CHG: Syntax suger

Experiment:  unfolded a loop.
Experiment: speeding up "Hf mf nested"
CHG: removed some default keys from "hf mf nested". It wasn't being used anyway.
CHG: changed the way "hf mf nested" reports back keys
CHG: "hf mf nested"  and "hf mf chk"   now prints the key-table.
CHG: changed the output list for "hf mf chk"
This commit is contained in:
iceman1001 2016-01-25 20:28:34 +01:00
commit d294f5825d
2 changed files with 131 additions and 129 deletions

View file

@ -14,6 +14,7 @@
#include <pthread.h>
#include "mifarehost.h"
#include "proxmark3.h"
#include "radixsort.h"
// MIFARE
int compar_int(const void * a, const void * b) {
@ -21,16 +22,31 @@ int compar_int(const void * a, const void * b) {
//return (*(uint64_t*)b - *(uint64_t*)a);
// better:
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
else return -1;
// if (*(uint64_t*)b > *(uint64_t*)a) return 1;
// if (*(uint64_t*)b < *(uint64_t*)a) return -1;
// return 0;
return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
//return (*(int64_t*)b > *(int64_t*)a) - (*(int64_t*)b < *(int64_t*)a);
}
// Compare 16 Bits out of cryptostate
int Compare16Bits(const void * a, const void * b) {
if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
else return -1;
// if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
// if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
// return 0;
return
((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
-
((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
;
// return
// ((*(int64_t*)b & 0x00ff000000ff0000) > (*(int64_t*)a & 0x00ff000000ff0000))
// -
// ((*(int64_t*)b & 0x00ff000000ff0000) < (*(int64_t*)a & 0x00ff000000ff0000))
// ;
}
typedef
@ -59,7 +75,9 @@ void* nested_worker_thread(void *arg)
StateList_t *statelist = arg;
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; ++p1);
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
@ -72,26 +90,21 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
uint16_t i;
uint32_t uid;
UsbCommand resp;
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
// flush queue
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
clearCommandBuffer();
SendCommand(&c);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1;
// error during nested
if (resp.arg[0]) return resp.arg[0];
memcpy(&uid, resp.d.asBytes, 4);
PrintAndLog("UID: %08x Block:%d Key: %c", uid, (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8) ?'A':'B' );
for (i = 0; i < 2; i++) {
for (i = 0; i < 2; ++i) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
@ -99,19 +112,16 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
// calc keys
// calc keys
pthread_t thread_id[2];
// create and run worker threads
for (i = 0; i < 2; i++) {
for (i = 0; i < 2; i++)
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
}
// wait for threads to terminate:
for (i = 0; i < 2; i++) {
for (i = 0; i < 2; i++)
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
}
// the first 16 Bits of the cryptostate already contain part of our key.
@ -142,6 +152,7 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
while (Compare16Bits(p1, p2) == 1) p2++;
}
}
p3->even = 0; p3->odd = 0;
p4->even = 0; p4->odd = 0;
statelists[0].len = p3 - statelists[0].head.slhead;
@ -154,6 +165,12 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
// clock_t t1 = clock();
//radixSort(statelists[0].head.keyhead, statelists[0].len);
//radixSort(statelists[1].head.keyhead, statelists[1].len);
// t1 = clock() - t1;
// PrintAndLog("radixsort, ticks %.0f", (float)t1);
uint64_t *p5, *p6, *p7;
p5 = p7 = statelists[0].head.keyhead;
p6 = statelists[1].head.keyhead;
@ -168,38 +185,39 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
}
}
statelists[0].len = p7 - statelists[0].head.keyhead;
statelists[0].tail.keytail=--p7;
statelists[0].tail.keytail = --p7;
memset(resultKey, 0, 6);
uint64_t key64 = 0;
// The list may still contain several key candidates. Test each of them with mfCheckKeys
for (i = 0; i < statelists[0].len; i++) {
uint8_t keyBlock[6];
uint64_t key64;
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, keyBlock, &key64)) {
num_to_bytes(key64, 6, resultKey);
break;
num_to_bytes(key64, 6, resultKey);
if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, 1, resultKey, &key64)) {
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
PrintAndLog("UID: %08x target block:%3u key type: %c -- Found key [%012"llx"]", uid, (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8)?'B':'A', key64);
return -5;
}
}
PrintAndLog("UID: %08x target block:%3u key type: %c", uid, (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8)?'B':'A');
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
return 0;
free(statelists[1].head.slhead);
return -4;
}
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = 0;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {((blockNo & 0xff) | ((keyType&0xff)<<8)), clear_trace, keycnt}};
UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType<<8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;
if (!WaitForResponseTimeout(CMD_ACK,&resp, 3000)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
@ -237,14 +255,12 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_
uint8_t params = MAGIC_SINGLE;
uint8_t block0[16];
memset(block0, 0x00, sizeof(block0));
int old = mfCGetBlock(0, block0, params);
if (old == 0) {
if (old == 0)
PrintAndLog("old block 0: %s", sprint_hex(block0, sizeof(block0)));
} else {
PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
}
else
PrintAndLog("Couldn't get old data. Will write over the last bytes of Block 0.");
// fill in the new values
// UID
@ -344,7 +360,7 @@ int isBlockEmpty(int blockN) {
}
int isBlockTrailer(int blockN) {
return ((blockN & 0x03) == 0x03);
return ((blockN & 0x03) == 0x03);
}
int loadTraceCard(uint8_t *tuid) {
@ -439,20 +455,22 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool i
for (i = 0; i < len; i++)
data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i];
} else {
bt = 0;
for (i = 0; i < 4; i++)
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], i)) << i;
bt = 0;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2;
bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3;
data[0] = bt;
}
return;
}
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
uint8_t data[64];
if (traceState == TRACE_ERROR) return 1;
if (len > 64) {
traceState = TRACE_ERROR;
return 1;
@ -637,7 +655,6 @@ int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data,
uint32_t ar_enc; // encrypted reader response
uint32_t at_enc; // encrypted tag response
*/
struct Crypto1State *pcs = NULL;
ks2 = ar_enc ^ prng_successor(nt, 64);