style of .v files

This commit is contained in:
Philippe Teuwen 2019-07-30 22:47:23 +02:00
commit cb439ef58b
24 changed files with 1257 additions and 1257 deletions

View file

@ -4,11 +4,11 @@
//-----------------------------------------------------------------------------
// constants for the different modes:
`define SNIFFER 3'b000
`define TAGSIM_LISTEN 3'b001
`define TAGSIM_MOD 3'b010
`define READER_LISTEN 3'b011
`define READER_MOD 3'b100
`define SNIFFER 3'b000
`define TAGSIM_LISTEN 3'b001
`define TAGSIM_MOD 3'b010
`define READER_LISTEN 3'b011
`define READER_MOD 3'b100
module hi_iso14443a(
pck0, ck_1356meg, ck_1356megb,
@ -36,24 +36,24 @@ wire adc_clk = ck_1356meg;
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Reader -> PM3:
// detecting and shaping the reader's signal. Reader will modulate the carrier by 100% (signal is either on or off). Use a
// detecting and shaping the reader's signal. Reader will modulate the carrier by 100% (signal is either on or off). Use a
// hysteresis (Schmitt Trigger) to avoid false triggers during slowly increasing or decreasing carrier amplitudes
reg after_hysteresis;
reg [11:0] has_been_low_for;
always @(negedge adc_clk)
begin
if(adc_d >= 16) after_hysteresis <= 1'b1; // U >= 1,14V -> after_hysteresis = 1
else if(adc_d < 8) after_hysteresis <= 1'b0; // U < 1,04V -> after_hysteresis = 0
// Note: was >= 3,53V and <= 1,19V. The new trigger values allow more reliable detection of the first bit
// (it might not reach 3,53V due to the high time constant of the high pass filter in the analogue RF part).
// In addition, the new values are more in line with ISO14443-2: "The PICC shall detect the ”End of Pause” after the field exceeds
// 5% of H_INITIAL and before it exceeds 60% of H_INITIAL." Depending on the signal strength, 60% might well be less than 3,53V.
// detecting a loss of reader's field (adc_d < 192 for 4096 clock cycles). If this is the case,
// set the detected reader signal (after_hysteresis) to '1' (unmodulated)
if(adc_d >= 192)
if(adc_d >= 16) after_hysteresis <= 1'b1; // U >= 1,14V -> after_hysteresis = 1
else if(adc_d < 8) after_hysteresis <= 1'b0; // U < 1,04V -> after_hysteresis = 0
// Note: was >= 3,53V and <= 1,19V. The new trigger values allow more reliable detection of the first bit
// (it might not reach 3,53V due to the high time constant of the high pass filter in the analogue RF part).
// In addition, the new values are more in line with ISO14443-2: "The PICC shall detect the ”End of Pause” after the field exceeds
// 5% of H_INITIAL and before it exceeds 60% of H_INITIAL." Depending on the signal strength, 60% might well be less than 3,53V.
// detecting a loss of reader's field (adc_d < 192 for 4096 clock cycles). If this is the case,
// set the detected reader signal (after_hysteresis) to '1' (unmodulated)
if(adc_d >= 192)
begin
has_been_low_for <= 12'd0;
end
@ -65,43 +65,43 @@ begin
after_hysteresis <= 1'b1;
end
else
begin
begin
has_been_low_for <= has_been_low_for + 1;
end
end
end
end
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Reader -> PM3
// detect when a reader is active (modulating). We assume that the reader is active, if we see the carrier off for at least 8
// carrier cycles. We assume that the reader is inactive, if the carrier stayed high for at least 256 carrier cycles.
// detect when a reader is active (modulating). We assume that the reader is active, if we see the carrier off for at least 8
// carrier cycles. We assume that the reader is inactive, if the carrier stayed high for at least 256 carrier cycles.
reg deep_modulation;
reg [2:0] deep_counter;
reg [8:0] saw_deep_modulation;
always @(negedge adc_clk)
begin
if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V)
begin
if(deep_counter == 3'd7) // adc_d == 0 for 8 adc_clk ticks -> deep_modulation (by reader)
begin
deep_modulation <= 1'b1;
saw_deep_modulation <= 8'd0;
end
else
deep_counter <= deep_counter + 1;
end
else
begin
deep_counter <= 3'd0;
if(saw_deep_modulation == 8'd255) // adc_d != 0 for 256 adc_clk ticks -> deep_modulation is over, probably waiting for tag's response
deep_modulation <= 1'b0;
else
saw_deep_modulation <= saw_deep_modulation + 1;
end
if(~(| adc_d[7:0])) // if adc_d == 0 (U <= 0,94V)
begin
if(deep_counter == 3'd7) // adc_d == 0 for 8 adc_clk ticks -> deep_modulation (by reader)
begin
deep_modulation <= 1'b1;
saw_deep_modulation <= 8'd0;
end
else
deep_counter <= deep_counter + 1;
end
else
begin
deep_counter <= 3'd0;
if(saw_deep_modulation == 8'd255) // adc_d != 0 for 256 adc_clk ticks -> deep_modulation is over, probably waiting for tag's response
deep_modulation <= 1'b0;
else
saw_deep_modulation <= saw_deep_modulation + 1;
end
end
@ -115,16 +115,16 @@ reg [7:0] input_prev_4, input_prev_3, input_prev_2, input_prev_1;
always @(negedge adc_clk)
begin
input_prev_4 <= input_prev_3;
input_prev_3 <= input_prev_2;
input_prev_2 <= input_prev_1;
input_prev_1 <= adc_d;
end
input_prev_4 <= input_prev_3;
input_prev_3 <= input_prev_2;
input_prev_2 <= input_prev_1;
input_prev_1 <= adc_d;
end
// adc_d_filtered = 2*input_prev4 + 1*input_prev3 + 0*input_prev2 - 1*input_prev1 - 2*input
// = (2*input_prev4 + input_prev3) - (2*input + input_prev1)
// = (2*input_prev4 + input_prev3) - (2*input + input_prev1)
wire [8:0] input_prev_4_times_2 = input_prev_4 << 1;
wire [8:0] adc_d_times_2 = adc_d << 1;
wire [8:0] adc_d_times_2 = adc_d << 1;
wire [9:0] tmp1 = input_prev_4_times_2 + input_prev_3;
wire [9:0] tmp2 = adc_d_times_2 + input_prev_1;
@ -133,49 +133,49 @@ wire [9:0] tmp2 = adc_d_times_2 + input_prev_1;
wire signed [10:0] adc_d_filtered = {1'b0, tmp1} - {1'b0, tmp2};
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// internal FPGA timing. Maximum required period is 128 carrier clock cycles for a full 8 Bit transfer to ARM. (i.e. we need a
// internal FPGA timing. Maximum required period is 128 carrier clock cycles for a full 8 Bit transfer to ARM. (i.e. we need a
// 7 bit counter). Adjust its frequency to external reader's clock when simulating a tag or sniffing.
reg pre_after_hysteresis;
reg pre_after_hysteresis;
reg [3:0] reader_falling_edge_time;
reg [6:0] negedge_cnt;
always @(negedge adc_clk)
begin
// detect a reader signal's falling edge and remember its timing:
pre_after_hysteresis <= after_hysteresis;
if (pre_after_hysteresis && ~after_hysteresis)
begin
reader_falling_edge_time[3:0] <= negedge_cnt[3:0];
end
// detect a reader signal's falling edge and remember its timing:
pre_after_hysteresis <= after_hysteresis;
if (pre_after_hysteresis && ~after_hysteresis)
begin
reader_falling_edge_time[3:0] <= negedge_cnt[3:0];
end
// adjust internal timer counter if necessary:
if (negedge_cnt[3:0] == 4'd13 && (mod_type == `SNIFFER || mod_type == `TAGSIM_LISTEN) && deep_modulation)
begin
if (reader_falling_edge_time == 4'd1) // reader signal changes right after sampling. Better sample earlier next time.
begin
negedge_cnt <= negedge_cnt + 2; // time warp
end
else if (reader_falling_edge_time == 4'd0) // reader signal changes right before sampling. Better sample later next time.
begin
negedge_cnt <= negedge_cnt; // freeze time
end
else
begin
negedge_cnt <= negedge_cnt + 1; // Continue as usual
end
reader_falling_edge_time[3:0] <= 4'd8; // adjust only once per detected edge
end
else if (negedge_cnt == 7'd127) // normal operation: count from 0 to 127
begin
negedge_cnt <= 0;
end
else
begin
negedge_cnt <= negedge_cnt + 1;
end
end
// adjust internal timer counter if necessary:
if (negedge_cnt[3:0] == 4'd13 && (mod_type == `SNIFFER || mod_type == `TAGSIM_LISTEN) && deep_modulation)
begin
if (reader_falling_edge_time == 4'd1) // reader signal changes right after sampling. Better sample earlier next time.
begin
negedge_cnt <= negedge_cnt + 2; // time warp
end
else if (reader_falling_edge_time == 4'd0) // reader signal changes right before sampling. Better sample later next time.
begin
negedge_cnt <= negedge_cnt; // freeze time
end
else
begin
negedge_cnt <= negedge_cnt + 1; // Continue as usual
end
reader_falling_edge_time[3:0] <= 4'd8; // adjust only once per detected edge
end
else if (negedge_cnt == 7'd127) // normal operation: count from 0 to 127
begin
negedge_cnt <= 0;
end
else
begin
negedge_cnt <= negedge_cnt + 1;
end
end
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@ -185,28 +185,28 @@ reg [3:0] mod_detect_reset_time;
always @(negedge adc_clk)
begin
if (mod_type == `READER_LISTEN)
// (our) reader signal changes at negedge_cnt[3:0]=9, tag response expected to start n*16+4 ticks later, further delayed by
// 3 ticks ADC conversion. The maximum filter output (edge detected) will be detected after subcarrier zero crossing (+7 ticks).
// To allow some timing variances, we want to have the maximum filter outputs well within the detection window, i.e.
// at mod_detect_reset_time+4 and mod_detect_reset_time+12 (-4 ticks).
// 9 + 4 + 3 + 7 - 4 = 19. 19 mod 16 = 3
begin
mod_detect_reset_time <= 4'd4;
end
else
if (mod_type == `SNIFFER)
begin
// detect a rising edge of reader's signal and sync modulation detector to the tag's answer:
if (~pre_after_hysteresis && after_hysteresis && deep_modulation)
// reader signal rising edge detected at negedge_cnt[3:0]. This signal had been delayed
// 9 ticks by the RF part + 3 ticks by the A/D converter + 1 tick to assign to after_hysteresis.
// Then the same as above.
// - 9 - 3 - 1 + 4 + 3 + 7 - 4 = -3
begin
mod_detect_reset_time <= negedge_cnt[3:0] - 4'd3;
end
end
if (mod_type == `READER_LISTEN)
// (our) reader signal changes at negedge_cnt[3:0]=9, tag response expected to start n*16+4 ticks later, further delayed by
// 3 ticks ADC conversion. The maximum filter output (edge detected) will be detected after subcarrier zero crossing (+7 ticks).
// To allow some timing variances, we want to have the maximum filter outputs well within the detection window, i.e.
// at mod_detect_reset_time+4 and mod_detect_reset_time+12 (-4 ticks).
// 9 + 4 + 3 + 7 - 4 = 19. 19 mod 16 = 3
begin
mod_detect_reset_time <= 4'd4;
end
else
if (mod_type == `SNIFFER)
begin
// detect a rising edge of reader's signal and sync modulation detector to the tag's answer:
if (~pre_after_hysteresis && after_hysteresis && deep_modulation)
// reader signal rising edge detected at negedge_cnt[3:0]. This signal had been delayed
// 9 ticks by the RF part + 3 ticks by the A/D converter + 1 tick to assign to after_hysteresis.
// Then the same as above.
// - 9 - 3 - 1 + 4 + 3 + 7 - 4 = -3
begin
mod_detect_reset_time <= negedge_cnt[3:0] - 4'd3;
end
end
end
@ -218,34 +218,34 @@ reg signed [10:0] rx_mod_falling_edge_max;
reg signed [10:0] rx_mod_rising_edge_max;
reg curbit;
`define EDGE_DETECT_THRESHOLD 5
`define EDGE_DETECT_THRESHOLD 5
always @(negedge adc_clk)
begin
if(negedge_cnt[3:0] == mod_detect_reset_time)
begin
// detect modulation signal: if modulating, there must have been a falling AND a rising edge
if ((rx_mod_falling_edge_max > `EDGE_DETECT_THRESHOLD) && (rx_mod_rising_edge_max < -`EDGE_DETECT_THRESHOLD))
curbit <= 1'b1; // modulation
else
curbit <= 1'b0; // no modulation
// reset modulation detector
rx_mod_rising_edge_max <= 0;
rx_mod_falling_edge_max <= 0;
end
else // look for steepest edges (slopes)
begin
if (adc_d_filtered > 0)
begin
if (adc_d_filtered > rx_mod_falling_edge_max)
rx_mod_falling_edge_max <= adc_d_filtered;
end
else
begin
if (adc_d_filtered < rx_mod_rising_edge_max)
rx_mod_rising_edge_max <= adc_d_filtered;
end
end
if(negedge_cnt[3:0] == mod_detect_reset_time)
begin
// detect modulation signal: if modulating, there must have been a falling AND a rising edge
if ((rx_mod_falling_edge_max > `EDGE_DETECT_THRESHOLD) && (rx_mod_rising_edge_max < -`EDGE_DETECT_THRESHOLD))
curbit <= 1'b1; // modulation
else
curbit <= 1'b0; // no modulation
// reset modulation detector
rx_mod_rising_edge_max <= 0;
rx_mod_falling_edge_max <= 0;
end
else // look for steepest edges (slopes)
begin
if (adc_d_filtered > 0)
begin
if (adc_d_filtered > rx_mod_falling_edge_max)
rx_mod_falling_edge_max <= adc_d_filtered;
end
else
begin
if (adc_d_filtered < rx_mod_rising_edge_max)
rx_mod_rising_edge_max <= adc_d_filtered;
end
end
end
@ -260,11 +260,11 @@ reg [3:0] tag_data;
always @(negedge adc_clk)
begin
if(negedge_cnt[3:0] == 4'd0)
begin
begin
reader_data[3:0] <= {reader_data[2:0], after_hysteresis};
tag_data[3:0] <= {tag_data[2:0], curbit};
end
end
tag_data[3:0] <= {tag_data[2:0], curbit};
end
end
@ -277,17 +277,17 @@ reg mod_sig;
always @(negedge adc_clk)
begin
if(negedge_cnt[3:0] == 4'd0) // sample data at rising edge of ssp_clk - ssp_dout changes at the falling edge.
begin
mod_sig_buf[31:2] <= mod_sig_buf[30:1]; // shift
if (~ssp_dout && ~mod_sig_buf[1])
mod_sig_buf[1] <= 1'b0; // delete the correction bit (a single 1 preceded and succeeded by 0)
else
mod_sig_buf[1] <= mod_sig_buf[0];
mod_sig_buf[0] <= ssp_dout; // add new data to the delay line
if(negedge_cnt[3:0] == 4'd0) // sample data at rising edge of ssp_clk - ssp_dout changes at the falling edge.
begin
mod_sig_buf[31:2] <= mod_sig_buf[30:1]; // shift
if (~ssp_dout && ~mod_sig_buf[1])
mod_sig_buf[1] <= 1'b0; // delete the correction bit (a single 1 preceded and succeeded by 0)
else
mod_sig_buf[1] <= mod_sig_buf[0];
mod_sig_buf[0] <= ssp_dout; // add new data to the delay line
mod_sig = mod_sig_buf[mod_sig_ptr]; // the delayed signal.
end
mod_sig = mod_sig_buf[mod_sig_ptr]; // the delayed signal.
end
end
@ -297,7 +297,7 @@ end
// a timer for the 1172 cycles fdt (Frame Delay Time). Start the timer with a rising edge of the reader's signal.
// set fdt_elapsed when we no longer need to delay data. Set fdt_indicator when we can start sending data.
// Note: the FPGA only takes care for the 1172 delay. To achieve an additional 1236-1172=64 ticks delay, the ARM must send
// a correction bit (before the start bit). The correction bit will be coded as 00010000, i.e. it adds 4 bits to the
// a correction bit (before the start bit). The correction bit will be coded as 00010000, i.e. it adds 4 bits to the
// transmission stream, causing the required additional delay.
reg [10:0] fdt_counter;
reg fdt_indicator, fdt_elapsed;
@ -317,41 +317,41 @@ reg [3:0] sub_carrier_cnt;
`define FDT_INDICATOR_COUNT 11'd647
// Note: worst case, assignment to sendbit takes 15 ticks more, and transfer to ARM needs 7*16 = 112 ticks more.
// When the ARM's response then appears, the fdt_count is already 647 + 15 + 112 = 774, which still allows the ARM a possible
// response window of 1128 - 774 = 354 ticks.
// response window of 1128 - 774 = 354 ticks.
// reset on a pause in listen mode. I.e. the counter starts when the pause is over:
assign fdt_reset = ~after_hysteresis && mod_type == `TAGSIM_LISTEN;
always @(negedge adc_clk)
begin
if (fdt_reset)
begin
fdt_counter <= 11'd0;
fdt_elapsed <= 1'b0;
fdt_indicator <= 1'b0;
end
else
begin
if(fdt_counter == `FDT_COUNT)
begin
if(~fdt_elapsed) // just reached fdt.
begin
mod_sig_flip <= negedge_cnt[3:0]; // start modulation at this time
sub_carrier_cnt <= 4'd0; // subcarrier phase in sync with start of modulation
fdt_elapsed <= 1'b1;
end
else
begin
sub_carrier_cnt <= sub_carrier_cnt + 1;
end
end
else
begin
fdt_counter <= fdt_counter + 1;
end
end
if(fdt_counter == `FDT_INDICATOR_COUNT) fdt_indicator <= 1'b1;
if (fdt_reset)
begin
fdt_counter <= 11'd0;
fdt_elapsed <= 1'b0;
fdt_indicator <= 1'b0;
end
else
begin
if(fdt_counter == `FDT_COUNT)
begin
if(~fdt_elapsed) // just reached fdt.
begin
mod_sig_flip <= negedge_cnt[3:0]; // start modulation at this time
sub_carrier_cnt <= 4'd0; // subcarrier phase in sync with start of modulation
fdt_elapsed <= 1'b1;
end
else
begin
sub_carrier_cnt <= sub_carrier_cnt + 1;
end
end
else
begin
fdt_counter <= fdt_counter + 1;
end
end
if(fdt_counter == `FDT_INDICATOR_COUNT) fdt_indicator <= 1'b1;
end
@ -363,24 +363,24 @@ reg mod_sig_coil;
always @(negedge adc_clk)
begin
if (mod_type == `TAGSIM_MOD) // need to take care of proper fdt timing
begin
if(fdt_counter == `FDT_COUNT)
begin
if(fdt_elapsed)
begin
if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig;
end
else
begin
mod_sig_coil <= mod_sig; // just reached fdt. Immediately assign signal to coil
end
end
end
else // other modes: don't delay
begin
mod_sig_coil <= ssp_dout;
end
if (mod_type == `TAGSIM_MOD) // need to take care of proper fdt timing
begin
if(fdt_counter == `FDT_COUNT)
begin
if(fdt_elapsed)
begin
if(negedge_cnt[3:0] == mod_sig_flip) mod_sig_coil <= mod_sig;
end
else
begin
mod_sig_coil <= mod_sig; // just reached fdt. Immediately assign signal to coil
end
end
end
else // other modes: don't delay
begin
mod_sig_coil <= ssp_dout;
end
end
@ -392,39 +392,39 @@ reg temp_buffer_reset;
always @(negedge adc_clk)
begin
if(fdt_reset)
begin
mod_sig_ptr <= 5'd0;
temp_buffer_reset = 1'b0;
end
else
begin
if(fdt_counter == `FDT_COUNT && ~fdt_elapsed) // if we just reached fdt
if(~(| mod_sig_ptr[4:0]))
mod_sig_ptr <= 5'd8; // ... but didn't buffer a 1 yet, delay next 1 by n*128 ticks.
else
temp_buffer_reset = 1'b1; // else no need for further delays.
if(fdt_reset)
begin
mod_sig_ptr <= 5'd0;
temp_buffer_reset = 1'b0;
end
else
begin
if(fdt_counter == `FDT_COUNT && ~fdt_elapsed) // if we just reached fdt
if(~(| mod_sig_ptr[4:0]))
mod_sig_ptr <= 5'd8; // ... but didn't buffer a 1 yet, delay next 1 by n*128 ticks.
else
temp_buffer_reset = 1'b1; // else no need for further delays.
if(negedge_cnt[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge.
begin
if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt is reached.
if (mod_sig_ptr == 5'd31)
mod_sig_ptr <= 5'd0; // buffer overflow - data loss.
else
mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). mod_sig_ptr always points ahead of first 1.
else if(fdt_elapsed && ~temp_buffer_reset)
begin
// wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
// at intervals of 8 * 16 = 128 adc_clk ticks (as defined in ISO14443-3)
if(ssp_dout)
temp_buffer_reset = 1'b1;
if(mod_sig_ptr == 5'd1)
mod_sig_ptr <= 5'd8; // still nothing received, need to go for the next interval
else
mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer.
end
end
end
if(negedge_cnt[3:0] == 4'd0) // at rising edge of ssp_clk - ssp_dout changes at the falling edge.
begin
if((ssp_dout || (| mod_sig_ptr[4:0])) && ~fdt_elapsed) // buffer a 1 (and all subsequent data) until fdt is reached.
if (mod_sig_ptr == 5'd31)
mod_sig_ptr <= 5'd0; // buffer overflow - data loss.
else
mod_sig_ptr <= mod_sig_ptr + 1; // increase buffer (= increase delay by 16 adc_clk ticks). mod_sig_ptr always points ahead of first 1.
else if(fdt_elapsed && ~temp_buffer_reset)
begin
// wait for the next 1 after fdt_elapsed before fixing the delay and starting modulation. This ensures that the response can only happen
// at intervals of 8 * 16 = 128 adc_clk ticks (as defined in ISO14443-3)
if(ssp_dout)
temp_buffer_reset = 1'b1;
if(mod_sig_ptr == 5'd1)
mod_sig_ptr <= 5'd8; // still nothing received, need to go for the next interval
else
mod_sig_ptr <= mod_sig_ptr - 1; // decrease buffer.
end
end
end
end
@ -436,43 +436,43 @@ reg [7:0] to_arm;
always @(negedge adc_clk)
begin
if (negedge_cnt[5:0] == 6'd63) // fill the buffer
begin
if (mod_type == `SNIFFER)
begin
if(deep_modulation) // a reader is sending (or there's no field at all)
begin
to_arm <= {reader_data[3:0], 4'b0000}; // don't send tag data
end
else
begin
to_arm <= {reader_data[3:0], tag_data[3:0]};
end
end
else
begin
to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]}; // feedback timing information
end
end
if (negedge_cnt[5:0] == 6'd63) // fill the buffer
begin
if (mod_type == `SNIFFER)
begin
if(deep_modulation) // a reader is sending (or there's no field at all)
begin
to_arm <= {reader_data[3:0], 4'b0000}; // don't send tag data
end
else
begin
to_arm <= {reader_data[3:0], tag_data[3:0]};
end
end
else
begin
to_arm[7:0] <= {mod_sig_ptr[4:0], mod_sig_flip[3:1]}; // feedback timing information
end
end
if(negedge_cnt[2:0] == 3'b000 && mod_type == `SNIFFER) // shift at double speed
begin
// Don't shift if we just loaded new data, obviously.
if(negedge_cnt[5:0] != 6'd0)
begin
to_arm[7:1] <= to_arm[6:0];
end
end
if(negedge_cnt[2:0] == 3'b000 && mod_type == `SNIFFER) // shift at double speed
begin
// Don't shift if we just loaded new data, obviously.
if(negedge_cnt[5:0] != 6'd0)
begin
to_arm[7:1] <= to_arm[6:0];
end
end
if(negedge_cnt[3:0] == 4'b0000 && mod_type != `SNIFFER)
begin
// Don't shift if we just loaded new data, obviously.
if(negedge_cnt[6:0] != 7'd0)
begin
to_arm[7:1] <= to_arm[6:0];
end
end
if(negedge_cnt[3:0] == 4'b0000 && mod_type != `SNIFFER)
begin
// Don't shift if we just loaded new data, obviously.
if(negedge_cnt[6:0] != 7'd0)
begin
to_arm[7:1] <= to_arm[6:0];
end
end
end
@ -484,32 +484,32 @@ reg ssp_frame;
always @(negedge adc_clk)
begin
if(mod_type == `SNIFFER)
// SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
begin
if(negedge_cnt[2:0] == 3'd0)
ssp_clk <= 1'b1;
if(negedge_cnt[2:0] == 3'd4)
ssp_clk <= 1'b0;
if(mod_type == `SNIFFER)
// SNIFFER mode (ssp_clk = adc_clk / 8, ssp_frame clock = adc_clk / 64)):
begin
if(negedge_cnt[2:0] == 3'd0)
ssp_clk <= 1'b1;
if(negedge_cnt[2:0] == 3'd4)
ssp_clk <= 1'b0;
if(negedge_cnt[5:0] == 6'd0) // ssp_frame rising edge indicates start of frame
ssp_frame <= 1'b1;
if(negedge_cnt[5:0] == 6'd8)
ssp_frame <= 1'b0;
end
else
// all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
begin
if(negedge_cnt[3:0] == 4'd0)
ssp_clk <= 1'b1;
if(negedge_cnt[3:0] == 4'd8)
ssp_clk <= 1'b0;
if(negedge_cnt[5:0] == 6'd0) // ssp_frame rising edge indicates start of frame
ssp_frame <= 1'b1;
if(negedge_cnt[5:0] == 6'd8)
ssp_frame <= 1'b0;
end
else
// all other modes (ssp_clk = adc_clk / 16, ssp_frame clock = adc_clk / 128):
begin
if(negedge_cnt[3:0] == 4'd0)
ssp_clk <= 1'b1;
if(negedge_cnt[3:0] == 4'd8)
ssp_clk <= 1'b0;
if(negedge_cnt[6:0] == 7'd7) // ssp_frame rising edge indicates start of frame
ssp_frame <= 1'b1;
if(negedge_cnt[6:0] == 7'd23)
ssp_frame <= 1'b0;
end
if(negedge_cnt[6:0] == 7'd7) // ssp_frame rising edge indicates start of frame
ssp_frame <= 1'b1;
if(negedge_cnt[6:0] == 7'd23)
ssp_frame <= 1'b0;
end
end
@ -522,31 +522,31 @@ reg sendbit;
always @(negedge adc_clk)
begin
if(negedge_cnt[3:0] == 4'd0)
begin
// What do we communicate to the ARM
if(mod_type == `TAGSIM_LISTEN)
sendbit = after_hysteresis;
else if(mod_type == `TAGSIM_MOD)
/* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh?
else */
sendbit = fdt_indicator;
else if (mod_type == `READER_LISTEN)
sendbit = curbit;
else
sendbit = 1'b0;
end
if(negedge_cnt[3:0] == 4'd0)
begin
// What do we communicate to the ARM
if(mod_type == `TAGSIM_LISTEN)
sendbit = after_hysteresis;
else if(mod_type == `TAGSIM_MOD)
/* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh?
else */
sendbit = fdt_indicator;
else if (mod_type == `READER_LISTEN)
sendbit = curbit;
else
sendbit = 1'b0;
end
if(mod_type == `SNIFFER)
// send sampled reader and tag data:
bit_to_arm = to_arm[7];
else if (mod_type == `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset)
// send timing information:
bit_to_arm = to_arm[7];
else
// send data or fdt_indicator
bit_to_arm = sendbit;
if(mod_type == `SNIFFER)
// send sampled reader and tag data:
bit_to_arm = to_arm[7];
else if (mod_type == `TAGSIM_MOD && fdt_elapsed && temp_buffer_reset)
// send timing information:
bit_to_arm = to_arm[7];
else
// send data or fdt_indicator
bit_to_arm = sendbit;
end
@ -559,7 +559,7 @@ wire sub_carrier;
assign sub_carrier = ~sub_carrier_cnt[3];
// in READER_MOD: drop carrier for mod_sig_coil==1 (pause); in READER_LISTEN: carrier always on; in other modes: carrier always off
assign pwr_hi = (ck_1356megb & (((mod_type == `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN)));
assign pwr_hi = (ck_1356megb & (((mod_type == `READER_MOD) & ~mod_sig_coil) || (mod_type == `READER_LISTEN)));
// Enable HF antenna drivers:
@ -567,8 +567,8 @@ assign pwr_oe1 = 1'b0;
assign pwr_oe3 = 1'b0;
// TAGSIM_MOD: short circuit antenna with different resistances (modulated by sub_carrier modulated by mod_sig_coil)
// for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
// for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
// for pwr_oe4 = 1 (tristate): antenna load = 10k || 33 = 32,9 Ohms
// for pwr_oe4 = 0 (active): antenna load = 10k || 33 || 33 = 16,5 Ohms
assign pwr_oe4 = mod_sig_coil & sub_carrier & (mod_type == `TAGSIM_MOD);
// This is all LF, so doesn't matter.