Make style

This commit is contained in:
Artem Gnatyuk 2020-03-21 21:39:30 +07:00
commit c36d86bc01
2 changed files with 156 additions and 156 deletions

View file

@ -23,36 +23,36 @@
#define CLOCK 64 //for 125kHz #define CLOCK 64 //for 125kHz
// low & high - array for storage IDs. Its length must be equal. // low & high - array for storage IDs. Its length must be equal.
// Predefined IDs must be stored in low[]. // Predefined IDs must be stored in low[].
// In high[] must be nulls // In high[] must be nulls
uint64_t low[] = {0x565A1140BE,0x365A398149,0x5555555555,0xFFFFFFFFFF}; uint64_t low[] = {0x565A1140BE, 0x365A398149, 0x5555555555, 0xFFFFFFFFFF};
uint32_t high[] = {0,0,0,0}; uint32_t high[] = {0, 0, 0, 0};
uint8_t *bba,slots_count; uint8_t *bba, slots_count;
int buflen; int buflen;
void ModInfo(void) { void ModInfo(void) {
DbpString(" LF EM4100 simulator standalone mode"); DbpString(" LF EM4100 simulator standalone mode");
} }
uint64_t ReversQuads(uint64_t bits){ uint64_t ReversQuads(uint64_t bits) {
uint64_t result = 0; uint64_t result = 0;
for (int i = 0; i < 16; i++){ for (int i = 0; i < 16; i++) {
result += ((bits >> (60 - 4 *i)) & 0xf) << (4 * i); result += ((bits >> (60 - 4 * i)) & 0xf) << (4 * i);
} }
return result >> 24; return result >> 24;
} }
void FillBuff(uint8_t bit) { void FillBuff(uint8_t bit) {
memset (bba + buflen, bit, CLOCK / 2); memset(bba + buflen, bit, CLOCK / 2);
buflen += (CLOCK / 2); buflen += (CLOCK / 2);
memset (bba + buflen, bit^1,CLOCK / 2); memset(bba + buflen, bit ^ 1, CLOCK / 2);
buflen += (CLOCK / 2); buflen += (CLOCK / 2);
} }
void ConstructEM410xEmulBuf(uint64_t id) { void ConstructEM410xEmulBuf(uint64_t id) {
int i, j, binary[4], parity[4]; int i, j, binary[4], parity[4];
buflen = 0; buflen = 0;
for (i = 0; i < 9; i++) for (i = 0; i < 9; i++)
FillBuff(1); FillBuff(1);
parity[0] = parity[1] = parity[2] = parity[3] = 0; parity[0] = parity[1] = parity[2] = parity[3] = 0;
@ -60,39 +60,39 @@ void ConstructEM410xEmulBuf(uint64_t id) {
for (j = 3; j >= 0; j--, id /= 2) for (j = 3; j >= 0; j--, id /= 2)
binary[j] = id % 2; binary[j] = id % 2;
for (j = 0; j < 4; j++) for (j = 0; j < 4; j++)
FillBuff(binary[j]); FillBuff(binary[j]);
FillBuff(binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); FillBuff(binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
for (j = 0; j < 4; j++) for (j = 0; j < 4; j++)
parity[j] ^= binary[j]; parity[j] ^= binary[j];
} }
for (j = 0; j < 4; j++) for (j = 0; j < 4; j++)
FillBuff(parity[j]); FillBuff(parity[j]);
FillBuff(0); FillBuff(0);
} }
void LED_Slot(int i) { void LED_Slot(int i) {
LEDsoff(); LEDsoff();
if (slots_count > 4) { if (slots_count > 4) {
LED(i % MAX_IND, 0); //binary indication for slots_count > 4 LED(i % MAX_IND, 0); //binary indication for slots_count > 4
} else { } else {
LED(1 << i,0); //simple indication for slots_count <=4 LED(1 << i, 0); //simple indication for slots_count <=4
} }
} }
void RunMod() { void RunMod() {
StandAloneMode(); StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
int selected = 0; //selected slot after start int selected = 0; //selected slot after start
slots_count = sizeof(low)/sizeof(low[0]); slots_count = sizeof(low) / sizeof(low[0]);
bba = BigBuf_get_addr(); bba = BigBuf_get_addr();
for (;;) { for (;;) {
WDT_HIT(); WDT_HIT();
if (data_available()) break; if (data_available()) break;
SpinDelay(100); SpinDelay(100);
SpinUp(100); SpinUp(100);
LED_Slot(selected); LED_Slot(selected);
ConstructEM410xEmulBuf(ReversQuads(low[selected])); ConstructEM410xEmulBuf(ReversQuads(low[selected]));
SimulateTagLowFrequency(buflen, 0, true); SimulateTagLowFrequency(buflen, 0, true);
selected = (selected + 1) % slots_count; selected = (selected + 1) % slots_count;
} }
} }

View file

@ -5,10 +5,10 @@
// at your option, any later version. See the LICENSE.txt file for the text of // at your option, any later version. See the LICENSE.txt file for the text of
// the license. // the license.
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// LF rwc - This mode can simulate ID from selected slot, read ID to // LF rwc - This mode can simulate ID from selected slot, read ID to
// selected slot, write from selected slot to T5555 tag and store // selected slot, write from selected slot to T5555 tag and store
// readed ID to flash (only RDV4). Also you can set predefined IDs // readed ID to flash (only RDV4). Also you can set predefined IDs
// in any slot. // in any slot.
// To recall stored ID from flash execute: // To recall stored ID from flash execute:
// mem spifss dump o emdump p // mem spifss dump o emdump p
// or: // or:
@ -36,36 +36,36 @@
#define CLOCK 64 //for 125kHz #define CLOCK 64 //for 125kHz
// low & high - array for storage IDs. Its length must be equal. // low & high - array for storage IDs. Its length must be equal.
// Predefined IDs must be stored in low[]. // Predefined IDs must be stored in low[].
// In high[] must be nulls // In high[] must be nulls
uint64_t low[] = {0x565AF781C7,0x540053E4E2,0x1234567890,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint64_t low[] = {0x565AF781C7, 0x540053E4E2, 0x1234567890, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint32_t high[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint32_t high[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
uint8_t *bba,slots_count; uint8_t *bba, slots_count;
int buflen; int buflen;
void ModInfo(void) { void ModInfo(void) {
DbpString(" LF EM4100 simulate standalone V2"); DbpString(" LF EM4100 simulate standalone V2");
} }
uint64_t ReversQuads(uint64_t bits){ uint64_t ReversQuads(uint64_t bits) {
uint64_t result = 0; uint64_t result = 0;
for (int i = 0; i < 16; i++){ for (int i = 0; i < 16; i++) {
result += ((bits >> (60 - 4 *i)) & 0xf) << (4 * i); result += ((bits >> (60 - 4 * i)) & 0xf) << (4 * i);
} }
return result >> 24; return result >> 24;
} }
void FillBuff(uint8_t bit) { void FillBuff(uint8_t bit) {
memset (bba + buflen, bit, CLOCK / 2); memset(bba + buflen, bit, CLOCK / 2);
buflen += (CLOCK / 2); buflen += (CLOCK / 2);
memset (bba + buflen, bit^1,CLOCK / 2); memset(bba + buflen, bit ^ 1, CLOCK / 2);
buflen += (CLOCK / 2); buflen += (CLOCK / 2);
} }
void ConstructEM410xEmulBuf(uint64_t id) { void ConstructEM410xEmulBuf(uint64_t id) {
int i, j, binary[4], parity[4]; int i, j, binary[4], parity[4];
buflen = 0; buflen = 0;
for (i = 0; i < 9; i++) for (i = 0; i < 9; i++)
FillBuff(1); FillBuff(1);
parity[0] = parity[1] = parity[2] = parity[3] = 0; parity[0] = parity[1] = parity[2] = parity[3] = 0;
@ -73,23 +73,23 @@ void ConstructEM410xEmulBuf(uint64_t id) {
for (j = 3; j >= 0; j--, id /= 2) for (j = 3; j >= 0; j--, id /= 2)
binary[j] = id % 2; binary[j] = id % 2;
for (j = 0; j < 4; j++) for (j = 0; j < 4; j++)
FillBuff(binary[j]); FillBuff(binary[j]);
FillBuff(binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); FillBuff(binary[0] ^ binary[1] ^ binary[2] ^ binary[3]);
for (j = 0; j < 4; j++) for (j = 0; j < 4; j++)
parity[j] ^= binary[j]; parity[j] ^= binary[j];
} }
for (j = 0; j < 4; j++) for (j = 0; j < 4; j++)
FillBuff(parity[j]); FillBuff(parity[j]);
FillBuff(0); FillBuff(0);
} }
void LED_Slot(int i) { void LED_Slot(int i) {
LEDsoff(); LEDsoff();
if (slots_count > 4) { if (slots_count > 4) {
LED(i % MAX_IND, 0); //binary indication, usefully for slots_count > 4 LED(i % MAX_IND, 0); //binary indication, usefully for slots_count > 4
} else { } else {
LED(1 << i,0); //simple indication for slots_count <=4 LED(1 << i, 0); //simple indication for slots_count <=4
} }
} }
void FlashLEDs(uint32_t speed, uint8_t times) { void FlashLEDs(uint32_t speed, uint8_t times) {
@ -103,100 +103,100 @@ void FlashLEDs(uint32_t speed, uint8_t times) {
} }
#ifdef WITH_FLASH #ifdef WITH_FLASH
void SaveIDtoFlash (int addr, uint64_t id) { void SaveIDtoFlash(int addr, uint64_t id) {
uint8_t bt[5]; uint8_t bt[5];
char *filename = "emdump"; char *filename = "emdump";
rdv40_spiffs_mount(); rdv40_spiffs_mount();
for (int i = 0; i < 5; i++) { for (int i = 0; i < 5; i++) {
bt[4-i] = (uint8_t) (id >> 8 * i & 0xff); bt[4 - i] = (uint8_t)(id >> 8 * i & 0xff);
} }
if (exists_in_spiffs(filename) == false){ if (exists_in_spiffs(filename) == false) {
rdv40_spiffs_write(filename, &bt[0], 5, RDV40_SPIFFS_SAFETY_NORMAL); rdv40_spiffs_write(filename, &bt[0], 5, RDV40_SPIFFS_SAFETY_NORMAL);
} else { } else {
rdv40_spiffs_append(filename, &bt[0], 5, RDV40_SPIFFS_SAFETY_NORMAL); rdv40_spiffs_append(filename, &bt[0], 5, RDV40_SPIFFS_SAFETY_NORMAL);
} }
} }
#endif #endif
void RunMod() { void RunMod() {
StandAloneMode(); StandAloneMode();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
int selected = 0; int selected = 0;
//state 0 - select slot //state 0 - select slot
// 1 - read tag to selected slot, // 1 - read tag to selected slot,
// 2 - simulate tag from selected slot // 2 - simulate tag from selected slot
// 3 - write to T5555 tag // 3 - write to T5555 tag
uint8_t state = 0; uint8_t state = 0;
slots_count = sizeof(low)/sizeof(low[0]); slots_count = sizeof(low) / sizeof(low[0]);
bba = BigBuf_get_addr(); bba = BigBuf_get_addr();
LED_Slot(selected); LED_Slot(selected);
for (;;) { for (;;) {
WDT_HIT(); WDT_HIT();
if (data_available()) break; if (data_available()) break;
int button_pressed = BUTTON_HELD(1000); int button_pressed = BUTTON_HELD(1000);
SpinDelay(300); SpinDelay(300);
switch (state){ switch (state) {
case 0: case 0:
// Select mode // Select mode
if (button_pressed == 1) { if (button_pressed == 1) {
// Long press - switch to simulate mode // Long press - switch to simulate mode
SpinUp(100); SpinUp(100);
LED_Slot(selected); LED_Slot(selected);
state = 2; state = 2;
} else if (button_pressed < 0) { } else if (button_pressed < 0) {
// Click - switch to next slot // Click - switch to next slot
selected = (selected + 1) % slots_count; selected = (selected + 1) % slots_count;
LED_Slot(selected); LED_Slot(selected);
} }
break; break;
case 1: case 1:
// Read mode. // Read mode.
if (button_pressed > 0) { if (button_pressed > 0) {
// Long press - switch to read mode // Long press - switch to read mode
SpinUp(100); SpinUp(100);
LED_Slot(selected); LED_Slot(selected);
state = 3; state = 3;
} else if (button_pressed < 0) { } else if (button_pressed < 0) {
// Click - exit to select mode // Click - exit to select mode
CmdEM410xdemod(1, &high[selected], &low[selected], 0); CmdEM410xdemod(1, &high[selected], &low[selected], 0);
FlashLEDs(100,5); FlashLEDs(100, 5);
#ifdef WITH_FLASH #ifdef WITH_FLASH
SaveIDtoFlash(selected, low[selected]); SaveIDtoFlash(selected, low[selected]);
#endif #endif
state = 0; state = 0;
} }
break; break;
case 2: case 2:
// Simulate mode // Simulate mode
if (button_pressed > 0) { if (button_pressed > 0) {
// Long press - switch to read mode // Long press - switch to read mode
SpinDown(100); SpinDown(100);
LED_Slot(selected); LED_Slot(selected);
state = 1; state = 1;
} else if (button_pressed < 0) { } else if (button_pressed < 0) {
// Click - start simulating. Click again to exit from simulate mode // Click - start simulating. Click again to exit from simulate mode
LED_Slot(selected); LED_Slot(selected);
ConstructEM410xEmulBuf(ReversQuads(low[selected])); ConstructEM410xEmulBuf(ReversQuads(low[selected]));
FlashLEDs(100,5); FlashLEDs(100, 5);
SimulateTagLowFrequency(buflen, 0, 1); SimulateTagLowFrequency(buflen, 0, 1);
LED_Slot(selected); LED_Slot(selected);
state = 0; // Switch to select mode state = 0; // Switch to select mode
} }
break; break;
case 3: case 3:
// Write tag mode // Write tag mode
if (button_pressed > 0) { if (button_pressed > 0) {
// Long press - switch to select mode // Long press - switch to select mode
SpinDown(100); SpinDown(100);
LED_Slot(selected); LED_Slot(selected);
state = 0; state = 0;
} else if (button_pressed < 0) { } else if (button_pressed < 0) {
// Click - write ID to tag // Click - write ID to tag
WriteEM410x(0, (uint32_t) (low[selected] >> 32), (uint32_t) (low[selected] & 0xffffffff)); WriteEM410x(0, (uint32_t)(low[selected] >> 32), (uint32_t)(low[selected] & 0xffffffff));
LED_Slot(selected); LED_Slot(selected);
state = 0; // Switch to select mode state = 0; // Switch to select mode
} }
break; break;
} }
} }
} }