- improved reader sensitivity for 14443a cards (FPGA change!)

- implemented ISO 14443A anticollision loop
See http://www.proxmark.org/forum/viewtopic.php?id=1797 further details
This commit is contained in:
micki.held@gmx.de 2013-11-19 18:52:40 +00:00
commit e691fc45bc
9 changed files with 428 additions and 388 deletions

View file

@ -12,11 +12,11 @@ fpga.ngc: fpga.v fpga.ucf xst.scr util.v lo_edge_detect.v lo_read.v lo_passthru.
fpga.ngd: fpga.ngc
$(DELETE) fpga.ngd
$(XILINX_TOOLS_PREFIX)ngdbuild -aul -p xc2s30-6vq100 -nt timestamp -uc fpga.ucf fpga.ngc fpga.ngd
$(XILINX_TOOLS_PREFIX)ngdbuild -aul -p xc2s30-5-vq100 -nt timestamp -uc fpga.ucf fpga.ngc fpga.ngd
fpga.ncd: fpga.ngd
$(DELETE) fpga.ncd
$(XILINX_TOOLS_PREFIX)map -p xc2s30-6vq100 fpga.ngd
$(XILINX_TOOLS_PREFIX)map -p xc2s30-5-vq100 fpga.ngd
fpga-placed.ncd: fpga.ncd
$(DELETE) fpga-placed.ncd

Binary file not shown.

View file

@ -39,3 +39,16 @@ NET "ssp_frame" LOC = "P31" ;
#PACE: Start of PACE Prohibit Constraints
#PACE: End of Constraints generated by PACE
# definition of Clock nets:
NET "ck_1356meg" TNM_NET = "clk_net_1356" ;
NET "ck_1356megb" TNM_NET = "clk_net_1356b" ;
NET "pck0" TNM_NET = "clk_net_pck0" ;
NET "spck" TNM_NET = "clk_net_spck" ;
# Timing specs of clock nets:
TIMEGRP "clk_net_1356_all" = "clk_net_1356" "clk_net_1356b" ;
TIMESPEC "TS_1356MHz" = PERIOD "clk_net_1356_all" 74 ns HIGH 37 ns ;
TIMESPEC "TS_24MHz" = PERIOD "clk_net_pck0" 42 ns HIGH 21 ns ;
TIMESPEC "TS_4MHz" = PERIOD "clk_net_spck" 250 ns HIGH 125 ns ;

View file

@ -22,17 +22,17 @@
`include "util.v"
module fpga(
spcki, miso, mosi, ncs,
pck0i, ck_1356meg, ck_1356megb,
spck, miso, mosi, ncs,
pck0, ck_1356meg, ck_1356megb,
pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4,
adc_d, adc_clk, adc_noe,
ssp_frame, ssp_din, ssp_dout, ssp_clk,
cross_hi, cross_lo,
dbg
);
input spcki, mosi, ncs;
input spck, mosi, ncs;
output miso;
input pck0i, ck_1356meg, ck_1356megb;
input pck0, ck_1356meg, ck_1356megb;
output pwr_lo, pwr_hi, pwr_oe1, pwr_oe2, pwr_oe3, pwr_oe4;
input [7:0] adc_d;
output adc_clk, adc_noe;
@ -42,15 +42,17 @@ module fpga(
output dbg;
//assign pck0 = pck0i;
IBUFG #(.IOSTANDARD("DEFAULT") ) pck0b(
.O(pck0),
.I(pck0i)
);
// IBUFG #(.IOSTANDARD("DEFAULT") ) pck0b(
// .O(pck0),
// .I(pck0i)
// );
//assign spck = spcki;
IBUFG #(.IOSTANDARD("DEFAULT") ) spckb(
.O(spck),
.I(spcki)
);
// IBUFG #(.IOSTANDARD("DEFAULT") ) spckb(
// .O(spck),
// .I(spcki)
// );
//-----------------------------------------------------------------------------
// The SPI receiver. This sets up the configuration word, which the rest of
// the logic looks at to determine how to connect the A/D and the coil
@ -68,8 +70,8 @@ reg [7:0] conf_word;
always @(posedge ncs)
begin
case(shift_reg[15:12])
4'b0001: conf_word <= shift_reg[7:0];
4'b0010: divisor <= shift_reg[7:0];
4'b0001: conf_word <= shift_reg[7:0]; // FPGA_CMD_SET_CONFREG
4'b0010: divisor <= shift_reg[7:0]; // FPGA_CMD_SET_DIVISOR
endcase
end
@ -202,7 +204,7 @@ hi_iso14443a hisn(
mux8 mux_ssp_clk (major_mode, ssp_clk, lr_ssp_clk, ls_ssp_clk, ht_ssp_clk, hrxc_ssp_clk, hs_ssp_clk, hisn_ssp_clk, lp_ssp_clk, 1'b0);
mux8 mux_ssp_din (major_mode, ssp_din, lr_ssp_din, ls_ssp_din, ht_ssp_din, hrxc_ssp_din, hs_ssp_din, hisn_ssp_din, lp_ssp_din, 1'b0);
mux8 mux_ssp_frame (major_mode, ssp_frame, lr_ssp_frame, ls_ssp_frame, ht_ssp_frame, hrxc_ssp_frame, hs_ssp_frame, hisn_ssp_frame, lp_ssp_frame, 1'b0);
mux8 mux_ssp_frame (major_mode, ssp_frame, lr_ssp_frame, ls_ssp_frame, ht_ssp_frame, hrxc_ssp_frame, hs_ssp_frame, hisn_ssp_frame, lp_ssp_frame, 1'b0);
mux8 mux_pwr_oe1 (major_mode, pwr_oe1, lr_pwr_oe1, ls_pwr_oe1, ht_pwr_oe1, hrxc_pwr_oe1, hs_pwr_oe1, hisn_pwr_oe1, lp_pwr_oe1, 1'b0);
mux8 mux_pwr_oe2 (major_mode, pwr_oe2, lr_pwr_oe2, ls_pwr_oe2, ht_pwr_oe2, hrxc_pwr_oe2, hs_pwr_oe2, hisn_pwr_oe2, lp_pwr_oe2, 1'b0);
mux8 mux_pwr_oe3 (major_mode, pwr_oe3, lr_pwr_oe3, ls_pwr_oe3, ht_pwr_oe3, hrxc_pwr_oe3, hs_pwr_oe3, hisn_pwr_oe3, lp_pwr_oe3, 1'b0);
@ -210,7 +212,7 @@ mux8 mux_pwr_oe4 (major_mode, pwr_oe4, lr_pwr_oe4, ls_pwr_oe4, ht_pwr_oe4
mux8 mux_pwr_lo (major_mode, pwr_lo, lr_pwr_lo, ls_pwr_lo, ht_pwr_lo, hrxc_pwr_lo, hs_pwr_lo, hisn_pwr_lo, lp_pwr_lo, 1'b0);
mux8 mux_pwr_hi (major_mode, pwr_hi, lr_pwr_hi, ls_pwr_hi, ht_pwr_hi, hrxc_pwr_hi, hs_pwr_hi, hisn_pwr_hi, lp_pwr_hi, 1'b0);
mux8 mux_adc_clk (major_mode, adc_clk, lr_adc_clk, ls_adc_clk, ht_adc_clk, hrxc_adc_clk, hs_adc_clk, hisn_adc_clk, lp_adc_clk, 1'b0);
mux8 mux_dbg (major_mode, dbg, lr_dbg, ls_dbg, ht_dbg, hrxc_dbg, hs_dbg, hisn_dbg, lp_dbg, 1'b0);
mux8 mux_dbg (major_mode, dbg, lr_dbg, ls_dbg, ht_dbg, hrxc_dbg, hs_dbg, hisn_dbg, lp_dbg, 1'b0);
// In all modes, let the ADC's outputs be enabled.
assign adc_noe = 1'b0;

View file

@ -39,8 +39,8 @@ reg [2:0] deep_counter;
reg deep_modulation;
always @(negedge adc_clk)
begin
if(& adc_d[7:6]) after_hysteresis <= 1'b1;
else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0;
if(& adc_d[7:6]) after_hysteresis <= 1'b1; // if adc_d >= 196
else if(~(| adc_d[7:4])) after_hysteresis <= 1'b0; // if adc_d <= 15
if(~(| adc_d[7:0]))
begin
@ -83,20 +83,34 @@ reg [5:0] negedge_cnt;
reg bit1, bit2, bit3;
reg [3:0] count_ones;
reg [3:0] count_zeros;
wire [7:0] avg;
reg [7:0] lavg;
reg signed [12:0] step1;
reg signed [12:0] step2;
reg [7:0] stepsize;
// wire [7:0] avg;
// reg [7:0] lavg;
// reg signed [12:0] step1;
// reg signed [12:0] step2;
// reg [7:0] stepsize;
reg [7:0] rx_mod_edge_threshold;
reg curbit;
reg [12:0] average;
wire signed [9:0] dif;
// reg [12:0] average;
// wire signed [9:0] dif;
// storage for two previous samples:
reg [7:0] adc_d_1;
reg [7:0] adc_d_2;
reg [7:0] adc_d_3;
reg [7:0] adc_d_4;
// the filtered signal (filter performs noise reduction and edge detection)
// (gaussian derivative)
wire signed [10:0] adc_d_filtered;
assign adc_d_filtered = (adc_d_4 << 1) + adc_d_3 - adc_d_1 - (adc_d << 1);
// Registers to store steepest edges detected:
reg [7:0] rx_mod_falling_edge_max;
reg [7:0] rx_mod_rising_edge_max;
// A register to send the results to the arm
reg signed [7:0] to_arm;
assign avg[7:0] = average[11:4];
assign dif = lavg - avg;
reg bit_to_arm;
reg fdt_indicator, fdt_elapsed;
@ -115,36 +129,67 @@ reg [2:0] ssp_frame_counter;
// ADC data appears on the rising edge, so sample it on the falling edge
always @(negedge adc_clk)
begin
// last bit = 0 then fdt = 1172, in case of 0x26 (7-bit command, LSB first!)
// last bit = 1 then fdt = 1236, in case of 0x52 (7-bit command, LSB first!)
if(fdt_counter == 11'd740) fdt_indicator = 1'b1;
// ------------------------------------------------------------------------------------------------------------------------------------------------------------------
// relevant for TAGSIM_MOD only. Timing of Tag's answer to a command received from a reader
// ISO14443-3 specifies:
// fdt = 1172, if last bit was 0.
// fdt = 1236, if last bit was 1.
// the FPGA takes care for the 1172 delay. To achieve the additional 1236-1172=64 ticks delay, the ARM must send an additional correction bit (before the start bit).
// The correction bit will be coded as 00010000, i.e. it adds 4 bits to the transmission stream, causing the required delay.
if(fdt_counter == 11'd740) fdt_indicator = 1'b1; // fdt_indicator is true for 740 <= fdt_counter <= 1148. Ready to buffer data. (?)
// Shouldn' this be 1236 - 720 = 516? (The mod_sig_buf can buffer 46 data bits,
// i.e. a maximum delay of 46 * 16 = 720 adc_clk ticks)
if(fdt_counter == 11'd1148)
if(fdt_counter == 11'd1148) // additional 16 (+ eventual n*128) adc_clk_ticks delay will be added by the mod_sig_buf below
// the remaining 8 ticks delay comes from the 8 ticks timing difference between reseting fdt_counter and the mod_sig_buf clock.
begin
if(fdt_elapsed)
begin
if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig;
if(negedge_cnt[3:0] == mod_sig_flip[3:0]) mod_sig_coil <= mod_sig; // start modulating (if mod_sig is already set)
end
else
begin
mod_sig_flip[3:0] <= negedge_cnt[3:0];
mod_sig_coil <= mod_sig;
mod_sig_flip[3:0] <= negedge_cnt[3:0]; // exact timing of modulation
mod_sig_coil <= mod_sig; // modulate (if mod_sig is already set)
fdt_elapsed = 1'b1;
fdt_indicator = 1'b0;
if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001;
else temp_buffer_reset = 1'b1; // fix position of the buffer pointer
if(~(| mod_sig_ptr[5:0])) mod_sig_ptr <= 6'b001001; // didn't receive a 1 yet. Delay next 1 by n*128 ticks.
else temp_buffer_reset = 1'b1; // else fix the buffer size at current position
end
end
else
begin
fdt_counter <= fdt_counter + 1;
fdt_counter <= fdt_counter + 1; // Count until 1148
end
if(& negedge_cnt[3:0])
//-------------------------------------------------------------------------------------------------------------------------------------------
// Relevant for READER_LISTEN only
// look for steepest falling and rising edges:
if (adc_d_filtered > 0)
begin
if (adc_d_filtered > rx_mod_falling_edge_max)
rx_mod_falling_edge_max <= adc_d_filtered;
end
else
begin
if (-adc_d_filtered > rx_mod_rising_edge_max)
rx_mod_rising_edge_max <= -adc_d_filtered;
end
// store previous samples for filtering and edge detection:
adc_d_4 <= adc_d_3;
adc_d_3 <= adc_d_2;
adc_d_2 <= adc_d_1;
adc_d_1 <= adc_d;
if(& negedge_cnt[3:0]) // == 0xf == 15
begin
// When there is a dip in the signal and not in reader mode
// Relevant for TAGSIM_MOD only (timing Tag's answer. See above)
// When there is a dip in the signal and not in (READER_MOD, READER_LISTEN, TAGSIM_MOD)
if(~after_hysteresis && mod_sig_buf_empty && ~((mod_type == 3'b100) || (mod_type == 3'b011) || (mod_type == 3'b010))) // last condition to prevent reset
begin
fdt_counter <= 11'd0;
@ -154,74 +199,33 @@ begin
mod_sig_ptr <= 6'b000000;
end
lavg <= avg;
if(stepsize<16) stepsize = 8'd16;
if(dif>0)
begin
step1 = dif*3;
step2 = stepsize*2; // 3:2
if(step1>step2)
begin
curbit = 1'b0;
stepsize = dif;
end
end
else
begin
step1 = dif*3;
step1 = -step1;
step2 = stepsize*2;
if(step1>step2)
begin
curbit = 1'b1;
stepsize = -dif;
end
end
if(curbit)
begin
count_zeros <= 4'd0;
if(& count_ones[3:2])
begin
curbit = 1'b0; // suppressed signal
stepsize = 8'd24; // just a fine number
end
// Relevant for READER_LISTEN only
// detect modulation signal: if modulating, there must be a falling and a rising edge ... and vice versa
if (rx_mod_falling_edge_max > 6 && rx_mod_rising_edge_max > 6)
curbit = 1'b1; // modulation
else
begin
count_ones <= count_ones + 1;
end
end
else
begin
count_ones <= 4'd0;
if(& count_zeros[3:0])
begin
stepsize = 8'd24;
end
else
begin
count_zeros <= count_zeros + 1;
end
end
curbit = 1'b0; // no modulation
// prepare next edge detection:
rx_mod_rising_edge_max <= 0;
rx_mod_falling_edge_max <= 0;
// What do we communicate to the ARM
if(mod_type == 3'b001) sendbit = after_hysteresis;
else if(mod_type == 3'b010)
if(mod_type == 3'b001) sendbit = after_hysteresis; // TAGSIM_LISTEN
else if(mod_type == 3'b010) // TAGSIM_MOD
begin
if(fdt_counter > 11'd772) sendbit = mod_sig_coil;
else sendbit = fdt_indicator;
end
else if(mod_type == 3'b011) sendbit = curbit;
else sendbit = 1'b0;
else if(mod_type == 3'b011) sendbit = curbit; // READER_LISTEN
else sendbit = 1'b0; // READER_MOD, SNIFFER
end
if(~(| negedge_cnt[3:0])) average <= adc_d;
else average <= average + adc_d;
if(negedge_cnt == 7'd63)
//------------------------------------------------------------------------------------------------------------------------------------------
// Relevant for SNIFFER mode only. Prepare communication to ARM.
if(negedge_cnt == 7'd63)
begin
if(deep_modulation)
begin
@ -234,7 +238,7 @@ begin
negedge_cnt <= 0;
end
end
else
begin
negedge_cnt <= negedge_cnt + 1;
@ -256,35 +260,48 @@ begin
bit3 <= curbit;
end
if(mod_type != 3'b000)
//--------------------------------------------------------------------------------------------------------------------------------------------------------------
// Relevant in TAGSIM_MOD only. Delay-Line to buffer data and send it at the correct time
// Note: Data in READER_MOD is fed through this delay line as well.
if(mod_type != 3'b000) // != SNIFFER
begin
if(negedge_cnt[3:0] == 4'b1000)
if(negedge_cnt[3:0] == 4'b1000) // == 0x8
begin
// The modulation signal of the tag
mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0};
if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed)
if(mod_sig_ptr == 6'b101110)
// The modulation signal of the tag. The delay line is only relevant for TAGSIM_MOD, but used in other modes as well.
// Note: this means that even in READER_MOD, there will be an arbitrary delay depending on the time of a previous reset of fdt_counter and the time and
// content of the next bit to be transmitted.
mod_sig_buf[47:0] <= {mod_sig_buf[46:1], ssp_dout, 1'b0}; // shift in new data starting at mod_sig_buf[1]. mod_sig_buf[0] = 0 always.
if((ssp_dout || (| mod_sig_ptr[5:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt_counter = 1148 adc_clk ticks.
if(mod_sig_ptr == 6'b101110) // buffer overflow at 46 - this would mean data loss
begin
mod_sig_ptr <= 6'b000000;
end
else mod_sig_ptr <= mod_sig_ptr + 1;
else if(fdt_elapsed && ~temp_buffer_reset)
else mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). ptr always points to first 1.
else if(fdt_elapsed && ~temp_buffer_reset)
// fdt_elapsed. If we didn't receive a 1 yet, ptr will be at 9 and not yet fixed. Otherwise temp_buffer_reset will be 1 already.
begin
if(ssp_dout) temp_buffer_reset = 1'b1;
if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001;
else mod_sig_ptr <= mod_sig_ptr - 1;
// wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
// at intervals of 8 * 16 = 128 adc_clk ticks intervals (as defined in ISO14443-3)
if(ssp_dout) temp_buffer_reset = 1'b1;
if(mod_sig_ptr == 6'b000010) mod_sig_ptr <= 6'b001001; // still nothing received, need to go for the next interval
else mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer.
end
else
// mod_sig_ptr and therefore the delay is now fixed until fdt_counter is reset (this can happen in SNIFFER and TAGSIM_LISTEN mode only. Note that SNIFFER
// mode (3'b000) is the default and is active in FPGA_MAJOR_MODE_OFF if no other minor mode is explicitly requested.
begin
// side effect: when ptr = 1 it will cancel the first 1 of every block of ones
// don't modulate with the correction bit (which is sent as 00010000, all other bits will come with at least 2 consecutive 1s)
// side effect: when ptr = 1 it will cancel the first 1 of every block of ones. Note: this would only be the case if we received a 1 just before fdt_elapsed.
if(~mod_sig_buf[mod_sig_ptr-1] && ~mod_sig_buf[mod_sig_ptr+1]) mod_sig = 1'b0;
else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed; // & fdt_elapsed was for direct relay to oe4
// finally, do the modulation:
else mod_sig = mod_sig_buf[mod_sig_ptr] & fdt_elapsed;
end
end
end
// SSP Clock and data
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
// Communication to ARM (SSP Clock and data)
// SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
if(mod_type == 3'b000)
begin
if(negedge_cnt[2:0] == 3'b100)
@ -308,6 +325,9 @@ begin
bit_to_arm = to_arm[7];
end
else
//-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
// Communication to ARM (SSP Clock and data)
// all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
begin
if(negedge_cnt[3:0] == 4'b1000) ssp_clk <= 1'b0;
@ -331,30 +351,29 @@ end
assign ssp_din = bit_to_arm;
// Modulating carrier frequency is fc/16
// Modulating carrier (adc_clk/16, for TAGSIM_MOD only). Will be 0 for other modes.
wire modulating_carrier;
assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010));
assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011)));
assign modulating_carrier = (mod_sig_coil & negedge_cnt[3] & (mod_type == 3'b010)); // in TAGSIM_MOD only. Otherwise always 0.
// This one is all LF, so doesn't matter
//assign pwr_oe2 = modulating_carrier;
assign pwr_oe2 = 1'b0;
// for READER_MOD only: drop carrier for mod_sig_coil==1 (pause), READER_LISTEN: carrier always on, others: carrier always off
assign pwr_hi = (ck_1356megb & (((mod_type == 3'b100) & ~mod_sig_coil) || (mod_type == 3'b011)));
// Toggle only one of these, since we are already producing much deeper
// modulation than a real tag would.
//assign pwr_oe1 = modulating_carrier;
// Enable HF antenna drivers:
assign pwr_oe1 = 1'b0;
assign pwr_oe4 = modulating_carrier;
//assign pwr_oe4 = 1'b0;
// This one is always on, so that we can watch the carrier.
//assign pwr_oe3 = modulating_carrier;
assign pwr_oe3 = 1'b0;
// TAGSIM_MOD: short circuit antenna with different resistances (modulated by modulating_carrier)
// for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
// for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
assign pwr_oe4 = modulating_carrier;
// This is all LF, so doesn't matter.
assign pwr_oe2 = 1'b0;
assign pwr_lo = 1'b0;
assign dbg = negedge_cnt[3];
// Unused.
assign pwr_lo = 1'b0;
endmodule

View file

@ -1 +1 @@
run -ifn fpga.v -ifmt Verilog -ofn fpga.ngc -ofmt NGC -p xc2s30-6vq100 -opt_mode Speed -opt_level 1 -ent fpga
run -ifn fpga.v -ifmt Verilog -ofn fpga.ngc -ofmt NGC -p xc2s30-5-vq100 -opt_mode Speed -opt_level 1 -ent fpga