mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-08-14 10:37:23 -07:00
Rework theremin script
This commit is contained in:
parent
23e6aa40b7
commit
ca15bbd019
1 changed files with 156 additions and 60 deletions
|
@ -1,81 +1,177 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
### Parameters
|
||||
import os
|
||||
import subprocess
|
||||
import signal
|
||||
import numpy as np
|
||||
from pyaudio import PyAudio, paFloat32, paContinue
|
||||
|
||||
# Sound output parameters
|
||||
volume = 1.0
|
||||
sample_buf_size = 44
|
||||
sampling_freq = 44100 #Hz
|
||||
sampling_freq = 44100 # Hz
|
||||
|
||||
# Frequency generator parameters
|
||||
min_freq = 200 #Hz
|
||||
max_freq = 2000 #Hz
|
||||
min_freq = 100 # Hz
|
||||
max_freq = 6000 # Hz
|
||||
|
||||
# Proxmark3 parameters
|
||||
pm3_client="/usr/local/bin/proxmark3"
|
||||
pm3_reader_dev_file="/dev/ttyACM0"
|
||||
pm3_tune_cmd="hf tune"
|
||||
pm3_client = "pm3"
|
||||
pm3_tune_cmd = "hf tune --value"
|
||||
|
||||
frequency = 440
|
||||
buffer = []
|
||||
|
||||
|
||||
### Modules
|
||||
import numpy
|
||||
import pyaudio
|
||||
from select import select
|
||||
from subprocess import Popen, DEVNULL, PIPE
|
||||
def find_zero_crossing_index(array):
|
||||
for i in range(1, len(array)):
|
||||
if array[i-1] < 0 and array[i] >= 0:
|
||||
return i
|
||||
return None # Return None if no zero-crossing is found
|
||||
|
||||
|
||||
### Main program
|
||||
p = pyaudio.PyAudio()
|
||||
def generate_sine_wave(frequency, sample_rate, duration, frame_count):
|
||||
"""Generate a sine wave at a given frequency."""
|
||||
t = np.linspace(0, duration, int(sample_rate * duration), endpoint=False)
|
||||
wave = np.sin(2 * np.pi * frequency * t)
|
||||
return wave[:frame_count]
|
||||
|
||||
# For paFloat32 sample values must be in range [-1.0, 1.0]
|
||||
stream = p.open(format=pyaudio.paFloat32,
|
||||
channels=1,
|
||||
rate=sampling_freq,
|
||||
output=True)
|
||||
|
||||
# Initial voltage to frequency values
|
||||
min_v = 100.0
|
||||
max_v = 0.0
|
||||
v = 0
|
||||
out_freq = min_freq
|
||||
# PyAudio Callback function
|
||||
def pyaudio_callback(in_data, frame_count, time_info, status):
|
||||
# if in_data is None:
|
||||
# return (in_data, pyaudio.paContinue)
|
||||
global frequency
|
||||
global buffer
|
||||
wave = generate_sine_wave(frequency, sampling_freq, 0.01, frame_count*2)
|
||||
i = find_zero_crossing_index(buffer)
|
||||
if i is None:
|
||||
buffer = wave
|
||||
else:
|
||||
buffer = np.concatenate((buffer[:i], wave))
|
||||
data = (buffer[:frame_count] * volume).astype(np.float32).tobytes()
|
||||
buffer = buffer[frame_count:]
|
||||
return (data, paContinue)
|
||||
# pyaudio.paComplete
|
||||
|
||||
# Spawn the Proxmark3 client
|
||||
pm3_proc = Popen([pm3_client, pm3_reader_dev_file, "-c", pm3_tune_cmd], bufsize=0, env={}, stdin=DEVNULL, stdout=PIPE, stderr=DEVNULL)
|
||||
mv_recbuf = ""
|
||||
|
||||
# Read voltages from the Proxmark3, generate the sine wave, output to soundcard
|
||||
sample_buf = [0.0 for x in range(0, sample_buf_size)]
|
||||
i = 0
|
||||
sinev = 0
|
||||
while True:
|
||||
def silent_pyaudio():
|
||||
"""
|
||||
Lifted and adapted from https://stackoverflow.com/questions/67765911/
|
||||
PyAudio is noisy af every time you initialise it, which makes reading the
|
||||
log output rather difficult. The output appears to be being made by the
|
||||
C internals, so we can't even redirect the logs with Python's logging
|
||||
facility. Therefore the nuclear option was selected: swallow all stderr
|
||||
and stdout for the duration of PyAudio's use.
|
||||
"""
|
||||
|
||||
# Read Proxmark3 client's stdout and extract voltage values
|
||||
if(select([pm3_proc.stdout], [], [], 0)[0]):
|
||||
# Open a pair of null files
|
||||
null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)]
|
||||
# Save the actual stdout (1) and stderr (2) file descriptors.
|
||||
save_fds = [os.dup(1), os.dup(2)]
|
||||
# Assign the null pointers to stdout and stderr.
|
||||
os.dup2(null_fds[0], 1)
|
||||
os.dup2(null_fds[1], 2)
|
||||
pyaudio = PyAudio()
|
||||
os.dup2(save_fds[0], 1)
|
||||
os.dup2(save_fds[1], 2)
|
||||
# Close all file descriptors
|
||||
for fd in null_fds + save_fds:
|
||||
os.close(fd)
|
||||
return pyaudio
|
||||
|
||||
b = pm3_proc.stdout.read(256).decode("ascii")
|
||||
if "Done" in b:
|
||||
break;
|
||||
for c in b:
|
||||
if c in "0123456789 mV":
|
||||
mv_recbuf += c
|
||||
else:
|
||||
mv_recbuf = ""
|
||||
if mv_recbuf[-3:] == " mV":
|
||||
v = int(mv_recbuf[:-3]) / 1000
|
||||
if v < min_v:
|
||||
min_v = v - 0.001
|
||||
if v > max_v:
|
||||
max_v = v
|
||||
|
||||
def run_pm3_cmd(callback):
|
||||
# Start the process
|
||||
process = subprocess.Popen(
|
||||
[pm3_client, '-c', pm3_tune_cmd],
|
||||
stdout=subprocess.PIPE,
|
||||
stderr=subprocess.PIPE,
|
||||
text=True,
|
||||
bufsize=1, # Line buffered
|
||||
shell=False
|
||||
)
|
||||
|
||||
# Read the output line by line as it comes
|
||||
try:
|
||||
with process.stdout as pipe:
|
||||
for line in pipe:
|
||||
# Process each line
|
||||
l = line.strip() # Strip to remove any extraneous newline characters
|
||||
callback(l)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
finally:
|
||||
# Ensure the subprocess is properly terminated
|
||||
process.terminate()
|
||||
process.wait()
|
||||
|
||||
|
||||
def linear_to_exponential_freq(v, min_v, max_v, min_freq, max_freq):
|
||||
# First, map v to a range between 0 and 1
|
||||
if max_v != min_v:
|
||||
normalized_v = (v - min_v) / (max_v - min_v)
|
||||
else:
|
||||
normalized_v = 0.5
|
||||
normalized_v = 1 - normalized_v
|
||||
|
||||
# Calculate the ratio of the max frequency to the min frequency
|
||||
freq_ratio = max_freq / min_freq
|
||||
|
||||
# Calculate the exponential frequency using the mapped v
|
||||
freq = min_freq * (freq_ratio ** normalized_v)
|
||||
return freq
|
||||
|
||||
|
||||
class foo():
|
||||
def __init__(self):
|
||||
self.p = silent_pyaudio()
|
||||
# For paFloat32 sample values must be in range [-1.0, 1.0]
|
||||
self.stream = self.p.open(format=paFloat32,
|
||||
channels=1,
|
||||
rate=sampling_freq,
|
||||
output=True,
|
||||
stream_callback=pyaudio_callback)
|
||||
|
||||
# Initial voltage to frequency values
|
||||
self.min_v = 50000.0
|
||||
self.max_v = 0.0
|
||||
|
||||
# Setting the signal handler for SIGINT (Ctrl+C)
|
||||
signal.signal(signal.SIGINT, self.signal_handler)
|
||||
|
||||
# Start the stream
|
||||
self.stream.start_stream()
|
||||
|
||||
def __exit__(self):
|
||||
self.stream.stop_stream()
|
||||
self.stream.close()
|
||||
self.p.terminate()
|
||||
|
||||
def signal_handler(self, sig, frame):
|
||||
print("\nYou pressed Ctrl+C! Press Enter")
|
||||
self.__exit__()
|
||||
|
||||
def callback(self, line):
|
||||
if 'mV' not in line:
|
||||
return
|
||||
v = int(line.split(' ')[1])
|
||||
if v == 0:
|
||||
return
|
||||
self.min_v = min(self.min_v, v)
|
||||
self.max_v = max(self.max_v, v)
|
||||
|
||||
# Recalculate the audio frequency to generate
|
||||
out_freq = (max_freq - min_freq) * (max_v - v) / (max_v - min_v) \
|
||||
+ min_freq
|
||||
global frequency
|
||||
frequency = linear_to_exponential_freq(v, self.min_v, self.max_v, min_freq, max_freq)
|
||||
|
||||
# Generate the samples and write them to the soundcard
|
||||
sinevs = out_freq / sampling_freq * numpy.pi * 2
|
||||
sample_buf[i] = sinev
|
||||
sinev += sinevs
|
||||
sinev = sinev if sinev < numpy.pi * 2 else sinev - numpy.pi * 2
|
||||
i = (i + 1) % sample_buf_size
|
||||
if not i:
|
||||
stream.write((numpy.sin(sample_buf) * volume).
|
||||
astype(numpy.float32).tobytes())
|
||||
# frequency = max_freq - ((max_freq - min_freq) * (v - self.min_v) / (self.max_v - self.min_v) + min_freq)
|
||||
#frequency = (frequency + new_frequency)/2
|
||||
|
||||
|
||||
def main():
|
||||
f = foo()
|
||||
run_pm3_cmd(f.callback)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue