
int CmdEm410xDecode(const char *Cmd)
{
uint64_t id=0;
// uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
// uint32_t i=0;
// i=getFromGraphBuf(BitStream);
id = Em410xDecode(DemodBuffer,DemodBufferLen);
size_t size = DemodBufferLen, idx=0;
id = Em410xDecode(DemodBuffer, &size, &idx);
if (id>0){
setDemodBuf(DemodBuffer, size, idx);
if (g_debugMode){
PrintAndLog("DEBUG: Printing demod buffer:");
printDemodBuff();
}
printEM410x(id);
if (id>0) return 1;
return 1;
}
return 0;
}
@ -259,11 +273,11 @@ int Cmdaskmandemod(const char *Cmd)
}
size_t BitLen = getFromGraphBuf(BitStream);
// PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
if (g_debugMode==1) PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen);
int errCnt=0;
errCnt = askmandemod(BitStream, &BitLen,&clk,&invert);
if (errCnt<0||BitLen<16){ //if fatal error (or -1)
// PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
if (g_debugMode==1) PrintAndLog("no data found %d, errors:%d, bitlen:%d, clock:%d",errCnt,invert,BitLen,clk);
return 0;
}
PrintAndLog("\nUsing Clock: %d - Invert: %d - Bits Found: %d",clk,invert,BitLen);
@ -274,17 +288,22 @@ int Cmdaskmandemod(const char *Cmd)
}
PrintAndLog("ASK/Manchester decoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
setDemodBuf(BitStream,BitLen);
setDemodBuf(BitStream,BitLen,0);
printDemodBuff();
uint64_t lo =0;
lo = Em410xDecode(BitStream,BitLen);
size_t idx=0;
lo = Em410xDecode(BitStream, &BitLen, &idx);
if (lo>0){
//set GraphBuffer for clone or sim command
setDemodBuf(BitStream, BitLen, idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
PrintAndLog("EM410x pattern found: ");
printEM410x(lo);
return 1;
}
//if (BitLen>16) return 1;
return 0;
}
@ -317,17 +336,23 @@ int Cmdmandecoderaw(const char *Cmd)
printBitStream(BitStream, size);
if (errCnt==0){
uint64_t id = 0;
id = Em410xDecode(BitStream, size);
if (id>0) setDemodBuf(BitStream, size);
size_t idx=0;
id = Em410xDecode(BitStream, &size, &idx);
if (id>0){
//need to adjust to set bitstream back to manchester encoded data
//setDemodBuf(BitStream, size, idx);
printEM410x(id);
}
}
return 1;
}
//by marshmellow
//biphase decode
//take 01 or 10 = 0 and 11 or 00 = 1
//takes 1 argument "offset" default = 0 if 1 it will shift the decode by one bit
//takes 2 arguments "offset" default = 0 if 1 it will shift the decode by one bit
// and "invert" default = 0 if 1 it will invert output
// since it is not like manchester and doesn't have an incorrect bit pattern we
// cannot determine if our decode is correct or if it should be shifted by one bit
// the argument offset allows us to manually shift if the output is incorrect
@ -339,8 +364,9 @@ int CmdBiphaseDecodeRaw(const char *Cmd)
int errCnt=0;
size_t size=0;
int offset=0;
int invert=0;
int high=0, low=0;
sscanf(Cmd, "%i", &offset);
sscanf(Cmd, "%i %i", &offset, &invert);
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
//get graphbuffer & high and low
for (;i<DemodBufferLen;++i){
@ -353,7 +379,7 @@ int CmdBiphaseDecodeRaw(const char *Cmd)
return 0;
}
size=i;
errCnt=BiphaseRawDecode(BitStream, &size, offset);
errCnt=BiphaseRawDecode(BitStream, &size, offset, invert);
if (errCnt>=20){
PrintAndLog("Too many errors attempting to decode: %d",errCnt);
return 0;
@ -364,7 +390,6 @@ int CmdBiphaseDecodeRaw(const char *Cmd)
return 1;
}
//by marshmellow
//takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask only
@ -384,12 +409,13 @@ int Cmdaskrawdemod(const char *Cmd)
errCnt = askrawdemod(BitStream, &BitLen,&clk,&invert);
if (errCnt==-1||BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
PrintAndLog("no data found");
if (g_debugMode==1) PrintAndLog("errCnt: %d, BitLen: %d, clk: %d, invert: %d", errCnt, BitLen, clk, invert);
return 0;
}
PrintAndLog("Using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
//PrintAndLog("Data start pos:%d, lastBit:%d, stop pos:%d, numBits:%d",iii,lastBit,i,bitnum);
//move BitStream back to DemodBuffer
setDemodBuf(BitStream,BitLen);
setDemodBuf(BitStream,BitLen,0);
//output
if (errCnt>0){
@ -535,6 +561,27 @@ int CmdDec(const char *Cmd)
return 0;
}
//by marshmellow
//shift graph zero up or down based on input + or -
int CmdGraphShiftZero(const char *Cmd)
{
int shift=0;
//set options from parameters entered with the command
sscanf(Cmd, "%i", &shift);
int shiftedVal=0;
for(int i = 0; i<GraphTraceLen; i++){
shiftedVal=GraphBuffer[i]+shift;
if (shiftedVal>127)
shiftedVal=127;
else if (shiftedVal<-127)
shiftedVal=-127;
GraphBuffer[i]= shiftedVal;
}
CmdNorm("");
return 0;
}
/* Print our clock rate */
// uses data from graphbuffer
int CmdDetectClockRate(const char *Cmd)
@ -553,27 +600,44 @@ int CmdFSKrawdemod(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
int rfLen = 50;
int rfLen = 0;
int invert=0;
int fchigh=10;
int fclow=8;
int fchigh=0;
int fclow=0;
//set options from parameters entered with the command
sscanf(Cmd, "%i %i %i %i", &rfLen, &invert, &fchigh, &fclow);
if (strlen(Cmd)>0 && strlen(Cmd)<=2) {
//rfLen=param_get8(Cmd, 0); //if rfLen option only is used
if (rfLen==1){
invert=1; //if invert option only is used
rfLen = 50;
} else if(rfLen==0) rfLen=50;
rfLen = 0;
}
PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow);
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
//get field clock lengths
uint16_t fcs=0;
if (fchigh==0 || fclow == 0){
fcs=countFC(BitStream, BitLen);
if (fcs==0){
fchigh=10;
fclow=8;
}else{
fchigh = (fcs >> 8) & 0xFF;
fclow = fcs & 0xFF;
}
}
//get bit clock length
if (rfLen==0){
rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow);
if (rfLen == 0) rfLen = 50;
}
PrintAndLog("Args invert: %d - Clock:%d - fchigh:%d - fclow: %d",invert,rfLen,fchigh, fclow);
int size = fskdemod(BitStream,BitLen,(uint8_t)rfLen,(uint8_t)invert,(uint8_t)fchigh,(uint8_t)fclow);
if (size>0){
PrintAndLog("FSK decoded bitstream:");
setDemodBuf(BitStream,size);
setDemodBuf(BitStream,size,0);
// Now output the bitstream to the scrollback by line of 16 bits
if(size > (8*32)+2) size = (8*32)+2; //only output a max of 8 blocks of 32 bits most tags will have full bit stream inside that sample size
@ -595,20 +659,20 @@ int CmdFSKdemodHID(const char *Cmd)
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
//get binary from fsk wave
size_t size = HIDdemodFSK(BitStream,BitLen,&hi2,&hi,&lo);
if (size<0){
PrintAndLog("Error demoding fsk");
size_t idx = HIDdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
if (g_debugMode) PrintAndLog("DEBUG: Error demoding fsk");
return 0;
}
if (hi2==0 && hi==0 && lo==0) {
if (g_debugMode) PrintAndLog("DEBUG: Error - no values found");
return 0;
}
if (hi2==0 && hi==0 && lo==0) return 0;
if (hi2 != 0){ //extra large HID tags
PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)",
(unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF);
setDemodBuf(BitStream,BitLen);
return 1;
}
else { //standard HID tags <38 bits
//Dbprintf("TAG ID: %x%08x (%d)",(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); //old print cmd
uint8_t fmtLen = 0;
uint32_t fc = 0;
uint32_t cardnum = 0;
@ -648,11 +712,48 @@ int CmdFSKdemodHID(const char *Cmd)
PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d",
(unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF,
(unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum);
setDemodBuf(BitStream,BitLen);
}
setDemodBuf(BitStream,BitLen,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
return 1;
}
//by marshmellow
//Paradox Prox demod - FSK RF/50 with preamble of 00001111 (then manchester encoded)
//print full Paradox Prox ID and some bit format details if found
int CmdFSKdemodParadox(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint32_t hi2=0, hi=0, lo=0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
//get binary from fsk wave
size_t idx = ParadoxdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo);
if (idx<0){
if (g_debugMode) PrintAndLog("DEBUG: Error demoding fsk");
return 0;
}
if (hi2==0 && hi==0 && lo==0){
if (g_debugMode) PrintAndLog("DEBUG: Error - no value found");
return 0;
}
uint32_t fc = ((hi & 0x3)<<6) | (lo>>26);
uint32_t cardnum = (lo>>10)&0xFFFF;
PrintAndLog("Paradox TAG ID: %x%08x - FC: %d - Card: %d - Checksum: %02x",
hi>>10, (hi & 0x3)<<26 | (lo>>10), fc, cardnum, (lo>>2) & 0xFF );
setDemodBuf(BitStream,BitLen,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, len: %d, Printing Demod Buffer:", idx, BitLen);
printDemodBuff();
}
return 1;
}
//by marshmellow
//IO-Prox demod - FSK RF/64 with preamble of 000000001
@ -662,21 +763,25 @@ int CmdFSKdemodIO(const char *Cmd)
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
int idx=0;
//something in graphbuffer
if (GraphTraceLen < 65) return 0;
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
//get binary from fsk wave
// PrintAndLog("DEBUG: got buff");
idx = IOdemodFSK(BitStream,BitLen);
if (idx<0){
//PrintAndLog("Error demoding fsk");
//something in graphbuffer?
if (GraphTraceLen < 65) {
if (g_debugMode)PrintAndLog("DEBUG: not enough samples in GraphBuffer");
return 0;
}
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t BitLen = getFromGraphBuf(BitStream);
//get binary from fsk wave
idx = IOdemodFSK(BitStream,BitLen);
if (idx<0){
if (g_debugMode==1) PrintAndLog("DEBUG: demoding fsk error: %d", idx);
return 0;
}
// PrintAndLog("DEBUG: Got IOdemodFSK");
if (idx==0){
//PrintAndLog("IO Prox Data not found - FSK Data:");
//if (BitLen > 92) printBitStream(BitStream,92);
if (g_debugMode==1){
PrintAndLog("DEBUG: IO Prox Data not found - FSK Bits: %d",BitLen);
if (BitLen > 92) printBitStream(BitStream,92);
}
return 0;
}
//Index map
@ -688,7 +793,10 @@ int CmdFSKdemodIO(const char *Cmd)
//
//XSF(version)facility:codeone+codetwo (raw)
//Handle the data
if (idx+64>BitLen) return 0;
if (idx+64>BitLen) {
if (g_debugMode==1) PrintAndLog("not enough bits found - bitlen: %d",BitLen);
return 0;
}
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]);
PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]);
PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]);
@ -703,13 +811,242 @@ int CmdFSKdemodIO(const char *Cmd)
uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ;
uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9
PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x)",version,facilitycode,number,code,code2);
int i;
for (i=0;i<64;++i)
DemodBuffer[i]=BitStream[idx++];
DemodBufferLen=64;
setDemodBuf(BitStream,64,idx);
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing demod buffer:",idx,64);
printDemodBuff();
}
return 1;
}
//by marshmellow
//AWID Prox demod - FSK RF/50 with preamble of 00000001 (always a 96 bit data stream)
//print full AWID Prox ID and some bit format details if found
int CmdFSKdemodAWID(const char *Cmd)
{
//int verbose=1;
//sscanf(Cmd, "%i", &verbose);
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
//get binary from fsk wave
int idx = AWIDdemodFSK(BitStream, size);
if (idx<=0){
if (g_debugMode==1){
if (idx == -1)
PrintAndLog("DEBUG: Error - not enough samples");
else if (idx == -2)
PrintAndLog("DEBUG: Error - only noise found - no waves");
else if (idx == -3)
PrintAndLog("DEBUG: Error - problem during FSK demod");
// else if (idx == -3)
// PrintAndLog("Error: thought we had a tag but the parity failed");
else if (idx == -4)
PrintAndLog("DEBUG: Error - AWID preamble not found");
else if (idx == -5)
PrintAndLog("DEBUG: Error - Second AWID preamble not found");
else
PrintAndLog("DEBUG: Error %d",idx);
}
return 0;
}
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96
// -----------------------------------------------------------------------------
// 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1
// premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96
// |---26 bit---| |-----117----||-------------142-------------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32);
setDemodBuf(BitStream,96,idx);
size = removeParity(BitStream, idx+8, 4, 1, 88);
if (size != 66){
if (g_debugMode==1) PrintAndLog("DEBUG: Error - at parity check-tag size does not match AWID format");
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456
// -----------------------------------------------------------------------------
// 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000
// bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// |26 bit| |-117--| |-----142------|
// b = format bit len, o = odd parity of last 3 bits
// f = facility code, c = card number
// w = wiegand parity
// (26 bit format shown)
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
uint32_t code2 = 0;
uint8_t fmtLen = bytebits_to_byte(BitStream,8);
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+9, 8);
cardnum = bytebits_to_byte(BitStream+17, 16);
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16);
if (fmtLen>32){
code1 = bytebits_to_byte(BitStream+8,fmtLen-32);
code2 = bytebits_to_byte(BitStream+8+(fmtLen-32),32);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x%08x, Raw: %x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo);
} else{
code1 = bytebits_to_byte(BitStream+8,fmtLen);
PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%d) - Wiegand: %x, Raw: %x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo);
}
}
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d Printing Demod Buffer:", idx, 96);
printDemodBuff();
}
//todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
return 1;
}
//by marshmellow
//Pyramid Prox demod - FSK RF/50 with preamble of 0000000000000001 (always a 128 bit data stream)
//print full Farpointe Data/Pyramid Prox ID and some bit format details if found
int CmdFSKdemodPyramid(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
//get binary from fsk wave
int idx = PyramiddemodFSK(BitStream, size);
if (idx < 0){
if (g_debugMode==1){
if (idx == -5)
PrintAndLog("DEBUG: Error - not enough samples");
else if (idx == -1)
PrintAndLog("DEBUG: Error - only noise found - no waves");
else if (idx == -2)
PrintAndLog("DEBUG: Error - problem during FSK demod");
else if (idx == -3)
PrintAndLog("DEBUG: Error - Second Pyramid preamble not found");
else if (idx == -4)
PrintAndLog("DEBUG: Error - Pyramid preamble not found");
else
PrintAndLog("DEBUG: Error - idx: %d",idx);
}
return 0;
}
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
// 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3
// -----------------------------------------------------------------------------
// 0000000 0 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1
// premable xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o
// 64 70 80 90 100 110 120
// | | | | | | |
// 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7
// -----------------------------------------------------------------------------
// 0000000 1 0000000 1 0000000 1 0110111 0 0011000 1 0000001 0 0001100 1 1001010 0
// xxxxxxx o xxxxxxx o xxxxxxx o xswffff o ffffccc o ccccccc o ccccccw o ppppppp o
// |---115---||---------71---------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//get raw ID before removing parities
uint32_t rawLo = bytebits_to_byte(BitStream+idx+96,32);
uint32_t rawHi = bytebits_to_byte(BitStream+idx+64,32);
uint32_t rawHi2 = bytebits_to_byte(BitStream+idx+32,32);
uint32_t rawHi3 = bytebits_to_byte(BitStream+idx,32);
setDemodBuf(BitStream,128,idx);
size = removeParity(BitStream, idx+8, 8, 1, 120);
if (size != 105){
if (g_debugMode==1) PrintAndLog("DEBUG: Error at parity check-tag size does not match Pyramid format, SIZE: %d, IDX: %d, hi3: %x",size, idx, rawHi3);
return 0;
}
// ok valid card found!
// Index map
// 0 10 20 30 40 50 60 70
// | | | | | | | |
// 01234567890123456789012345678901234567890123456789012345678901234567890
// -----------------------------------------------------------------------
// 00000000000000000000000000000000000000000000000000000000000000000000000
// xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
// 71 80 90 100
// | | | |
// 1 2 34567890 1234567890123456 7 8901234
// ---------------------------------------
// 1 1 01110011 0000000001000110 0 1001010
// s w ffffffff cccccccccccccccc w ppppppp
// |--115-| |------71------|
// s = format start bit, o = odd parity of last 7 bits
// f = facility code, c = card number
// w = wiegand parity, x = extra space for other formats
// p = unknown checksum
// (26 bit format shown)
//find start bit to get fmtLen
int j;
for (j=0; j<size; j++){
if(BitStream[j]) break;
}
uint8_t fmtLen = size-j-8;
uint32_t fc = 0;
uint32_t cardnum = 0;
uint32_t code1 = 0;
//uint32_t code2 = 0;
if (fmtLen==26){
fc = bytebits_to_byte(BitStream+73, 8);
cardnum = bytebits_to_byte(BitStream+81, 16);
code1 = bytebits_to_byte(BitStream+72,fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo);
} else if (fmtLen==45){
fmtLen=42; //end = 10 bits not 7 like 26 bit fmt
fc = bytebits_to_byte(BitStream+53, 10);
cardnum = bytebits_to_byte(BitStream+63, 32);
PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Raw: %x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else {
cardnum = bytebits_to_byte(BitStream+81, 16);
if (fmtLen>32){
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen-32);
//code2 = bytebits_to_byte(BitStream+(size-32),32);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
} else{
//code1 = bytebits_to_byte(BitStream+(size-fmtLen),fmtLen);
PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo);
}
}
//todo - convert hi2, hi, lo to demodbuffer for future sim/clone commands
if (g_debugMode){
PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, 128);
printDemodBuff();
}
return 1;
}
int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
{
static const int LowTone[] = {
@ -828,13 +1165,44 @@ int CmdFSKdemod(const char *Cmd) //old CmdFSKdemod needs updating
return 0;
}
//by marshmellow
//attempt to detect the field clock and bit clock for FSK
int CmdFSKfcDetect(const char *Cmd)
{
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
uint16_t ans = countFC(BitStream, size);
if (ans==0) {
if (g_debugMode) PrintAndLog("DEBUG: No data found");
return 0;
}
uint8_t fc1, fc2;
fc1 = (ans >> 8) & 0xFF;
fc2 = ans & 0xFF;
uint8_t rf1 = detectFSKClk(BitStream, size, fc1, fc2);
if (rf1==0) {
if (g_debugMode) PrintAndLog("DEBUG: Clock detect error");
return 0;
}
PrintAndLog("Detected Field Clocks: FC/%d, FC/%d - Bit Clock: RF/%d", fc1, fc2, rf1);
return 1;
}
//by marshmellow
//attempt to detect the bit clock for PSK or NRZ modulations
int CmdDetectNRZpskClockRate(const char *Cmd)
{
GetNRZpskClock("",0,0);
return 0;
}
int PSKnrzDemod(const char *Cmd){
//by marshmellow
//attempt to psk1 or nrz demod graph buffer
//NOTE CURRENTLY RELIES ON PEAKS :(
int PSKnrzDemod(const char *Cmd, uint8_t verbose)
{
int invert=0;
int clk=0;
sscanf(Cmd, "%i %i", &clk, &invert);
@ -847,13 +1215,13 @@ int PSKnrzDemod(const char *Cmd){
int errCnt=0;
errCnt = pskNRZrawDemod(BitStream, &BitLen,&clk,&invert);
if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first)
//PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
if (g_debugMode==1) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt);
return -1;
}
PrintAndLog("Tried PSK/NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
if (verbose) PrintAndLog("Tried PSK/NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen);
//prime demod buffer for output
setDemodBuf(BitStream,BitLen);
setDemodBuf(BitStream,BitLen,0);
return errCnt;
}
// Indala 26 bit decode
@ -861,35 +1229,30 @@ int PSKnrzDemod(const char *Cmd){
// optional arguments - same as CmdpskNRZrawDemod (clock & invert)
int CmdIndalaDecode(const char *Cmd)
{
uint8_t verbose = 1;
int ans;
if (strlen(Cmd)>0){
if (Cmd[0]=='0'){
verbose=0;
ans = PSKnrzDemod("32");
}else{
ans = PSKnrzDemod(Cmd);
}
ans = PSKnrzDemod(Cmd, 0);
} else{ //default to RF/32
ans = PSKnrzDemod("32");
ans = PSKnrzDemod("32", 0);
}
if (ans < 0){
if (verbose)
if (g_debugMode==1)
PrintAndLog("Error1: %d",ans);
return 0;
}
uint8_t invert=0;
ans = indala26decode(DemodBuffer,(size_t *) &DemodBufferLen, &invert);
if (ans < 1) {
if (verbose)
if (g_debugMode==1)
PrintAndLog("Error2: %d",ans);
return -1;
}
char showbits[251];
if (invert)
if (verbose)
if (g_debugMode==1)
PrintAndLog("Had to invert bits");
//convert UID to HEX
uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7;
int idx;
@ -938,6 +1301,9 @@ int CmdIndalaDecode(const char *Cmd)
return 1;
}
//by marshmellow
//attempt to clean psk wave noise after a peak
//NOTE RELIES ON PEAKS :(
int CmdPskClean(const char *Cmd)
{
uint8_t bitStream[MAX_GRAPH_TRACE_LEN]={0};
@ -949,28 +1315,57 @@ int CmdPskClean(const char *Cmd)
// by marshmellow
// takes 2 arguments - clock and invert both as integers
//attempts to demodulate ask only
//prints binary found and saves in graphbuffer for further commands
// attempts to demodulate psk only
// prints binary found and saves in demodbuffer for further commands
int CmdpskNRZrawDemod(const char *Cmd)
{
uint8_t verbose = 1;
int errCnt;
if (strlen(Cmd)>0){
if (Cmd[0]=='0')
verbose=0;
}
errCnt = PSKnrzDemod(Cmd);
errCnt = PSKnrzDemod(Cmd, 1);
//output
if (errCnt<0) return 0;
if (errCnt>0){
if (verbose)
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
if (errCnt<0){
if (g_debugMode) PrintAndLog("Error demoding: %d",errCnt);
return 0;
}
if (errCnt>0){
if (g_debugMode){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
PrintAndLog("PSK or NRZ demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
}else{
PrintAndLog("PSK or NRZ demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
return 1;
}
return 0;
}
// by marshmellow
// takes same args as cmdpsknrzrawdemod
int CmdPSK2rawDemod(const char *Cmd)
{
int errCnt=0;
errCnt=PSKnrzDemod(Cmd, 1);
if (errCnt<0){
if (g_debugMode) PrintAndLog("Error demoding: %d",errCnt);
return 0;
}
psk1TOpsk2(DemodBuffer, DemodBufferLen);
if (errCnt>0){
if (g_debugMode){
PrintAndLog("# Errors during Demoding (shown as 77 in bit stream): %d",errCnt);
PrintAndLog("PSK2 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
}else{
PrintAndLog("PSK2 demoded bitstream:");
// Now output the bitstream to the scrollback by line of 16 bits
printDemodBuff();
}
return 1;
}
@ -1159,6 +1554,8 @@ int CmdLtrim(const char *Cmd)
RepaintGraphWindow();
return 0;
}
// trim graph to input argument length
int CmdRtrim(const char *Cmd)
{
int ds = atoi(Cmd);
@ -1555,19 +1952,23 @@ static command_t CommandTable[] =
{"help", CmdHelp, 1, "This help"},
{"amp", CmdAmp, 1, "Amplify peaks"},
{"askdemod", Cmdaskdemod, 1, "<0 or 1> -- Attempt to demodulate simple ASK tags"},
{"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional[clock will try Auto-detect])"},
{"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output binary (args optional[clock will try Auto-detect])"},
{"askmandemod", Cmdaskmandemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK/Manchester tags and output binary (args optional)"},
{"askrawdemod", Cmdaskrawdemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate ASK tags and output bin (args optional)"},
{"autocorr", CmdAutoCorr, 1, "<window length> -- Autocorrelation over window"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] Biphase decode binary stream already in graph buffer (offset = bit to start decode from)"},
{"biphaserawdecode",CmdBiphaseDecodeRaw,1,"[offset] [invert<0|1>] Biphase decode bin stream in demod buffer (offset = 0|1 bits to shift the decode start)"},
{"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"},
{"bitstream", CmdBitstream, 1, "[clock rate] -- Convert waveform into a bitstream"},
{"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"},
{"dec", CmdDec, 1, "Decimate samples"},
{"detectclock", CmdDetectClockRate, 1, "Detect ASK clock rate"},
{"fskdemod", CmdFSKdemod, 1, "Demodulate graph window as a HID FSK"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK using raw"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox FSK using raw"},
{"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to binary (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
{"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate graph window as an AWID FSK tag using raw"},
{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"},
{"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate graph window as a HID FSK tag using raw"},
{"fskiodemod", CmdFSKdemodIO, 1, "Demodulate graph window as an IO Prox tag FSK using raw"},
{"fskpyramiddemod",CmdFSKdemodPyramid,1, "Demodulate graph window as a Pyramid FSK tag using raw"},
{"fskparadoxdemod",CmdFSKdemodParadox,1, "Demodulate graph window as a Paradox FSK tag using raw"},
{"fskrawdemod", CmdFSKrawdemod, 1, "[clock rate] [invert] [rchigh] [rclow] Demodulate graph window from FSK to bin (clock = 50)(invert = 1|0)(rchigh = 10)(rclow=8)"},
{"grid", CmdGrid, 1, "<x> <y> -- overlay grid on graph window, use zero value to turn off either"},
{"hexsamples", CmdHexsamples, 0, "<bytes> [<offset>] -- Dump big buffer as hex bytes"},
{"hide", CmdHide, 1, "Hide graph window"},
@ -1582,11 +1983,14 @@ static command_t CommandTable[] =
{"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"},
{"pskclean", CmdPskClean, 1, "Attempt to clean psk wave"},
{"pskdetectclock",CmdDetectNRZpskClockRate, 1, "Detect ASK, PSK, or NRZ clock rate"},
{"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk indala tags and output ID binary & hex (args optional[clock will try Auto-detect])"},
{"psknrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk or nrz tags and output binary (args optional[clock will try Auto-detect])"},
{"pskindalademod",CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk1 indala tags and output ID binary & hex (args optional)"},
{"psk1nrzrawdemod",CmdpskNRZrawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk1 or nrz tags and output binary (args optional)"},
{"psk2rawdemod", CmdPSK2rawDemod, 1, "[clock] [invert<0|1>] -- Attempt to demodulate psk2 tags and output binary (args optional)"},
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"setdebugmode", CmdSetDebugMode, 1, "<0|1> -- Turn on or off Debugging Mode for demods"},
{"shiftgraphzero",CmdGraphShiftZero, 1, "<shift> -- Shift 0 for Graphed wave + or - shift value"},
{"threshold", CmdThreshold, 1, "<threshold> -- Maximize/minimize every value in the graph window depending on threshold"},
{"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
{"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},

View file

@ -26,9 +26,12 @@ int CmdBitstream(const char *Cmd);
int CmdBuffClear(const char *Cmd);
int CmdDec(const char *Cmd);
int CmdDetectClockRate(const char *Cmd);
int CmdFSKdemodAWID(const char *Cmd);
int CmdFSKdemod(const char *Cmd);
int CmdFSKdemodHID(const char *Cmd);
int CmdFSKdemodIO(const char *Cmd);
int CmdFSKdemodParadox(const char *Cmd);
int CmdFSKdemodPyramid(const char *Cmd);
int CmdFSKrawdemod(const char *Cmd);
int CmdDetectNRZpskClockRate(const char *Cmd);
int CmdpskNRZrawDemod(const char *Cmd);

View file

@ -388,7 +388,7 @@ static void ChkBitstream(const char *str)
}
}
}
//appears to attempt to simulate manchester
int CmdLFSim(const char *Cmd)
{
int i,j;
@ -578,26 +578,41 @@ int CmdLFfind(const char *Cmd)
}
PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag");
PrintAndLog("Checking for known tags:");
PrintAndLog("\nChecking for known tags:\n");
ans=CmdFSKdemodIO("");
if (ans>0) {
PrintAndLog("Valid IO Prox ID Found!");
PrintAndLog("\nValid IO Prox ID Found!");
return 1;
}
ans=CmdFSKdemodPyramid("");
if (ans>0) {
PrintAndLog("\nValid Pyramid ID Found!");
return 1;
}
ans=CmdFSKdemodParadox("");
if (ans>0) {
PrintAndLog("\nValid Paradox ID Found!");
return 1;
}
ans=CmdFSKdemodAWID("");
if (ans>0) {
PrintAndLog("\nValid AWID ID Found!");
return 1;
}
ans=CmdFSKdemodHID("");
if (ans>0) {
PrintAndLog("Valid HID Prox ID Found!");
PrintAndLog("\nValid HID Prox ID Found!");
return 1;
}
//add psk and indala
ans=CmdIndalaDecode("0");
ans=CmdIndalaDecode("");
if (ans>0) {
PrintAndLog("Valid Indala ID Found!");
PrintAndLog("\nValid Indala ID Found!");
return 1;
}
ans=Cmdaskmandemod("");
if (ans>0) {
PrintAndLog("Valid EM410x ID Found!");
PrintAndLog("\nValid EM410x ID Found!");
return 1;
}
PrintAndLog("No Known Tags Found!\n");

View file

@ -76,6 +76,8 @@ size_t getFromGraphBuf(uint8_t *buff)
}
return i;
}
// Get or auto-detect clock rate
int GetClock(const char *str, int peak, int verbose)
{

View file

@ -5,16 +5,33 @@
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
// Low frequency demod/decode commands
//-----------------------------------------------------------------------------
#include <stdlib.h>
#include <string.h>
#include "lfdemod.h"
//by marshmellow
//get high and low with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo)
{
*high=0;
*low=255;
// get high and low thresholds
for (int i=0; i < size; i++){
if (BitStream[i] > *high) *high = BitStream[i];
if (BitStream[i] < *low) *low = BitStream[i];
}
if (*high < 123) return -1; // just noise
*high = (int)(((*high-128)*(((float)fuzzHi)/100))+128);
*low = (int)(((*low-128)*(((float)fuzzLo)/100))+128);
return 1;
}
//by marshmellow
//takes 1s and 0s and searches for EM410x format - output EM ID
uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
uint64_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx)
{
//no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future
// otherwise could be a void with no arguments
@ -31,17 +48,18 @@ uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
uint32_t idx = 0;
uint32_t ii=0;
uint8_t resetCnt = 0;
while( (idx + 64) < size) {
while( (idx + 64) < *size) {
restart:
// search for a start of frame marker
if ( memcmp(BitStream+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
*startIdx=idx;
idx+=9;
for (i=0; i<10;i++){
for(ii=0; ii<5; ++ii){
parityTest ^= BitStream[(i*5)+ii+idx];
}
if (!parityTest){
if (!parityTest){ //even parity
parityTest=0;
for (ii=0; ii<4;++ii){
lo=(lo<<1LL)|(BitStream[(i*5)+ii+idx]);
@ -57,6 +75,7 @@ uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
}
}
//skip last 5 bit parity test for simplicity.
*size = 64;
return lo;
}else{
idx++;
@ -72,35 +91,26 @@ uint64_t Em410xDecode(uint8_t *BitStream, size_t size)
int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
int i;
int high = 0, low = 255;
int clk2=*clk;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
// if autodetected too low then adjust //MAY NEED ADJUSTMENT
if (clk2==0 && *clk<8) *clk =64;
if (clk2==0 && *clk<32) *clk=32;
if (*invert != 0 && *invert != 1) *invert=0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
for (i = 0; i < initLoopMax; ++i) //200 samples should be enough to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
else if (BinStream[i] < low)
low = BinStream[i];
}
if ((high < 129) ){ //throw away static (anything < 1 graph)
//PrintAndLog("no data found");
return -2;
}
// 25% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(((high-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
if (ans<1) return -2; //just noise
// PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
int tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
if (*clk<=32)tol=1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
int iii = 0;
uint32_t gLen = *size;
if (gLen > 3000) gLen=3000;
@ -192,6 +202,22 @@ int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
return bestErrCnt;
}
//by marshmellow
//encode binary data into binary manchester
int ManchesterEncode(uint8_t *BitStream, size_t size)
{
size_t modIdx=20000, i=0;
if (size>modIdx) return -1;
for (size_t idx=0; idx < size; idx++){
BitStream[idx+modIdx++] = BitStream[idx];
BitStream[idx+modIdx++] = BitStream[idx]^1;
}
for (; i<(size*2); i++){
BitStream[i] = BitStream[i+20000];
}
return i;
}
//by marshmellow
//take 10 and 01 and manchester decode
//run through 2 times and take least errCnt
@ -239,20 +265,19 @@ int manrawdecode(uint8_t * BitStream, size_t *size)
return errCnt;
}
//by marshmellow
//take 01 or 10 = 0 and 11 or 00 = 1
int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset)
int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert)
{
uint8_t bitnum=0;
uint32_t errCnt =0;
uint32_t i=1;
uint32_t i;
i=offset;
for (;i<*size-2; i+=2){
if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){
BitStream[bitnum++]=1;
BitStream[bitnum++]=1^invert;
} else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){
BitStream[bitnum++]=0;
BitStream[bitnum++]=invert;
} else {
BitStream[bitnum++]=77;
errCnt++;
@ -271,31 +296,21 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
{
uint32_t i;
// int invert=0; //invert default
int high = 0, low = 255;
int clk2 = *clk;
*clk=DetectASKClock(BinStream, *size, *clk); //clock default
uint8_t BitStream[502] = {0};
//uint8_t BitStream[502] = {0};
if (*clk<8) *clk =64;
if (*clk<32) *clk=32;
//HACK: if clock not detected correctly - default
if (clk2==0 && *clk<8) *clk =64;
if (clk2==0 && *clk<32 && clk2==0) *clk=32;
if (*invert != 0 && *invert != 1) *invert =0;
uint32_t initLoopMax = 200;
if (initLoopMax > *size) initLoopMax=*size;
// Detect high and lows
for (i = 0; i < initLoopMax; ++i) //200 samples should be plenty to find high and low values
{
if (BinStream[i] > high)
high = BinStream[i];
else if (BinStream[i] < low)
low = BinStream[i];
}
if ((high < 129)){ //throw away static high has to be more than 0 on graph.
//noise <= -10 here
// PrintAndLog("no data found");
return -2;
}
//25% fuzz in case highs and lows aren't clipped [marshmellow]
high=(int)(((high-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
int high, low, ans;
ans = getHiLo(BinStream, initLoopMax, &high, &low, 75, 75);
if (ans<1) return -2; //just noise
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
@ -310,6 +325,7 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t bestErrCnt = (*size/1000);
uint32_t maxErr = bestErrCnt;
uint8_t midBit=0;
//PrintAndLog("DEBUG - lastbit - %d",lastBit);
//loop to find first wave that works
@ -320,30 +336,20 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit)>(*clk-tol))){
lastBit+=*clk;
BitStream[bitnum] = *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit)>(*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BitStream[bitnum] = 1- *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BitStream[bitnum]= 1- *invert;
bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BitStream[bitnum]= *invert;
bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
BitStream[bitnum]= BitStream[bitnum-1];
bitnum++;
} else {
//mid value found or no bar supposed to be here
@ -351,45 +357,89 @@ int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert)
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BitStream[bitnum]=77;
bitnum++;
}
errCnt++;
lastBit+=*clk;//skip over until hit too many errors
if (errCnt > ((*size/1000))){ //allow 1 error for every 1000 samples else start over
errCnt=0;
bitnum=0;//start over
break;
}
}
}
if (bitnum>500) break;
if ((i-iii)>(500 * *clk)) break; //got enough bits
}
//we got more than 64 good bits and not all errors
if ((bitnum > (64+errCnt)) && (errCnt<(*size/1000))) {
if ((((i-iii)/ *clk) > (64+errCnt)) && (errCnt<(*size/1000))) {
//possible good read
if (errCnt==0) break; //great read - finish
if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt==0){
bestStart=iii;
bestErrCnt=errCnt;
break; //great read - finish
}
if (errCnt<bestErrCnt){ //set this as new best run
bestErrCnt=errCnt;
bestStart = iii;
}
}
}
if (iii>=gLen){ //exhausted test
//if there was a ok test go back to that one and re-run the best run (then dump after that run)
if (bestErrCnt < (*size/1000)) iii=bestStart;
}
if (bestErrCnt<maxErr){
//best run is good enough - set to best run and overwrite BinStream
iii=bestStart;
lastBit = bestStart - *clk;
bitnum=0;
for (i = iii; i < *size; ++i) {
if ((BinStream[i] >= high) && ((i-lastBit) > (*clk-tol))){
lastBit += *clk;
BinStream[bitnum] = *invert;
bitnum++;
midBit=0;
} else if ((BinStream[i] <= low) && ((i-lastBit) > (*clk-tol))){
//low found and we are expecting a bar
lastBit+=*clk;
BinStream[bitnum] = 1-*invert;
bitnum++;
midBit=0;
} else if ((BinStream[i]<=low) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = 1 - *invert;
bitnum++;
} else if ((BinStream[i]>=high) && (midBit==0) && ((i-lastBit)>((*clk/2)-tol))){
//mid bar?
midBit=1;
BinStream[bitnum] = *invert;
bitnum++;
} else if ((i-lastBit)>((*clk/2)+tol) && (midBit==0)){
//no mid bar found
midBit=1;
if (bitnum!=0) BinStream[bitnum] = BinStream[bitnum-1];
bitnum++;
} else {
//mid value found or no bar supposed to be here
if ((i-lastBit)>(*clk+tol)){
//should have hit a high or low based on clock!!
//debug
//PrintAndLog("DEBUG - no wave in expected area - location: %d, expected: %d-%d, lastBit: %d - resetting search",i,(lastBit+(clk-((int)(tol)))),(lastBit+(clk+((int)(tol)))),lastBit);
if (bitnum > 0){
BinStream[bitnum]=77;
bitnum++;
}
lastBit+=*clk;//skip over error
}
}
if (bitnum>16){
for (i=0; i < bitnum; ++i){
BinStream[i]=BitStream[i];
if (bitnum >=400) break;
}
*size=bitnum;
} else return -1;
return errCnt;
} else{
*invert=bestStart;
*clk=iii;
return -1;
}
return bestErrCnt;
}
//translate wave to 11111100000 (1 for each short wave 0 for each long wave)
size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow)
@ -488,12 +538,13 @@ int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t
return size;
}
// loop to get raw HID waveform then FSK demodulate the TAG ID from it
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
size_t idx=0; //, found=0; //size=0,
size_t idx=0, size2=*size, startIdx=0;
// FSK demodulator
size = fskdemod(dest, size,50,0,10,8);
*size = fskdemod(dest, size2,50,0,10,8);
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 111000 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
@ -501,12 +552,13 @@ int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_
int numshifts = 0;
idx = 0;
//one scan
while( idx + sizeof(frame_marker_mask) < size) {
while( idx + sizeof(frame_marker_mask) < *size) {
// search for a start of frame marker
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
startIdx=idx;
idx+=sizeof(frame_marker_mask);
while(dest[idx] != dest[idx+1] && idx < size-2)
while(dest[idx] != dest[idx+1] && idx < *size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
@ -521,12 +573,13 @@ int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_
idx += 2;
}
// Hopefully, we read a tag and hit upon the next frame marker
if(idx + sizeof(frame_marker_mask) < size)
if(idx + sizeof(frame_marker_mask) < *size)
{
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
//good return
return idx;
*size=idx-startIdx;
return startIdx;
}
}
// reset
@ -539,6 +592,61 @@ int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_
return -1;
}
// loop to get raw paradox waveform then FSK demodulate the TAG ID from it
size_t ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo)
{
size_t idx=0, size2=*size;
// FSK demodulator
*size = fskdemod(dest, size2,50,1,10,8);
// final loop, go over previously decoded manchester data and decode into usable tag ID
// 00001111 bit pattern represent start of frame, 01 pattern represents a 1 and 10 represents a 0
uint8_t frame_marker_mask[] = {0,0,0,0,1,1,1,1};
uint16_t numshifts = 0;
idx = 0;
//one scan
while( idx + sizeof(frame_marker_mask) < *size) {
// search for a start of frame marker
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{ // frame marker found
size2=idx;
idx+=sizeof(frame_marker_mask);
while(dest[idx] != dest[idx+1] && idx < *size-2)
{
// Keep going until next frame marker (or error)
// Shift in a bit. Start by shifting high registers
*hi2 = (*hi2<<1)|(*hi>>31);
*hi = (*hi<<1)|(*lo>>31);
//Then, shift in a 0 or one into low
if (dest[idx] && !dest[idx+1]) // 1 0
*lo=(*lo<<1)|1;
else // 0 1
*lo=(*lo<<1)|0;
numshifts++;
idx += 2;
}
// Hopefully, we read a tag and hit upon the next frame marker and got enough bits
if(idx + sizeof(frame_marker_mask) < *size && numshifts > 40)
{
if ( memcmp(dest+idx, frame_marker_mask, sizeof(frame_marker_mask)) == 0)
{
//good return - return start grid position and bits found
*size = ((numshifts*2)+8);
return size2;
}
}
// reset
*hi2 = *hi = *lo = 0;
numshifts = 0;
}else {
idx++;
}
}
return 0;
}
uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
{
uint32_t num = 0;
@ -589,40 +697,136 @@ int IOdemodFSK(uint8_t *dest, size_t size)
return 0;
}
// by marshmellow
// pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType
// returns 1 if passed
uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
{
uint8_t ans = 0;
for (uint8_t i = 0; i < bitLen; i++){
ans ^= ((bits >> i) & 1);
}
//PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType);
return (ans == pType);
}
// by marshmellow
// takes a array of binary values, start position, length of bits per parity (includes parity bit),
// Parity Type (1 for odd 0 for even), and binary Length (length to run)
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
{
uint32_t parityWd = 0;
size_t j = 0, bitCnt = 0;
for (int word = 0; word < (bLen); word+=pLen){
for (int bit=0; bit < pLen; bit++){
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
j--;
// if parity fails then return 0
if (parityTest(parityWd, pLen, pType) == 0) return -1;
bitCnt+=(pLen-1);
parityWd = 0;
}
// if we got here then all the parities passed
//return ID start index and size
return bitCnt;
}
// by marshmellow
// FSK Demod then try to locate an AWID ID
int AWIDdemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 123;
uint32_t idx=0, idx2=0;
//make sure buffer has data
if (size < 96*50) return -1;
//test samples are not just noise
uint8_t justNoise = 1;
for(idx=0; idx < size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
}
if(justNoise) return -2;
// FSK demodulator
size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
if (size < 96) return -3; //did we get a good demod?
uint8_t mask[] = {0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 96); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
// frame marker found
//return ID start index
if (idx2 == 0) idx2=idx;
else if(idx-idx2==96) return idx2;
else return -5;
// should always get 96 bits if it is awid
}
}
//never found mask
return -4;
}
// by marshmellow
// FSK Demod then try to locate an Farpointe Data (pyramid) ID
int PyramiddemodFSK(uint8_t *dest, size_t size)
{
static const uint8_t THRESHOLD = 123;
uint32_t idx=0, idx2=0;
// size_t size2 = size;
//make sure buffer has data
if (size < 128*50) return -5;
//test samples are not just noise
uint8_t justNoise = 1;
for(idx=0; idx < size && justNoise ;idx++){
justNoise = dest[idx] < THRESHOLD;
}
if(justNoise) return -1;
// FSK demodulator
size = fskdemod(dest, size, 50, 1, 10, 8); // RF/64 and invert
if (size < 128) return -2; //did we get a good demod?
uint8_t mask[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
for( idx=0; idx < (size - 128); idx++) {
if ( memcmp(dest + idx, mask, sizeof(mask))==0) {
// frame marker found
if (idx2==0) idx2=idx;
else if (idx-idx2==128) return idx2;
else return -3;
}
}
//never found mask
return -4;
}
// by marshmellow
// not perfect especially with lower clocks or VERY good antennas (heavy wave clipping)
// maybe somehow adjust peak trimming value based on samples to fix?
int DetectASKClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int peak=0;
int low=255;
int clk[]={16,32,40,50,64,100,128,256};
int clk[]={8,16,32,40,50,64,100,128,256};
int loopCnt = 256; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
for (;i<8;++i)
if (clk[i] == clock) return clock;
//get high and low peak
for (i=0; i < loopCnt; ++i){
if(dest[i] > peak){
peak = dest[i];
}
if(dest[i] < low){
low = dest[i];
}
}
peak=(int)(((peak-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
int ii;
int clkCnt;
int tol = 0;
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
int errCnt=0;
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 6; ++clkCnt){
for(clkCnt=0; clkCnt < 8; ++clkCnt){
if (clk[clkCnt] == 32){
tol=1;
}else{
@ -634,7 +838,7 @@ int DetectASKClock(uint8_t dest[], size_t size, int clock)
if ((dest[ii] >= peak) || (dest[ii] <= low)){
errCnt=0;
// now that we have the first one lined up test rest of wave array
for (i=0; i<((int)(size/clk[clkCnt])-1); ++i){
for (i=0; i<((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
}else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
}else if(dest[ii+(i*clk[clkCnt])+tol]>=peak || dest[ii+(i*clk[clkCnt])+tol]<=low){
@ -642,17 +846,20 @@ int DetectASKClock(uint8_t dest[], size_t size, int clock)
errCnt++;
}
}
//if we found no errors this is correct one - return this clock
if(errCnt==0) return clk[clkCnt];
//if we found no errors then we can stop here
// this is correct one - return this clock
//PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
if(errCnt==0 && clkCnt<6) return clk[clkCnt];
//if we found errors see if it is lowest so far and save it as best run
if(errCnt<bestErr[clkCnt]) bestErr[clkCnt]=errCnt;
}
}
}
int iii=0;
int best=0;
for (iii=0; iii<7;++iii){
uint8_t iii=0;
uint8_t best=0;
for (iii=0; iii<8; ++iii){
if (bestErr[iii]<bestErr[best]){
if (bestErr[iii]==0) bestErr[iii]=1;
// current best bit to error ratio vs new bit to error ratio
if (((size/clk[best])/bestErr[best] < (size/clk[iii])/bestErr[iii]) ){
best = iii;
@ -667,38 +874,29 @@ int DetectASKClock(uint8_t dest[], size_t size, int clock)
int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
{
int i=0;
int peak=0;
int low=255;
int clk[]={16,32,40,50,64,100,128,256};
int loopCnt = 2048; //don't need to loop through entire array...
if (size<loopCnt) loopCnt = size;
//if we already have a valid clock quit
for (; i < 8; ++i)
for (; i < 7; ++i)
if (clk[i] == clock) return clock;
//get high and low peak
for (i=0; i < loopCnt; ++i){
if(dest[i] > peak){
peak = dest[i];
}
if(dest[i] < low){
low = dest[i];
}
}
peak=(int)(((peak-128)*.75)+128);
low= (int)(((low-128)*.75)+128);
int peak, low;
getHiLo(dest, loopCnt, &peak, &low, 75, 75);
//PrintAndLog("DEBUG: peak: %d, low: %d",peak,low);
int ii;
uint8_t clkCnt;
uint8_t tol = 0;
int peakcnt=0;
int errCnt=0;
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
int peaksdet[]={0,0,0,0,0,0,0,0,0};
int bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000};
int peaksdet[]={0,0,0,0,0,0,0,0};
//test each valid clock from smallest to greatest to see which lines up
for(clkCnt=0; clkCnt < 6; ++clkCnt){
if (clk[clkCnt] == 32){
for(clkCnt=0; clkCnt < 7; ++clkCnt){
if (clk[clkCnt] <= 32){
tol=1;
}else{
tol=0;
@ -709,7 +907,7 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
errCnt=0;
peakcnt=0;
// now that we have the first one lined up test rest of wave array
for (i=0; i < ((int)(size/clk[clkCnt])-1); ++i){
for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){
if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){
peakcnt++;
}else if(dest[ii+(i*clk[clkCnt])-tol]>=peak || dest[ii+(i*clk[clkCnt])-tol]<=low){
@ -749,44 +947,58 @@ int DetectpskNRZClock(uint8_t dest[], size_t size, int clock)
}
// by marshmellow (attempt to get rid of high immediately after a low)
void pskCleanWave(uint8_t *bitStream, size_t size)
void pskCleanWave(uint8_t *BitStream, size_t size)
{
int i;
int low=255;
int high=0;
int gap = 4;
// int loopMax = 2048;
int newLow=0;
int newHigh=0;
for (i=0; i < size; ++i){
if (bitStream[i] < low) low=bitStream[i];
if (bitStream[i] > high) high=bitStream[i];
}
high = (int)(((high-128)*.80)+128);
low = (int)(((low-128)*.90)+128);
//low = (uint8_t)(((int)(low)-128)*.80)+128;
int high, low;
getHiLo(BitStream, size, &high, &low, 80, 90);
for (i=0; i < size; ++i){
if (newLow == 1){
bitStream[i]=low+8;
if (BitStream[i]>low){
BitStream[i]=low+8;
gap--;
}
if (gap == 0){
newLow=0;
gap=4;
}
}else if (newHigh == 1){
bitStream[i]=high-8;
if (BitStream[i]<high){
BitStream[i]=high-8;
gap--;
}
if (gap == 0){
newHigh=0;
gap=4;
}
}
if (bitStream[i] <= low) newLow=1;
if (bitStream[i] >= high) newHigh=1;
if (BitStream[i] <= low) newLow=1;
if (BitStream[i] >= high) newHigh=1;
}
return;
}
// by marshmellow
// convert psk1 demod to psk2 demod
// only transition waves are 1s
void psk1TOpsk2(uint8_t *BitStream, size_t size)
{
size_t i=1;
uint8_t lastBit=BitStream[0];
for (; i<size; i++){
if (lastBit!=BitStream[i]){
lastBit=BitStream[i];
BitStream[i]=1;
} else {
BitStream[i]=0;
}
}
return;
}
// redesigned by marshmellow adjusted from existing decode functions
// indala id decoding - only tested on 26 bit tags, but attempted to make it work for more
@ -852,38 +1064,28 @@ int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert)
return 1;
}
//by marshmellow - demodulate PSK wave or NRZ wave (both similar enough)
//peaks switch bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
// by marshmellow - demodulate PSK1 wave or NRZ wave (both similar enough)
// peaks invert bit (high=1 low=0) each clock cycle = 1 bit determined by last peak
int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
{
pskCleanWave(dest,*size);
int clk2 = DetectpskNRZClock(dest, *size, *clk);
*clk=clk2;
uint32_t i;
uint8_t high=0, low=255;
int high, low, ans;
ans = getHiLo(dest, 1260, &high, &low, 75, 80); //25% fuzz on high 20% fuzz on low
if (ans<1) return -2; //just noise
uint32_t gLen = *size;
if (gLen > 1280) gLen=1280;
// get high
for (i=0; i < gLen; ++i){
if (dest[i] > high) high = dest[i];
if (dest[i] < low) low = dest[i];
}
//fudge high/low bars by 25%
high = (uint8_t)((((int)(high)-128)*.75)+128);
low = (uint8_t)((((int)(low)-128)*.80)+128);
//PrintAndLog("DEBUG - valid high: %d - valid low: %d",high,low);
int lastBit = 0; //set first clock check
uint32_t bitnum = 0; //output counter
uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave
if (*clk==32) tol = 2; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely
uint32_t iii = 0;
uint8_t errCnt =0;
uint32_t bestStart = *size;
uint32_t maxErr = (*size/1000);
uint32_t bestErrCnt = maxErr;
//uint8_t midBit=0;
uint8_t curBit=0;
uint8_t bitHigh=0;
uint8_t ignorewin=*clk/8;
@ -931,7 +1133,6 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
bestErrCnt = errCnt;
break; //great read - finish
}
if (bestStart == iii) break; //if current run == bestErrCnt run (after exhausted testing) then finish
if (errCnt < bestErrCnt){ //set this as new best run
bestErrCnt = errCnt;
bestStart = iii;
@ -995,3 +1196,191 @@ int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert)
return errCnt;
}
//by marshmellow
//detects the bit clock for FSK given the high and low Field Clocks
uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow)
{
uint8_t clk[] = {8,16,32,40,50,64,100,128,0};
uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
uint8_t rfLensFnd = 0;
uint8_t lastFCcnt=0;
uint32_t fcCounter = 0;
uint16_t rfCounter = 0;
uint8_t firstBitFnd = 0;
size_t i;
uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2);
rfLensFnd=0;
fcCounter=0;
rfCounter=0;
firstBitFnd=0;
//PrintAndLog("DEBUG: fcTol: %d",fcTol);
// prime i to first up transition
for (i = 1; i < size-1; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1])
break;
for (; i < size-1; i++){
if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]){
// new peak
fcCounter++;
rfCounter++;
// if we got less than the small fc + tolerance then set it to the small fc
if (fcCounter < fcLow+fcTol)
fcCounter = fcLow;
else //set it to the large fc
fcCounter = fcHigh;
//look for bit clock (rf/xx)
if ((fcCounter<lastFCcnt || fcCounter>lastFCcnt)){
//not the same size as the last wave - start of new bit sequence
if (firstBitFnd>1){ //skip first wave change - probably not a complete bit
for (int ii=0; ii<15; ii++){
if (rfLens[ii]==rfCounter){
rfCnts[ii]++;
rfCounter=0;
break;
}
}
if (rfCounter>0 && rfLensFnd<15){
//PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter);
rfCnts[rfLensFnd]++;
rfLens[rfLensFnd++]=rfCounter;
}
} else {
firstBitFnd++;
}
rfCounter=0;
lastFCcnt=fcCounter;
}
fcCounter=0;
} else {
// count sample
fcCounter++;
rfCounter++;
}
}
uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
for (i=0; i<15; i++){
//PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
//get highest 2 RF values (might need to get more values to compare or compare all?)
if (rfCnts[i]>rfCnts[rfHighest]){
rfHighest3=rfHighest2;
rfHighest2=rfHighest;
rfHighest=i;
} else if(rfCnts[i]>rfCnts[rfHighest2]){
rfHighest3=rfHighest2;
rfHighest2=i;
} else if(rfCnts[i]>rfCnts[rfHighest3]){
rfHighest3=i;
}
}
// set allowed clock remainder tolerance to be 1 large field clock length+1
// we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
uint8_t tol1 = fcHigh+1;
//PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
// loop to find the highest clock that has a remainder less than the tolerance
// compare samples counted divided by
int ii=7;
for (; ii>=0; ii--){
if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
break;
}
}
}
}
if (ii<0) return 0; // oops we went too far
return clk[ii];
}
//by marshmellow
//countFC is to detect the field clock lengths.
//counts and returns the 2 most common wave lengths
uint16_t countFC(uint8_t *BitStream, size_t size)
{
uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0};
uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t fcLensFnd = 0;
uint8_t lastFCcnt=0;
uint32_t fcCounter = 0;
size_t i;
// prime i to first up transition
for (i = 1; i < size-1; i++)
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1])
break;
for (; i < size-1; i++){
if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){
// new up transition
fcCounter++;
//if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8)
if (lastFCcnt==5 && fcCounter==9) fcCounter--;
//if odd and not rc/5 add one (for when we get a fc 9 instead of 10)
if ((fcCounter==9 && fcCounter & 1) || fcCounter==4) fcCounter++;
// save last field clock count (fc/xx)
// find which fcLens to save it to:
for (int ii=0; ii<10; ii++){
if (fcLens[ii]==fcCounter){
fcCnts[ii]++;
fcCounter=0;
break;
}
}
if (fcCounter>0 && fcLensFnd<10){
//add new fc length
fcCnts[fcLensFnd]++;
fcLens[fcLensFnd++]=fcCounter;
}
fcCounter=0;
} else {
// count sample
fcCounter++;
}
}
uint8_t best1=9, best2=9, best3=9;
uint16_t maxCnt1=0;
// go through fclens and find which ones are bigest 2
for (i=0; i<10; i++){
// PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt);
// get the 3 best FC values
if (fcCnts[i]>maxCnt1) {
best3=best2;
best2=best1;
maxCnt1=fcCnts[i];
best1=i;
} else if(fcCnts[i]>fcCnts[best2]){
best3=best2;
best2=i;
} else if(fcCnts[i]>fcCnts[best3]){
best3=i;
}
}
uint8_t fcH=0, fcL=0;
if (fcLens[best1]>fcLens[best2]){
fcH=fcLens[best1];
fcL=fcLens[best2];
} else{
fcH=fcLens[best2];
fcL=fcLens[best1];
}
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
// PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
return fcs;
}

View file

@ -4,7 +4,11 @@
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency commands
// Low frequency demod related commands
// marshmellow
// note that many of these demods are not the slickest code and they often rely
// on peaks and clock instead of converting to clean signal.
//
//-----------------------------------------------------------------------------
#ifndef LFDEMOD_H__
@ -13,17 +17,26 @@
int DetectASKClock(uint8_t dest[], size_t size, int clock);
int askmandemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
uint64_t Em410xDecode(uint8_t *BitStream,size_t size);
uint64_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx);
int ManchesterEncode(uint8_t *BitStream, size_t size);
int manrawdecode(uint8_t *BitStream, size_t *size);
int BiphaseRawDecode(uint8_t * BitStream, size_t *size, int offset);
int BiphaseRawDecode(uint8_t * BitStream, size_t *size, int offset, int invert);
int askrawdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert);
int HIDdemodFSK(uint8_t *dest, size_t size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
int IOdemodFSK(uint8_t *dest, size_t size);
int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow);
uint32_t bytebits_to_byte(uint8_t* src, size_t numbits);
int pskNRZrawDemod(uint8_t *dest, size_t *size, int *clk, int *invert);
void psk1TOpsk2(uint8_t *BitStream, size_t size);
int DetectpskNRZClock(uint8_t dest[], size_t size, int clock);
int indala26decode(uint8_t *bitStream, size_t *size, uint8_t *invert);
void pskCleanWave(uint8_t *bitStream, size_t size);
int PyramiddemodFSK(uint8_t *dest, size_t size);
int AWIDdemodFSK(uint8_t *dest, size_t size);
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen);
uint16_t countFC(uint8_t *BitStream, size_t size);
uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow);
int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo);
size_t ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo);
#endif