Merge pull request #2726 from n-hutton/emv_sim_cleanup_squash

Cleanup PR to emv contactless to contact bridge
This commit is contained in:
Iceman 2025-01-22 15:53:25 +01:00 committed by GitHub
commit dc5d456db5
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
7 changed files with 356 additions and 603 deletions

View file

@ -27,19 +27,13 @@
// /!\ Printing Debug message is disrupting emulation,
// Only use with caution during debugging
// These are the old flags which have changed in master since this fork was created.
// Just a temp fix and not intended to go into master
#define FLAG_4B_UID_IN_DATA_OLD 0x02
#define FLAG_7B_UID_IN_DATA_OLD 0x04
#define FLAG_10B_UID_IN_DATA_OLD 0x08
#define FLAG_UID_IN_EMUL_OLD 0x10
#define FLAG_MF_MINI_OLD 0x80
#define FLAG_MF_1K_OLD 0x100
#define FLAG_MF_2K_OLD 0x200
#define FLAG_MF_4K_OLD 0x400
#define FLAG_FORCED_ATQA 0x800
#define FLAG_FORCED_SAK 0x1000
#define FLAG_CVE21_0430_OLD 0x2000
// indices into responses array copied from mifare sim init:
#define ATQA 0
#define SAK 1
#define SAKuid 2
#define UIDBCC1 3
#define UIDBCC2 8
#define UIDBCC3 13
#include "emvsim.h"
#include <inttypes.h>
@ -48,6 +42,7 @@
#include "BigBuf.h"
#include "string.h"
#include "mifareutil.h"
#include "mifaresim.h"
#include "fpgaloader.h"
#include "proxmark3_arm.h"
#include "protocols.h"
@ -57,322 +52,263 @@
#include "ticks.h"
#include "i2c_direct.h"
#pragma GCC diagnostic ignored "-Wunused-variable"
#pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#pragma GCC diagnostic ignored "-Wunused-function"
// Hardcoded response to the reader for file not found, plus the checksum
static uint8_t filenotfound[] = {0x02, 0x6a, 0x82, 0x93, 0x2f};
// query and response that inserts PDOL so as to continue process...
static uint8_t fci_query[] = {0x02, 0x00, 0xa4, 0x04, 0x00, 0x07, 0xa0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0x00, 0x56, 0x3f};
static uint8_t fci_template[] = {0x02, 0x6f, 0x5e, 0x84, 0x07, 0xa0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0xa5, 0x53, 0x50, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0x9f, 0x38, 0x18, 0x9f, 0x66, 0x04, 0x9f, 0x02, 0x06, 0x9f, 0x03, 0x06, 0x9f, 0x1a, 0x02, 0x95, 0x05, 0x5f, 0x2a, 0x02, 0x9a, 0x03, 0x9c, 0x01, 0x9f, 0x37, 0x04, 0x5f, 0x2d, 0x02, 0x65, 0x6e, 0x9f, 0x11, 0x01, 0x01, 0x9f, 0x12, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0xbf, 0x0c, 0x13, 0x9f, 0x5a, 0x05, 0x31, 0x08, 0x26, 0x08, 0x26, 0x9f, 0x0a, 0x08, 0x00, 0x01, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0x90, 0x00, 0xd8, 0x15};
// TLV response for PPSE directory request
static uint8_t pay1_response[] = { 0x6F, 0x1E, 0x84, 0x0E };
static uint8_t pay1_response[] = { 0x6F, 0x1E, 0x84, 0x0E, 0x31, 0x50, 0x41, 0x59 };
// The WTX we want to send out... The format:
// 0xf2 is the command
// 0x0e is the time to wait (currently at max)
// The remaining bytes are CRC, precalculated for speed
static uint8_t extend_resp[] = {0xf2, 0x0e, 0x66, 0xb8};
// For reference, we have here the pay1 template we receive from the card, and the pay2 template we send back to the reader
// These can be inspected at https://emvlab.org/tlvutils/
// Note that the pay2 template is coded for visa ps in the UK - other countries may have different templates. Refer:
// https://mstcompany.net/blog/acquiring-emv-transaction-flow-part-3-get-processing-options-with-and-without-pdol
// Specifically, 9F5A: Application Program Identifier: 3108260826 might have to become 31 0840 0840 for USA for example.
// todo: see if this can be read from the card and automatically populated rather than hard coded
//static uint8_t fci_template_pay1[] = {0xff, 0x6f, 0x3b, 0x84, 0x07, 0xa0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0xa5, 0x30, 0x50, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0x5f, 0x2d, 0x02, 0x65, 0x6e, 0x9f, 0x12, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0x9f, 0x11, 0x01, 0x01, 0xbf, 0x0c, 0x0b, 0x9f, 0x0a, 0x08, 0x00, 0x01, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0x90, 0x00, 0x17, 0x48};
static uint8_t fci_template_pay2[] = {0x02, 0x6f, 0x5e, 0x84, 0x07, 0xa0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0xa5, 0x53, 0x50, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0x9f, 0x38, 0x18, 0x9f, 0x66, 0x04, 0x9f, 0x02, 0x06, 0x9f, 0x03, 0x06, 0x9f, 0x1a, 0x02, 0x95, 0x05, 0x5f, 0x2a, 0x02, 0x9a, 0x03, 0x9c, 0x01, 0x9f, 0x37, 0x04, 0x5f, 0x2d, 0x02, 0x65, 0x6e, 0x9f, 0x11, 0x01, 0x01, 0x9f, 0x12, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0xbf, 0x0c, 0x13, 0x9f, 0x5a, 0x05, 0x31, 0x08, 0x26, 0x08, 0x26, 0x9f, 0x0a, 0x08, 0x00, 0x01, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0x90, 0x00, 0xd8, 0x15};
// This is the hardcoded response that a contactless card would respond with when asked to select PPSE.
// It is a TLV structure, and can be seen here:
// https://emvlab.org/tlvutils/?data=6f3e840e325041592e5359532e4444463031a52cbf0c2961274f07a0000000031010500a566973612044656269749f0a080001050100000000bf6304df200180
// The first byte is the class byte, and the payload is followed by 0x9000, which is the success code, and the CRC (precalculated)
static uint8_t pay2_response[] = { 0x03, 0x6f, 0x3e, 0x84, 0x0e, 0x32, 0x50, 0x41, 0x59, 0x2e, 0x53, 0x59, 0x53, 0x2e, 0x44, 0x44, 0x46, 0x30, 0x31, 0xa5, 0x2c, 0xbf, 0x0c, 0x29, 0x61, 0x27, 0x4f, 0x07, 0xa0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0x50, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0x9f, 0x0a, 0x08, 0x00, 0x01, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0xbf, 0x63, 0x04, 0xdf, 0x20, 0x01, 0x80, 0x90, 0x00, 0x07, 0x9d};
static bool MifareSimInit(uint16_t flags, uint8_t *datain, uint16_t atqa, uint8_t sak, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len) {
void ExecuteEMVSim(uint8_t *receivedCmd, uint16_t receivedCmd_len, uint8_t *receivedCmd_copy, uint16_t receivedCmd_len_copy);
// SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf
// ATQA
static uint8_t rATQA_Mini[] = {0x04, 0x00}; // indicate Mifare classic Mini 4Byte UID
static uint8_t rATQA_1k[] = {0x04, 0x00}; // indicate Mifare classic 1k 4Byte UID
static uint8_t rATQA_2k[] = {0x04, 0x00}; // indicate Mifare classic 2k 4Byte UID
static uint8_t rATQA_4k[] = {0x02, 0x00}; // indicate Mifare classic 4k 4Byte UID
typedef enum {
STATE_DEFAULT,
SELECT_PAY1,
SELECT_PAY1_AID,
REQUESTING_CARD_PDOL,
GENERATE_AC,
} SystemState;
// SAK
static uint8_t rSAK_Mini = 0x09; // mifare Mini
static uint8_t rSAK_1k = 0x08; // mifare 1k
static uint8_t rSAK_2k = 0x08; // mifare 2k with RATS support
static uint8_t rSAK_4k = 0x18; // mifare 4k
static SystemState currentState = STATE_DEFAULT;
static uint8_t rUIDBCC1[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level
static uint8_t rUIDBCC1b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 1st cascade level, last 4 bytes
static uint8_t rUIDBCC1b3[] = {0x00, 0x00, 0x00}; // UID 1st cascade level, last 3 bytes
static uint8_t rUIDBCC1b2[] = {0x00, 0x00}; // UID 1st cascade level, last 2 bytes
static uint8_t rUIDBCC1b1[] = {0x00}; // UID 1st cascade level, last byte
static uint8_t rUIDBCC2[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 2nd cascade level
static uint8_t rUIDBCC2b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 2st cascade level, last 4 bytes
static uint8_t rUIDBCC2b3[] = {0x00, 0x00, 0x00}; // UID 2st cascade level, last 3 bytes
static uint8_t rUIDBCC2b2[] = {0x00, 0x00}; // UID 2st cascade level, last 2 bytes
static uint8_t rUIDBCC2b1[] = {0x00}; // UID 2st cascade level, last byte
static uint8_t rUIDBCC3[] = {0x00, 0x00, 0x00, 0x00, 0x00}; // UID 3nd cascade level
static uint8_t rUIDBCC3b4[] = {0x00, 0x00, 0x00, 0x00}; // UID 3st cascade level, last 4 bytes
static uint8_t rUIDBCC3b3[] = {0x00, 0x00, 0x00}; // UID 3st cascade level, last 3 bytes
static uint8_t rUIDBCC3b2[] = {0x00, 0x00}; // UID 3st cascade level, last 2 bytes
static uint8_t rUIDBCC3b1[] = {0x00}; // UID 3st cascade level, last byte
// This is the main entry point for the EMV attack, everything before this has just been setup/handshaking.
// In order to meet the timing requirements, as soon as the proxmark sees a command it immediately
// caches the command to process and responds with a WTX
// (waiting time extension). When it get the response to this WTX, it can process the cached command through the I2C interface.
//
// The full flow is:
// 1. Handshake with RATS
// 2. Reader attempts to find out which payment environment the proxmark supports (may start with SELECT OSE for example)
// 3. Reader eventually makes a request for the PAY2 application (select PPSE) (contactless payment)
// 4. We read the PAY1 environment and transform it into PAY2 to respond
// 5. Reader will select AID we responded in step 4
// 6. We get the response from selecting the PAY1 AID and transform it into PAY2 response (fci template)
// - This is important as it contains the PDOL (processing data object list) which specifies the data which is
// signed by the card and sent to the reader to verify the transaction.
// 7. The reader will then issue 'get processing options' which seems to be used here to provide the fields to be signed
// as specified by the PDOL.
// 8. In contactless flow, GPO should at least return the Application Interchange Profile (AIP) and
// Application File Locator (AFL). However, here we return track 2 data, the cryptogram, everything. This completes the transaction.
// 9. To construct this final response, behind the scenes we need to interact with the card to make it think its completing a contact transaction:
// - Request PDOL to prime the card (response not used)
// - Rearrange the GPO data provided into a 'generate AC' command for the card
// - Extract the cryptogram, track 2 data and anything else required
// - Respond. Transaction is complete
void ExecuteEMVSim(uint8_t *receivedCmd, uint16_t receivedCmd_len, uint8_t *receivedCmd_copy, uint16_t receivedCmd_len_copy) {
uint8_t responseToReader[MAX_FRAME_SIZE] = {0x00};
uint16_t responseToReader_len;
static uint8_t rATQA[] = {0x00, 0x00}; // Current ATQA
static uint8_t rSAK[] = {0x00, 0x00, 0x00}; // Current SAK, CRC
static uint8_t rSAKuid[] = {0x04, 0xda, 0x17}; // UID incomplete cascade bit, CRC
// special print me
Dbprintf("\nrecvd from reader:");
Dbhexdump(receivedCmd_len, receivedCmd, false);
Dbprintf("");
// RATS answer for 2K NXP mifare classic (with CRC)
static uint8_t rRATS[] = {0x0c, 0x75, 0x77, 0x80, 0x02, 0xc1, 0x05, 0x2f, 0x2f, 0x01, 0xbc, 0xd6, 0x60, 0xd3};
// use annotate to give some hints about the command
annotate(&receivedCmd[1], receivedCmd_len-1);
*uid_len = 0;
// This is a common request from the reader which we can just immediately respond to since we know we can't
// handle it.
if (receivedCmd[6] == 'O' && receivedCmd[7] == 'S' && receivedCmd[8] == 'E') {
Dbprintf("We saw OSE... ignore it!");
EmSendCmd(filenotfound, sizeof(filenotfound));
return;
}
// By default use 1K tag
memcpy(rATQA, rATQA_1k, sizeof(rATQA));
rSAK[0] = rSAK_1k;
// We want to modify corrupted request
if ((receivedCmd_len > 5 && receivedCmd[0] != 0x03 && receivedCmd[0] != 0x02 && receivedCmd[1] == 0 && receivedCmd[4] == 0) || (receivedCmd[2] == 0xa8)) {
Dbprintf("We saw signing request... modifying it into a generate ac transaction !!!!");
//by default RATS not supported
*rats_len = 0;
*rats = NULL;
currentState = GENERATE_AC;
// -- Determine the UID
// Can be set from emulator memory or incoming data
// Length: 4,7,or 10 bytes
memcpy(receivedCmd, (unsigned char[]){ 0x03, 0x80, 0xae, 0x80, 0x00, 0x1d }, 6);
// Get UID, SAK, ATQA from EMUL
if ((flags & FLAG_UID_IN_EMUL_OLD) == FLAG_UID_IN_EMUL_OLD) {
uint8_t block0[16];
emlGet(block0, 0, 16);
for (int i = 0; i < 29; i++) {
receivedCmd[6 + i] = receivedCmd[12 + i];
}
// If uid size defined, copy only uid from EMUL to use, backward compatibility for 'hf_colin.c', 'hf_mattyrun.c'
if ((flags & (FLAG_4B_UID_IN_DATA_OLD | FLAG_7B_UID_IN_DATA_OLD | FLAG_10B_UID_IN_DATA_OLD)) != 0) {
memcpy(datain, block0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
} else {
// Check for 4 bytes uid: bcc corrected and single size uid bits in ATQA
if ((block0[0] ^ block0[1] ^ block0[2] ^ block0[3]) == block0[4] && (block0[6] & 0xc0) == 0) {
flags |= FLAG_4B_UID_IN_DATA_OLD;
memcpy(datain, block0, 4);
rSAK[0] = block0[5];
memcpy(rATQA, &block0[6], sizeof(rATQA));
// clear final byte just in case
receivedCmd[35] = 0;
receivedCmd_len = 35 + 3; // Core command is 35, then there is control code and the crc
Dbprintf("\nthe command has now become:");
Dbhexdump(receivedCmd_len, receivedCmd, false);
}
// Seems unlikely
if (receivedCmd_len >= 9 && receivedCmd[6] == '1' && receivedCmd[7] == 'P' && receivedCmd[8] == 'A') {
Dbprintf("We saw 1PA... !!!!");
}
// Request more time for 2PAY and respond with a modified 1PAY request. We literally just change the 2 to a 1.
if (receivedCmd_len >= 9 && receivedCmd[6] == '2' && receivedCmd[7] == 'P' && receivedCmd[8] == 'A') {
Dbprintf("We saw 2PA... switching it to 1PAY !!!!");
receivedCmd[6] = '1';
currentState = SELECT_PAY1;
}
// We are selecting a short AID - assume it is pay2 aid
if (receivedCmd[2] == 0xA4 && receivedCmd[5] == 0x07) {
Dbprintf("Selecting pay2 AID");
currentState = SELECT_PAY1_AID;
}
static uint8_t rnd_resp[] = {0xb2, 0x67, 0xc7};
if (memcmp(receivedCmd, rnd_resp, sizeof(rnd_resp)) == 0) {
Dbprintf("We saw bad response... !");
return;
}
// We have received the response from a WTX command! Process the cached command at this point.
if (memcmp(receivedCmd, extend_resp, sizeof(extend_resp)) == 0) {
// Special case: if we are about to do a generate AC, we also need to
// make a request for pdol first (and discard response)...
if (receivedCmd_copy[1] == 0x80 && receivedCmd_copy[2] == 0xae) {
Dbprintf("We are about to do a generate AC... we need to request PDOL first...");
uint8_t pdol_request[] = { 0x80, 0xa8, 0x00, 0x00, 0x02, 0x83, 0x00 };
currentState = REQUESTING_CARD_PDOL;
CmdSmartRaw(0xff, &(pdol_request[0]), sizeof(pdol_request), (&responseToReader[0]), &responseToReader_len);
}
// Send the cached command to the card via ISO7816
// This is minus 3 because we don't include the first byte (prepend), plus we don't want to send the
// last two bytes (CRC) to the card.
// On the return, the first class byte must be the same, so it's preserved in responseToReader
CmdSmartRaw(receivedCmd_copy[0], &(receivedCmd_copy[1]), receivedCmd_len_copy - 3, (&responseToReader[0]), &responseToReader_len);
// Print the unadultered response we got from the card here
Dbprintf("The response from the card is ==> :");
Dbhexdump(responseToReader_len, responseToReader, false);
// We have passed the reader's query to the card, but before we return it, we need to check if we need to modify
// the response to 'pretend' to be a PAY2 environment.
// This is always the same response for VISA, the only currently supported card
if (currentState == SELECT_PAY1) {
Dbprintf("We saw a PAY1 response... modifying it to a PAY2 response !!!!");
if (!memcmp(&responseToReader[1], &pay1_response[0], sizeof(pay1_response)) == 0) {
Dbprintf("The response from the card is not a PAY1 response. This is unexpected and probably fatal.");
}
// Check for 7 bytes UID: double size uid bits in ATQA
else if ((block0[8] & 0xc0) == 0x40) {
flags |= FLAG_7B_UID_IN_DATA_OLD;
memcpy(datain, block0, 7);
rSAK[0] = block0[7];
memcpy(rATQA, &block0[8], sizeof(rATQA));
} else {
Dbprintf("ERROR: " _RED_("Invalid dump. UID/SAK/ATQA not found"));
return false;
if (pay2_response[0] != responseToReader[0]) {
Dbprintf("The first byte of the PAY2 response is different from the request. This is unexpected and probably fatal.");
}
memcpy(responseToReader, &pay2_response[0], sizeof(pay2_response));
responseToReader_len = sizeof(pay2_response);
}
}
if (responseToReader[0] != 0xff && responseToReader[1] == 0x77 && true) {
Dbprintf("we have detected a generate ac response, lets repackage it!!");
Dbhexdump(responseToReader_len, responseToReader, false); // special print
// Tune tag type, if defined directly
// Otherwise use defined by default or extracted from EMUL
if ((flags & FLAG_MF_MINI_OLD) == FLAG_MF_MINI_OLD) {
memcpy(rATQA, rATQA_Mini, sizeof(rATQA));
rSAK[0] = rSAK_Mini;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare Mini ATQA/SAK");
} else if ((flags & FLAG_MF_1K_OLD) == FLAG_MF_1K_OLD) {
memcpy(rATQA, rATQA_1k, sizeof(rATQA));
rSAK[0] = rSAK_1k;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 1K ATQA/SAK (!!!!)");
} else if ((flags & FLAG_MF_2K_OLD) == FLAG_MF_2K_OLD) {
memcpy(rATQA, rATQA_2k, sizeof(rATQA));
rSAK[0] = rSAK_2k;
*rats = rRATS;
*rats_len = sizeof(rRATS);
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 2K ATQA/SAK with RATS support");
} else if ((flags & FLAG_MF_4K_OLD) == FLAG_MF_4K_OLD) {
memcpy(rATQA, rATQA_4k, sizeof(rATQA));
rSAK[0] = rSAK_4k;
if (g_dbglevel > DBG_NONE) Dbprintf("Enforcing Mifare 4K ATQA/SAK");
}
// 11 and 12 are trans counter.
// 16 to 24 are the cryptogram
// 27 to 34 is issuer application data
Dbprintf("atc: %d %d, cryptogram: %d ", responseToReader[11], responseToReader[12], responseToReader[13]);
// Prepare UID arrays
if ((flags & FLAG_4B_UID_IN_DATA_OLD) == FLAG_4B_UID_IN_DATA_OLD) { // get UID from datain
memcpy(rUIDBCC1, datain, 4);
*uid_len = 4;
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - FLAG_4B_UID_IN_DATA_OLD => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_4B_UID_IN_DATA_OLD, flags, rUIDBCC1);
// then, on the template:
// 60 and 61 for counter
// 45 to 53 for cryptogram
// 35 to 42 for issuer application data
uint8_t template[] = { 0x00, 0x77, 0x47, 0x82, 0x02, 0x39, 0x00, 0x57, 0x13, 0x47,
0x62, 0x28, 0x00, 0x05, 0x93, 0x38, 0x64, 0xd2, 0x70, 0x92,
0x01, 0x00, 0x00, 0x01, 0x42, 0x00, 0x00, 0x0f, 0x5f, 0x34,
0x01, 0x00, 0x9f, 0x10, 0x07, 0x06, 0x01, 0x12, 0x03, 0xa0,
0x20, 0x00, 0x9f, 0x26, 0x08, 0x56, 0xcb, 0x4e, 0xe1, 0xa4,
0xef, 0xac, 0x74, 0x9f, 0x27, 0x01, 0x80, 0x9f, 0x36, 0x02,
0x00, 0x07, 0x9f, 0x6c, 0x02, 0x3e, 0x00, 0x9f, 0x6e, 0x04,
0x20, 0x70, 0x00, 0x00, 0x90, 0x00, 0xff, 0xff};
// save CUID
*cuid = bytes_to_num(rUIDBCC1, 4);
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
if (g_dbglevel > DBG_NONE) {
Dbprintf("4B UID: %02x%02x%02x%02x", rUIDBCC1[0], rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3]);
// do the replacement
template[0] = responseToReader[0]; // class bit 0
template[60] = responseToReader[10];
template[61] = responseToReader[11];
// Copy responseToReader[15..23] to template[45..53]
for (int i = 0; i <= 8; i++) {
template[45 + i] = responseToReader[15 + i];
}
// Copy responseToReader[26..32] to template[35..41]
for (int i = 0; i <= 6; i++) {
template[35 + i] = responseToReader[26 + i];
}
Dbprintf("\nrearranged is: ");
responseToReader_len = sizeof(template);
// We DO NOT add the CRC here, this way we can avoid a million penny payments!
// The CRC is calculated here, but doesn't include the class bit at the beginning, plus
// also obvisously doesn't include the CRC bytes itself.
AddCrc14A(&template[0], responseToReader_len - 2);
responseToReader_len = sizeof(template);
memcpy(responseToReader, &template[0], responseToReader_len);
Dbprintf("\nafter crc rearranged is: ");
Dbhexdump(responseToReader_len, &responseToReader[0], false); // special print
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f) | 0x00; // single size uid
} else if ((flags & FLAG_7B_UID_IN_DATA_OLD) == FLAG_7B_UID_IN_DATA_OLD) {
memcpy(&rUIDBCC1[1], datain, 3);
memcpy(rUIDBCC2, datain + 3, 4);
*uid_len = 7;
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - FLAG_7B_UID_IN_DATA_OLD => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_7B_UID_IN_DATA_OLD, flags, rUIDBCC1);
// save CUID
*cuid = bytes_to_num(rUIDBCC2, 4);
// CascadeTag, CT
rUIDBCC1[0] = MIFARE_SELECT_CT;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
if (g_dbglevel > DBG_NONE) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3], rUIDBCC2[0], rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3]);
// If we would return a PAY1 fci response, we instead return a PAY2 fci response
if (currentState == SELECT_PAY1_AID) {
Dbprintf("We saw a PAY1 response... modifying it to a PAY2 response for outgoing !!!!");
memcpy(responseToReader, fci_template_pay2, sizeof(fci_template_pay2));
responseToReader_len = sizeof(fci_template_pay2);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f) | 0x40; // double size uid
EmSendCmd(responseToReader, responseToReader_len);
} else if ((flags & FLAG_10B_UID_IN_DATA_OLD) == FLAG_10B_UID_IN_DATA_OLD) {
memcpy(&rUIDBCC1[1], datain, 3);
memcpy(&rUIDBCC2[1], datain + 3, 3);
memcpy(rUIDBCC3, datain + 6, 4);
*uid_len = 10;
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("MifareSimInit - FLAG_10B_UID_IN_DATA_OLD => Get UID from datain: %02X - Flag: %02X - UIDBCC1: %02X", FLAG_10B_UID_IN_DATA_OLD, flags, rUIDBCC1);
// save CUID
*cuid = bytes_to_num(rUIDBCC3, 4);
// CascadeTag, CT
rUIDBCC1[0] = MIFARE_SELECT_CT;
rUIDBCC2[0] = MIFARE_SELECT_CT;
// BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
if (g_dbglevel > DBG_NONE) {
Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
rUIDBCC1[1], rUIDBCC1[2], rUIDBCC1[3],
rUIDBCC2[1], rUIDBCC2[2], rUIDBCC2[3],
rUIDBCC3[0], rUIDBCC3[1], rUIDBCC3[2], rUIDBCC3[3]
);
}
// Correct uid size bits in ATQA
rATQA[0] = (rATQA[0] & 0x3f) | 0x80; // triple size uid
} else {
Dbprintf("ERROR: " _RED_("UID size not defined"));
return false;
return;
}
if (flags & FLAG_FORCED_ATQA) {
rATQA[0] = atqa >> 8;
rATQA[1] = atqa & 0xff;
}
if (flags & FLAG_FORCED_SAK) {
rSAK[0] = sak;
}
if (g_dbglevel > DBG_NONE) {
Dbprintf("ATQA : %02X %02X", rATQA[1], rATQA[0]);
Dbprintf("SAK : %02X", rSAK[0]);
}
// clone UIDs for byte-frame anti-collision multiple tag selection procedure
memcpy(rUIDBCC1b4, &rUIDBCC1[1], 4);
memcpy(rUIDBCC1b3, &rUIDBCC1[2], 3);
memcpy(rUIDBCC1b2, &rUIDBCC1[3], 2);
memcpy(rUIDBCC1b1, &rUIDBCC1[4], 1);
if (*uid_len >= 7) {
memcpy(rUIDBCC2b4, &rUIDBCC2[1], 4);
memcpy(rUIDBCC2b3, &rUIDBCC2[2], 3);
memcpy(rUIDBCC2b2, &rUIDBCC2[3], 2);
memcpy(rUIDBCC2b1, &rUIDBCC2[4], 1);
}
if (*uid_len == 10) {
memcpy(rUIDBCC3b4, &rUIDBCC3[1], 4);
memcpy(rUIDBCC3b3, &rUIDBCC3[2], 3);
memcpy(rUIDBCC3b2, &rUIDBCC3[3], 2);
memcpy(rUIDBCC3b1, &rUIDBCC3[4], 1);
}
// Calculate actual CRC
AddCrc14A(rSAK, sizeof(rSAK) - 2);
#define TAG_RESPONSE_COUNT 18
static tag_response_info_t responses_init[TAG_RESPONSE_COUNT] = {
{ .response = rATQA, .response_n = sizeof(rATQA) }, // Answer to request - respond with card type
{ .response = rSAK, .response_n = sizeof(rSAK) }, //
{ .response = rSAKuid, .response_n = sizeof(rSAKuid) }, //
// Do not reorder. Block used via relative index of rUIDBCC1
{ .response = rUIDBCC1, .response_n = sizeof(rUIDBCC1) }, // Anticollision cascade1 - respond with first part of uid
{ .response = rUIDBCC1b4, .response_n = sizeof(rUIDBCC1b4)},
{ .response = rUIDBCC1b3, .response_n = sizeof(rUIDBCC1b3)},
{ .response = rUIDBCC1b2, .response_n = sizeof(rUIDBCC1b2)},
{ .response = rUIDBCC1b1, .response_n = sizeof(rUIDBCC1b1)},
// Do not reorder. Block used via relative index of rUIDBCC2
{ .response = rUIDBCC2, .response_n = sizeof(rUIDBCC2) }, // Anticollision cascade2 - respond with 2nd part of uid
{ .response = rUIDBCC2b4, .response_n = sizeof(rUIDBCC2b4)},
{ .response = rUIDBCC2b3, .response_n = sizeof(rUIDBCC2b3)},
{ .response = rUIDBCC2b2, .response_n = sizeof(rUIDBCC2b2)},
{ .response = rUIDBCC2b1, .response_n = sizeof(rUIDBCC2b1)},
// Do not reorder. Block used via relative index of rUIDBCC3
{ .response = rUIDBCC3, .response_n = sizeof(rUIDBCC3) }, // Anticollision cascade3 - respond with 3th part of uid
{ .response = rUIDBCC3b4, .response_n = sizeof(rUIDBCC3b4)},
{ .response = rUIDBCC3b3, .response_n = sizeof(rUIDBCC3b3)},
{ .response = rUIDBCC3b2, .response_n = sizeof(rUIDBCC3b2)},
{ .response = rUIDBCC3b1, .response_n = sizeof(rUIDBCC3b1)}
};
// Prepare ("precompile") the responses of the anticollision phase.
// There will be not enough time to do this at the moment the reader sends its REQA or SELECT
// There are 18 predefined responses with a total of 53 bytes data to transmit.
// Coded responses need one byte per bit to transfer (data, parity, start, stop, correction)
// 53 * 8 data bits, 53 * 1 parity bits, 18 start bits, 18 stop bits, 18 correction bits -> need 571 bytes buffer
#define ALLOCATED_TAG_MODULATION_BUFFER_SIZE 571
uint8_t *free_buffer = BigBuf_malloc(ALLOCATED_TAG_MODULATION_BUFFER_SIZE);
// modulation buffer pointer and current buffer free space size
uint8_t *free_buffer_pointer = free_buffer;
size_t free_buffer_size = ALLOCATED_TAG_MODULATION_BUFFER_SIZE;
for (size_t i = 0; i < TAG_RESPONSE_COUNT; i++) {
if (prepare_allocated_tag_modulation(&responses_init[i], &free_buffer_pointer, &free_buffer_size) == false) {
Dbprintf("Not enough modulation buffer size, exit after %d elements", i);
return false;
}
}
*responses = responses_init;
// indices into responses array:
#define ATQA 0
#define SAK 1
#define SAKuid 2
#define UIDBCC1 3
#define UIDBCC2 8
#define UIDBCC3 13
return true;
// Send a request for more time, and cache the command we want to process
EmSendCmd(extend_resp, 4);
}
/**
*xxxxxxxxxxxxxxxxxx.
* EMVsim - simulate an EMV contactless card transaction by
*
*@param flags :
*@param exitAfterNReads, exit simulation after n blocks have been read, 0 is infinite ...
*@param flags: See pm3_cmd.h for the full definitions
*@param exitAfterNReads, exit simulation after n transactions (default 1)
*@param uid, UID - must be length 7
*@param atqa, override for ATQA, flags indicate if this is used
*@param sak, override for SAK, flags indicate if this is used
* (unless reader attack mode enabled then it runs util it gets enough nonces to recover all keys attmpted)
*/
void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t atqa, uint8_t sak) {
void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *uid, uint16_t atqa, uint8_t sak) {
tag_response_info_t *responses;
uint8_t cardSTATE = MFEMUL_NOFIELD;
uint8_t uid_len = 0; // 4, 7, 10
uint32_t cuid = 0, authTimer = 0;
uint32_t nr, ar;
uint8_t uid_len = 0; // 7
uint32_t cuid = 0;
uint8_t cardWRBL = 0;
uint8_t cardAUTHSC = 0;
uint8_t cardAUTHKEY = AUTHKEYNONE; // no authentication
uint32_t cardRr = 0;
uint32_t ans = 0;
uint32_t cardINTREG = 0;
uint8_t cardINTBLOCK = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
//uint32_t numReads = 0; //Counts numer of times reader reads a block
uint8_t receivedCmd[MAX_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_copy[MAX_FRAME_SIZE] = {0x00};
uint8_t receivedCmd_dec[MAX_FRAME_SIZE] = {0x00};
//uint8_t convenient_buffer[64] = {0x00};
uint8_t receivedCmd_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t responseToReader[MAX_FRAME_SIZE] = {0x00};
uint16_t responseToReader_len;
uint16_t receivedCmd_len;
uint16_t receivedCmd_len_copy = 0;
@ -383,34 +319,28 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
uint8_t *rats = NULL;
uint8_t rats_len = 0;
// if fct is called with NULL we need to assign some memory since this pointer is passaed around
uint8_t datain_tmp[10] = {0};
if (datain == NULL) {
datain = datain_tmp;
// if fct is called with NULL we need to assign some memory since this pointer is passed around
uint8_t uid_tmp[10] = {0};
if (uid == NULL) {
uid = uid_tmp;
}
//Here, we collect UID,sector,keytype,NT,AR,NR,NT2,AR2,NR2
// This will be used in the reader-only attack.
//allow collecting up to 7 sets of nonces to allow recovery of up to 7 keys
#define ATTACK_KEY_COUNT 7 // keep same as define in cmdhfmf.c -> readerAttack() (Cannot be more than 7)
nonces_t ar_nr_resp[ATTACK_KEY_COUNT * 2]; // *2 for 2 separate attack types (nml, moebius) 36 * 7 * 2 bytes = 504 bytes
memset(ar_nr_resp, 0x00, sizeof(ar_nr_resp));
uint8_t ar_nr_collected[ATTACK_KEY_COUNT * 2]; // *2 for 2nd attack type (moebius)
memset(ar_nr_collected, 0x00, sizeof(ar_nr_collected));
bool gettingMoebius = false;
const tUart14a *uart = GetUart14a();
// free eventually allocated BigBuf memory but keep Emulator Memory
BigBuf_free_keep_EM();
if (MifareSimInit(flags, datain, atqa, sak, &responses, &cuid, &uid_len, &rats, &rats_len) == false) {
// Print all arguments going into mifare sim init
Dbprintf("EMVsim: flags: %04x, uid: %p, atqa: %04x, sak: %02x", flags, uid, atqa, sak);
if (MifareSimInit(flags, uid, atqa, sak, &responses, &cuid, &uid_len, &rats, &rats_len) == false) {
BigBuf_free_keep_EM();
return;
}
// Print all the outputs after the sim init
Dbprintf("EMVsim: cuid: %08x, uid_len: %d, rats: %p, rats_len: %d", cuid, uid_len, rats, rats_len);
// We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
@ -420,8 +350,6 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
LED_D_ON();
ResetSspClk();
uint8_t *p_em = BigBuf_get_EM_addr();
int counter = 0;
bool finished = false;
bool button_pushed = BUTTON_PRESS();
@ -445,9 +373,6 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
int res = EmGetCmd(receivedCmd, sizeof(receivedCmd), &receivedCmd_len, receivedCmd_par);
if (res == 2) { //Field is off!
if ((flags & FLAG_CVE21_0430_OLD) == FLAG_CVE21_0430_OLD) {
p_em[1] = 0x21;
}
LEDsoff();
if (cardSTATE != MFEMUL_NOFIELD) {
Dbprintf("cardSTATE = MFEMUL_NOFIELD");
@ -600,17 +525,17 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
break;
}
memcpy(receivedCmd_dec, receivedCmd, receivedCmd_len);
// all commands must have a valid CRC
if (!CheckCrc14A(receivedCmd_dec, receivedCmd_len)) {
if (g_dbglevel >= DBG_EXTENDED) Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd_dec, receivedCmd_len);
if (!CheckCrc14A(receivedCmd, receivedCmd_len)) {
if (g_dbglevel >= DBG_EXTENDED)
Dbprintf("[MFEMUL_WORK] All commands must have a valid CRC %02X (%d)", receivedCmd,
receivedCmd_len);
break;
}
// rule 13 of 7.5.3. in ISO 14443-4. chaining shall be continued
// BUT... ACK --> NACK
if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_ACK) {
if (receivedCmd_len == 1 && receivedCmd[0] == CARD_ACK) {
Dbprintf("[MFEMUL_WORK] ACK --> NACK !!");
EmSend4bit(CARD_NACK_NA);
FpgaDisableTracing();
@ -618,7 +543,7 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
}
// rule 12 of 7.5.3. in ISO 14443-4. R(NAK) --> R(ACK)
if (receivedCmd_len == 1 && receivedCmd_dec[0] == CARD_NACK_NA) {
if (receivedCmd_len == 1 && receivedCmd[0] == CARD_NACK_NA) {
Dbprintf("[MFEMUL_WORK] NACK --> NACK !!");
EmSend4bit(CARD_ACK);
FpgaDisableTracing();
@ -626,7 +551,7 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
}
// case MFEMUL_WORK => CMD RATS
if (receivedCmd_len == 4 && receivedCmd_dec[0] == ISO14443A_CMD_RATS && receivedCmd_dec[1] == 0x80) {
if (receivedCmd_len == 4 && receivedCmd[0] == ISO14443A_CMD_RATS && receivedCmd[1] == 0x80) {
if (rats && rats_len) {
EmSendCmd(rats, rats_len);
FpgaDisableTracing();
@ -641,9 +566,9 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
}
// case MFEMUL_WORK => ISO14443A_CMD_NXP_DESELECT
if (receivedCmd_len == 3 && receivedCmd_dec[0] == ISO14443A_CMD_NXP_DESELECT) {
if (receivedCmd_len == 3 && receivedCmd[0] == ISO14443A_CMD_NXP_DESELECT) {
if (rats && rats_len) {
EmSendCmd(receivedCmd_dec, receivedCmd_len);
EmSendCmd(receivedCmd, receivedCmd_len);
FpgaDisableTracing();
if (g_dbglevel >= DBG_EXTENDED)
@ -658,111 +583,12 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
break;
}
// The WTX we want to send out...
//static uint8_t extend_resp[] = {0xf2, 0x01, 0x91, 0x40};
//static uint8_t extend_resp[] = {0xf2, 0x02, 0x0a, 0x72};
//static uint8_t extend_resp[] = {0xf2, 0x03, 0x83, 0x63};
//static uint8_t extend_resp[] = {0xf2, 0x04, 0x3c, 0x17};
//static uint8_t extend_resp[] = {0xf2, 0x05, 0x50, 0x6b};
//static uint8_t extend_resp[] = {0xf2, 0x06, 0x2e, 0x34};
//static uint8_t extend_resp[] = {0xf2, 0x07, 0xa7, 0x25};
//static uint8_t extend_resp[] = {0xf2, 0x08, 0x50, 0xdd}; // This works
//static uint8_t extend_resp[] = {0xf2, 0x09, 0xd9, 0xcc};
//static uint8_t extend_resp[] = {0xf2, 0x0a, 0x42, 0xfe};
//static uint8_t extend_resp[] = {0xf2, 0x0b, 0xcb, 0xef};
//static uint8_t extend_resp[] = {0xf2, 0x0c, 0x74, 0x9b};
//static uint8_t extend_resp[] = {0xf2, 0x0d, 0xfd, 0x8a};
static uint8_t extend_resp[] = {0xf2, 0x0e, 0x66, 0xb8};
// special print me
Dbprintf("\nrecvd from reader:");
Dbhexdump(receivedCmd_len, receivedCmd, false);
Dbprintf("");
// From this point onwards is where the 'magic' happens
ExecuteEMVSim(receivedCmd, receivedCmd_len, receivedCmd_copy, receivedCmd_len_copy);
// lets handle some obvious stuff here!
if (receivedCmd[6] == 'O' && receivedCmd[7] == 'S' && receivedCmd[8] == 'E') {
Dbprintf("We saw OSE... ignore it!");
//Full: 02 6a 82 93 2f
EmSendCmd(filenotfound, 5);
continue;
}
// rather than asing for more time, lets just send the response with the PDOL there too
// there are two of this for some reason?? Ach, this one is not at the card read level, that is why.
if (memcmp(&fci_query[0], receivedCmd, sizeof(fci_query)) == 0 && false) {
Dbprintf("***** returning fast FCI response...!");
//uint8_t modified_response[] = { 0x03, 0x77, 0x0e, 0x82, 0x02, 0x39, 0x80, 0x94, 0x08, 0x18, 0x01, 0x02, 0x01, 0x20, 0x01, 0x04, 0x00, 0x90, 0x00, 0x03, 0xec };
//uint8_t modified_response[] = { 0x03, 0x77, 0x0e, 0x82, 0x02, 0x39, 0x80, 0x94, 0x08, 0x18, 0x01, 0x02, 0x01, 0x20, 0x01, 0x04, 0x00, 0x90, 0x00, 0x03, 0xec };
EmSendCmd(&fci_template[0], sizeof(fci_template));
continue;
}
// We want to modify corrupted request
if ((receivedCmd_len > 5 && receivedCmd[0] != 0x03 && receivedCmd[0] != 0x02 && receivedCmd[1] == 0 && receivedCmd[4] == 0) || (receivedCmd[2] == 0xa8)) {
//if (receivedCmd[2] == 0xa8) {
Dbprintf("We saw signing request... modifying it into a generate ac transaction !!!!");
receivedCmd[0] = 0x03;
receivedCmd[1] = 0x80;
receivedCmd[2] = 0xae;
receivedCmd[3] = 0x80;
receivedCmd[4] = 0x00;
receivedCmd[5] = 0x1d;
for (int i = 0; i < 29; i++) {
receivedCmd[6 + i] = receivedCmd[12 + i];
}
// clear final byte just in case
receivedCmd[35] = 0;
receivedCmd_len = 35 + 3; // Core command is 35, then there is control code and hte crc
Dbprintf("\nthe command has now become:");
Dbhexdump(receivedCmd_len, receivedCmd, false);
}
// Seems unlikely
if (receivedCmd_len >= 9 && receivedCmd[6] == '1' && receivedCmd[7] == 'P' && receivedCmd[8] == 'A') {
Dbprintf("We saw 1PA... !!!!");
}
// Request more time for 2PAY and respond with a modified 1PAY request
if (receivedCmd_len >= 9 && receivedCmd[6] == '2' && receivedCmd[7] == 'P' && receivedCmd[8] == 'A') {
Dbprintf("We saw 2PA... switching it to 1PAY !!!!");
receivedCmd[6] = '1';
}
static uint8_t rnd_resp[] = {0xb2, 0x67, 0xc7};
if (memcmp(receivedCmd, rnd_resp, sizeof(rnd_resp)) == 0) {
Dbprintf("We saw bad response... !");
continue;
}
// We have received the response from a WTX command! Process the cached command at this point.
if (memcmp(receivedCmd, extend_resp, sizeof(extend_resp)) == 0) {
// Special case: if we are about to do a generate AC, we also need to
// make a request for pdol...
if (receivedCmd_copy[1] == 0x80 && receivedCmd_copy[2] == 0xae) {
Dbprintf("We are about to do a generate AC... we need to request PDOL first...");
uint8_t pdol_request[] = { 0x80, 0xa8, 0x00, 0x00, 0x02, 0x83, 0x00 };
CmdSmartRaw(0xff, &(pdol_request[0]), sizeof(pdol_request), (&responseToReader[0]), &responseToReader_len);
}
// This is minus 3 because we don't include the first byte (prepend), plus we don't want to send the
// last two bytes (CRC) to the card
CmdSmartRaw(receivedCmd_copy[0], &(receivedCmd_copy[1]), receivedCmd_len_copy - 3, (&responseToReader[0]), &responseToReader_len);
EmSendCmd(responseToReader, responseToReader_len);
Dbprintf("Sent delayed command to card...");
continue;
}
// Send a request for more time, and cache the command we want to process
EmSendCmd(extend_resp, 4);
// copy the command and its length (minus 1???)
// We want to keep a copy of the command we just saw, because we will process it once we get the
// WTX response
Dbprintf("Caching command for later processing... its length is %d", receivedCmd_len);
memcpy(receivedCmd_copy, receivedCmd, receivedCmd_len);
receivedCmd_len_copy = receivedCmd_len;
@ -785,3 +611,71 @@ void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t a
set_tracing(false);
BigBuf_free_keep_EM();
}
// annotate iso 7816
void annotate(uint8_t *cmd, uint8_t cmdsize) {
if (cmdsize < 2) {
return;
}
// From https://mvallim.github.io/emv-qrcode/docs/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
// section 6.3.2
switch (cmd[1]) {
case ISO7816_APPLICATION_BLOCK: {
Dbprintf("APPLICATION BLOCK");
break;
}
case ISO7816_APPLICATION_UNBLOCK: {
Dbprintf("APPLICATION UNBLOCK");
break;
}
case ISO7816_CARD_BLOCK: {
Dbprintf("CARD BLOCK");
break;
}
case ISO7816_EXTERNAL_AUTHENTICATION: {
Dbprintf("EXTERNAL AUTHENTICATE");
break;
}
case ISO7816_GENERATE_APPLICATION_CRYPTOGRAM: {
Dbprintf("GENERATE APPLICATION CRYPTOGRAM");
break;
}
case ISO7816_GET_CHALLENGE: {
Dbprintf("GET CHALLENGE");
break;
}
case ISO7816_GET_DATA: {
Dbprintf("GET DATA");
break;
}
case ISO7816_GET_PROCESSING_OPTIONS: {
Dbprintf("GET PROCESSING OPTIONS");
break;
}
case ISO7816_INTERNAL_AUTHENTICATION: {
Dbprintf("INTERNAL AUTHENTICATION");
break;
}
case ISO7816_PIN_CHANGE: {
Dbprintf("PIN CHANGE");
break;
}
case ISO7816_READ_RECORDS: {
Dbprintf("READ RECORDS");
break;
}
case ISO7816_SELECT_FILE: {
Dbprintf("SELECT FILE");
break;
}
case ISO7816_VERIFY: {
Dbprintf("VERIFY");
break;
}
default: {
Dbprintf("NOT RECOGNISED");
break;
}
}
}

View file

@ -25,5 +25,6 @@
#define AUTHKEYNONE 0xff
void EMVsim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint16_t atqa, uint8_t sak);
void annotate(uint8_t *cmd, uint8_t cmdsize);
#endif

View file

@ -36,11 +36,6 @@
#include "i2c.h"
#include "i2c_direct.h"
static uint8_t fci_template[] = {0x02, 0x6f, 0x5e, 0x84, 0x07, 0xa0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0xa5, 0x53, 0x50, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0x9f, 0x38, 0x18, 0x9f, 0x66, 0x04, 0x9f, 0x02, 0x06, 0x9f, 0x03, 0x06, 0x9f, 0x1a, 0x02, 0x95, 0x05, 0x5f, 0x2a, 0x02, 0x9a, 0x03, 0x9c, 0x01, 0x9f, 0x37, 0x04, 0x5f, 0x2d, 0x02, 0x65, 0x6e, 0x9f, 0x11, 0x01, 0x01, 0x9f, 0x12, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0xbf, 0x0c, 0x13, 0x9f, 0x5a, 0x05, 0x31, 0x08, 0x26, 0x08, 0x26, 0x9f, 0x0a, 0x08, 0x00, 0x01, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0x90, 0x00, 0xd8, 0x15};
static uint8_t pay1_response[] = { 0x6F, 0x1E, 0x84, 0x0E, 0x31, 0x50, 0x41, 0x59 };
static uint8_t pay2_response[] = { 0x03, 0x6f, 0x3e, 0x84, 0x0e, 0x32, 0x50, 0x41, 0x59, 0x2e, 0x53, 0x59, 0x53, 0x2e, 0x44, 0x44, 0x46, 0x30, 0x31, 0xa5, 0x2c, 0xbf, 0x0c, 0x29, 0x61, 0x27, 0x4f, 0x07, 0xa0, 0x00, 0x00, 0x00, 0x03, 0x10, 0x10, 0x50, 0x0a, 0x56, 0x69, 0x73, 0x61, 0x20, 0x44, 0x65, 0x62, 0x69, 0x74, 0x9f, 0x0a, 0x08, 0x00, 0x01, 0x05, 0x01, 0x00, 0x00, 0x00, 0x00, 0xbf, 0x63, 0x04, 0xdf, 0x20, 0x01, 0x80, 0x90, 0x00, 0x07, 0x9d};
static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint8_t *output, uint16_t *olen) {
LED_D_ON();
@ -50,9 +45,6 @@ static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint
// check if alloacted...
smartcard_command_t flags = p->flags;
//if ((flags & SC_CLEARLOG) == SC_CLEARLOG)
//clear_trace();
if ((flags & SC_LOG) == SC_LOG)
set_tracing(true);
else
@ -65,10 +57,9 @@ static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint
if ((flags & SC_SELECT) == SC_SELECT) {
smart_card_atr_t card;
bool gotATR = GetATR(&card, true);
//reply_old(CMD_ACK, gotATR, sizeof(smart_card_atr_t), 0, &card, sizeof(smart_card_atr_t));
if (gotATR == false) {
Dbprintf("No ATR received...\n");
//reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0);
goto OUT;
}
}
@ -92,8 +83,6 @@ static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint
);
if (res == false && g_dbglevel > 3) {
//DbpString(I2C_ERROR);
//reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0);
Dbprintf("SmartCardDirectSend: I2C_BufferWrite failed\n");
goto OUT;
}
@ -109,11 +98,8 @@ static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint
}
if (len == 2 && resp[1] == 0x61) {
//Dbprintf("Data to be read: len = %d\n", len);
//Dbprintf("\n");
uint8_t cmd_getresp[] = {0x00, ISO7816_GET_RESPONSE, 0x00, 0x00, resp[2]};
//smart_card_raw_t *payload = calloc(1, sizeof(smart_card_raw_t) + sizeof(cmd_getresp));
smart_card_raw_t *payload = (smart_card_raw_t *)BigBuf_calloc(sizeof(smart_card_raw_t) + sizeof(cmd_getresp));
payload->flags = SC_RAW | SC_LOG;
payload->len = sizeof(cmd_getresp);
@ -129,8 +115,6 @@ static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint
resp[2] = 0x82;
AddCrc14A(resp, 3);
//Dbhexdump(5, &resp[0], false); // special print
//EmSendCmd(&resp[0], 5);
memcpy(output, resp, 5);
*olen = 5;
}
@ -142,9 +126,6 @@ static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint
resp[2] = 0x82;
AddCrc14A(resp, 3);
//Dbhexdump(5, &resp[0], false); // special print
//EmSendCmd14443aRaw(&resp[0], 5);
//EmSendCmd(&resp[0], 5);
memcpy(output, resp, 5);
*olen = 5;
FpgaDisableTracing();
@ -154,108 +135,23 @@ static void SmartCardDirectSend(uint8_t prepend, const smart_card_raw_t *p, uint
Dbprintf("***** sending it over the wire... len: %d =>\n", len);
resp[1] = prepend;
// if we have a generate AC request, lets extract the data and populate the template
if (resp[1] != 0xff && resp[2] == 0x77) {
Dbprintf("we have detected a generate ac response, lets repackage it!");
Dbhexdump(len, &resp[1], false); // special print
// 11 and 12 are trans counter.
// 16 to 24 are the cryptogram
// 27 to 34 is issuer application data
Dbprintf("atc: %d %d, cryptogram: %d ", resp[11], resp[12], resp[13]);
// then, on the template:
// 61 and 62 for counter
// 46 to 54 for cryptogram
// 36 to 43 for issuer application data
uint8_t template[] = { 0x00, 0x00, 0x77, 0x47, 0x82, 0x02, 0x39, 0x00, 0x57, 0x13, 0x47, 0x62, 0x28, 0x00, 0x05, 0x93, 0x38, 0x64, 0xd2, 0x70, 0x92, 0x01, 0x00, 0x00, 0x01, 0x42, 0x00, 0x00, 0x0f, 0x5f, 0x34, 0x01, 0x00, 0x9f, 0x10, 0x07, 0x06, 0x01, 0x12, 0x03, 0xa0, 0x20, 0x00, 0x9f, 0x26, 0x08, 0x56, 0xcb, 0x4e, 0xe1, 0xa4, 0xef, 0xac, 0x74, 0x9f, 0x27, 0x01, 0x80, 0x9f, 0x36, 0x02, 0x00, 0x07, 0x9f, 0x6c, 0x02, 0x3e, 0x00, 0x9f, 0x6e, 0x04, 0x20, 0x70, 0x00, 0x00, 0x90, 0x00, 0xff, 0xff};
// do the replacement
template[1] = resp[1]; // class bit
template[61] = resp[11];
template[62] = resp[12];
template[46] = resp[16];
template[47] = resp[17];
template[48] = resp[18];
template[49] = resp[19];
template[50] = resp[20];
template[51] = resp[21];
template[52] = resp[22];
template[53] = resp[23];
template[54] = resp[24];
template[36] = resp[27];
template[37] = resp[28];
template[38] = resp[29];
template[39] = resp[30];
template[40] = resp[31];
template[41] = resp[32];
template[42] = resp[33];
Dbprintf("\nrearranged is: ");
len = sizeof(template);
Dbhexdump(len, &template[0], false); // special print
AddCrc14A(&template[1], len - 3);
Dbprintf("\nafter crc rearranged is: ");
Dbhexdump(len, &template[0], false); // special print
Dbprintf("\n");
//EmSendCmd(&template[1], len-1);
memcpy(output, &template[1], len - 1);
*olen = len - 1;
BigBuf_free();
return;
}
//Dbhexdump(len, &resp[1], false); // special print
AddCrc14A(&resp[1], len);
Dbhexdump(len + 2, &resp[1], false); // special print
// Check we don't want to modify the response (application profile response)
//uint8_t modifyme[] = {0x03, 0x77, 0x0e, 0x82, 0x02};
Dbhexdump(len + 2, &resp[1], false);
BigBuf_free();
if (prepend == 0xff) {
Dbprintf("pdol request, we can can the response...");
Dbprintf("pdol request, we can ignore the response...");
return;
}
if (memcmp(&resp[2], &pay1_response[0], sizeof(pay1_response)) == 0 && true) {
Dbprintf("Switching out the pay1 response for a pay2 response...");
//EmSendCmd(&pay2_response[0], sizeof(pay2_response));
memcpy(output, &pay2_response[0], sizeof(pay2_response));
*olen = sizeof(pay2_response);
} else if (memcmp(&resp[1], &fci_template[0], 2) == 0 && true) {
Dbprintf("***** modifying response to have full fci template...!");
//EmSendCmd(&fci_template[0], sizeof(fci_template));
memcpy(output, &fci_template[0], sizeof(fci_template));
*olen = sizeof(fci_template);
} else {
//Dbprintf("***** not modifying response...");
//EmSendCmd(&resp[1], len + 2);
memcpy(output, &resp[1], len + 2);
*olen = len + 2;
}
memcpy(output, &resp[1], len + 2);
*olen = len + 2;
BigBuf_free();
//memcpy(saved_command, &resp[1], len+2);
//saved_command_len = len+2;
//EmSendCmd14443aRaw(&resp[1], len+2);
//FpgaDisableTracing();
//EmSend4bit(encrypted_data ? mf_crypto1_encrypt4bit(pcs, CARD_NACK_NA) : CARD_NACK_NA);
}
//reply_ng(CMD_SMART_RAW, PM3_SUCCESS, resp, len);
OUT:
//BigBuf_free();
//set_tracing(false);
LEDsoff();
}
@ -269,7 +165,6 @@ int CmdSmartRaw(const uint8_t prepend, const uint8_t *data, int dlen, uint8_t *o
dlen = data[4] + 5;
}
//smart_card_raw_t *payload = calloc(1, sizeof(smart_card_raw_t) + dlen);
smart_card_raw_t *payload = (smart_card_raw_t *)BigBuf_calloc(sizeof(smart_card_raw_t) + dlen);
if (payload == NULL) {
Dbprintf("failed to allocate memory");
@ -285,7 +180,6 @@ int CmdSmartRaw(const uint8_t prepend, const uint8_t *data, int dlen, uint8_t *o
bool use_t0 = true;
if (active || active_select) {
payload->flags |= (SC_CONNECT | SC_CLEARLOG);
if (active_select)
payload->flags |= SC_SELECT;
@ -296,7 +190,6 @@ int CmdSmartRaw(const uint8_t prepend, const uint8_t *data, int dlen, uint8_t *o
payload->flags |= SC_WAIT;
payload->wait_delay = timeout;
}
//Dbprintf("SIM Card timeout... %u ms", payload->wait_delay);
if (dlen > 0) {
if (use_t0)
@ -305,66 +198,7 @@ int CmdSmartRaw(const uint8_t prepend, const uint8_t *data, int dlen, uint8_t *o
payload->flags |= SC_RAW;
}
////uint8_t *buf = calloc(PM3_CMD_DATA_SIZE, sizeof(uint8_t));
//uint8_t *buf = BigBuf_calloc(PM3_CMD_DATA_SIZE, sizeof(uint8_t));
//if (buf == NULL) {
// Dbprintf("failed to allocate memory");
// free(payload);
// return PM3_EMALLOC;
//}
//clearCommandBuffer();
//SendCommandNG(CMD_SMART_RAW, (uint8_t *)payload, sizeof(smart_card_raw_t) + dlen);
//for (int i = 0; i < dlen; i++) {
// Dbprintf("%02x ", data[i]);
//}
SmartCardDirectSend(prepend, payload, output, olen);
//if (reply == false) {
// Dbprintf("failed to talk to smart card!!!");
// goto out;
//}
//// reading response from smart card
//int len = smart_response(buf, PM3_CMD_DATA_SIZE);
//if (len < 0) {
// free(payload);
// free(buf);
// return PM3_ESOFT;
//}
//if (buf[0] == 0x6C) {
// // request more bytes to download
// data[4] = buf[1];
// memcpy(payload->data, data, dlen);
// clearCommandBuffer();
// SendCommandNG(CMD_SMART_RAW, (uint8_t *)payload, sizeof(smart_card_raw_t) + dlen);
// len = smart_response(buf, PM3_CMD_DATA_SIZE);
// data[4] = 0;
//}
//if (decode_tlv && len > 4) {
// TLVPrintFromBuffer(buf, len - 2);
//} else {
// if (len > 2) {
// Dbprintf("Response data:");
// Dbprintf(" # | bytes | ascii");
// Dbprintf("---+-------------------------------------------------+-----------------");
// print_hex_break(buf, len, 16);
// }
//}
//memcpy(buffer, buf, len);
//out:
//free(payload);
//free(buf);
return PM3_SUCCESS;
}

View file

@ -198,7 +198,7 @@ static uint8_t MifareMaxSector(uint16_t flags) {
}
}
static bool MifareSimInit(uint16_t flags, uint8_t *uid, uint16_t atqa, uint8_t sak, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len) {
bool MifareSimInit(uint16_t flags, uint8_t *uid, uint16_t atqa, uint8_t sak, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len) {
uint8_t uid_tmp[10] = {0};
// SPEC: https://www.nxp.com/docs/en/application-note/AN10833.pdf

View file

@ -21,6 +21,7 @@
#define __MIFARESIM_H
#include "common.h"
#include "mifare.h"
#ifndef CheckCrc14A
# define CheckCrc14A(data, len) check_crc(CRC_14443_A, (data), (len))
@ -42,5 +43,6 @@
#define AUTHKEYNONE 0xff
void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *uid, uint16_t atqa, uint8_t sak);
bool MifareSimInit(uint16_t flags, uint8_t *uid, uint16_t atqa, uint8_t sak, tag_response_info_t **responses, uint32_t *cuid, uint8_t *uid_len, uint8_t **rats, uint8_t *rats_len);
#endif

View file

@ -643,21 +643,21 @@ static int CmdEMVSmartToNFC(const char *Cmd) {
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
int uid_len = 0;
int uidlen = 0;
uint8_t uid[7] = {0};
CLIGetHexWithReturn(ctx, 2, uid, &uid_len);
CLIGetHexWithReturn(ctx, 2, uid, &uidlen);
if (uid_len == 0) {
if (uidlen == 0) {
PrintAndLogEx(SUCCESS, "No UID provided, using default.");
uint8_t default_uid[7] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
memcpy(uid, default_uid, sizeof(default_uid));
uid_len = sizeof(default_uid);
} else if (uid_len != 7) {
uidlen = sizeof(default_uid);
} else if (uidlen != 7) {
PrintAndLogEx(FAILED, "UID must be 7 bytes long.");
return PM3_EINVARG;
}
PrintAndLogEx(SUCCESS, "UID length is %d", uid_len);
PrintAndLogEx(SUCCESS, "UID length is %d", uidlen);
bool testMode = arg_get_lit(ctx, 1);
bool show_apdu = true;
@ -670,7 +670,7 @@ static int CmdEMVSmartToNFC(const char *Cmd) {
CLIParserFree(ctx);
// todo: check this is relevant for us.
// todo for PR: check this is relevant for us.
SetAPDULogging(show_apdu);
struct {
@ -681,14 +681,30 @@ static int CmdEMVSmartToNFC(const char *Cmd) {
uint8_t sak;
} PACKED payload;
memcpy(payload.uid, uid, uid_len);
payload.flags = 0x1204;
memcpy(payload.uid, uid, uidlen);
// Set up the flags for 2K mifare sim with RATS
uint16_t flags = 0;
FLAG_SET_UID_IN_DATA(flags, uidlen);
if (IS_FLAG_UID_IN_EMUL(flags)) {
PrintAndLogEx(WARNING, "Invalid parameter for UID");
CLIParserFree(ctx);
return PM3_EINVARG;
}
FLAG_SET_MF_SIZE(flags, MIFARE_2K_MAX_BYTES);
flags |= FLAG_ATQA_IN_DATA;
flags |= FLAG_SAK_IN_DATA;
payload.flags = flags;
payload.exitAfter = 0x1;
payload.atqa = 0x0;
payload.sak = 0x20;
clearCommandBuffer();
SendCommandNG(0x0386, (uint8_t *)&payload, sizeof(payload));
SendCommandNG(CMD_HF_ISO14443A_EMV_SIMULATE, (uint8_t *)&payload, sizeof(payload));
PrintAndLogEx(INFO, "Press " _GREEN_("pm3 button") " to abort simulation");

View file

@ -489,6 +489,12 @@ ISO 7816-4 Basic interindustry commands. For command APDU's.
#define ISO7816_EXTERNAL_AUTHENTICATION 0x82
#define ISO7816_GET_CHALLENGE 0x84
#define ISO7816_MANAGE_CHANNEL 0x70
#define ISO7816_APPLICATION_BLOCK 0x1E
#define ISO7816_APPLICATION_UNBLOCK 0x18
#define ISO7816_CARD_BLOCK 0x16
#define ISO7816_GENERATE_APPLICATION_CRYPTOGRAM 0xAE
#define ISO7816_GET_PROCESSING_OPTIONS 0xA8
#define ISO7816_PIN_CHANGE 0x24
#define ISO7816_GET_RESPONSE 0xC0