ADD: 'hf felica reader' - added pm3 as FeliCa reader

ADD:  raw commands -  added the basis for sending RAW commands to FeliCa.
CHG: CRC16 rework,  uses table based implementation.  This will change more functions as I go on.
This commit is contained in:
iceman1001 2018-01-29 13:42:02 +01:00
commit c04ac4f9ac
13 changed files with 682 additions and 454 deletions

View file

@ -779,14 +779,17 @@ void UsbPacketReceived(uint8_t *packet, int len) {
#endif #endif
#ifdef WITH_FELICA #ifdef WITH_FELICA
case CMD_FELICA_COMMAND:
felica_sendraw(c);
break;
case CMD_FELICA_LITE_SIM: case CMD_FELICA_LITE_SIM:
HfSimLite(c->arg[0]); felica_sim_lite(c->arg[0]);
break; break;
case CMD_FELICA_SNOOP: case CMD_FELICA_SNOOP:
HfSnoopISO18(c->arg[0], c->arg[1]); felica_sniff(c->arg[0], c->arg[1]);
break; break;
case CMD_FELICA_LITE_DUMP: case CMD_FELICA_LITE_DUMP:
HfDumpFelicaLiteS(); felica_dump_lite_s();
break; break;
#endif #endif

View file

@ -236,9 +236,10 @@ bool cmd_send(uint64_t cmd, uint64_t arg0, uint64_t arg1, uint64_t arg2, void* d
void HfSnoop(int , int); void HfSnoop(int , int);
//felica.c //felica.c
extern void HfSnoopISO18(uint32_t samples, uint32_t triggers); extern void felica_sendraw(UsbCommand *c);
extern void HfSimLite(uint64_t uid); extern void felica_sniff(uint32_t samples, uint32_t triggers);
extern void HfDumpFelicaLiteS(); extern void felica_sim_lite(uint64_t uid);
extern void felica_dump_lite_s();
#ifdef __cplusplus #ifdef __cplusplus
} }

View file

@ -4,12 +4,24 @@
#include "util.h" #include "util.h"
#include "usb_cdc.h" // for usb_poll_validate_length #include "usb_cdc.h" // for usb_poll_validate_length
#include "protocols.h" #include "protocols.h"
#include "crc16.h" // crc16 ccitt
static void felica_setup();
static uint8_t felica_select_card(felica_card_select_t *card);
static void TransmitFor18092_AsReader(uint8_t * frame, int len, uint32_t waitTill, uint8_t power, uint8_t highspeed);
bool WaitForFelicaReply(uint16_t maxbytes);
//random service RW: 0x0009 //random service RW: 0x0009
//random service RO: 0x000B //random service RO: 0x000B
//structure to hold outgoing NFC frame //structure to hold outgoing NFC frame
static uint8_t frameSpace[MAX_FRAME_SIZE+4]; static uint8_t frameSpace[MAX_FRAME_SIZE+4];
// manchester LUT (legacy, technically)
//uint8_t man_LUT[16] = {0x55, 0x56, 0x59, 0x5a, 0x65, 0x66, 0x69, 0x6a, 0x95, 0x96, 0x99, 0x9a, 0xa5, 0xa6, 0xa9, 0xaa};
#ifndef NFC_MAX_FRAME_SIZE
#define NFC_MAX_FRAME_SIZE 260
#endif
//structure to hold incoming NFC frame, used for ISO/IEC 18092-compatible frames //structure to hold incoming NFC frame, used for ISO/IEC 18092-compatible frames
static struct { static struct {
@ -24,81 +36,53 @@ static struct {
uint16_t shiftReg; //for synchronization and offset calculation uint16_t shiftReg; //for synchronization and offset calculation
int posCnt; int posCnt;
uint8_t crc_ok; bool crc_ok;
int rem_len; int rem_len;
uint16_t len; uint16_t len;
uint8_t byte_offset; uint8_t byte_offset;
uint16_t rolling_crc; uint8_t *framebytes;
uint8_t framebytes[260]; //should be enough. maxlen is 255, 254 for data, 2 for sync, 2 for crc //should be enough. maxlen is 255, 254 for data, 2 for sync, 2 for crc
// 0,1 -> SYNC, 2 - len, 3-(len+1)->data, then crc // 0,1 -> SYNC, 2 - len, 3-(len+1)->data, then crc
} NFCFrame; } NFCFrame;
//b2 4d is SYNC, 45645 in 16-bit notation, 10110010 01001101 binary. Frame will not start filling until this is shifted in //b2 4d is SYNC, 45645 in 16-bit notation, 10110010 01001101 binary. Frame will not start filling until this is shifted in
//bit order in byte -reverse, I guess? [((bt>>0)&1),((bt>>1)&1),((bt>>2)&1),((bt>>3)&1),((bt>>4)&1),((bt>>5)&1),((bt>>6)&1),((bt>>7)&1)] -at least in the mode that I read those in //bit order in byte -reverse, I guess? [((bt>>0)&1),((bt>>1)&1),((bt>>2)&1),((bt>>3)&1),((bt>>4)&1),((bt>>5)&1),((bt>>6)&1),((bt>>7)&1)] -at least in the mode that I read those in
# define SYNC_16BIT 45645 # define SYNC_16BIT 45645
static void ResetNFCFrame() { static void NFCFrameReset() {
NFCFrame.state = STATE_UNSYNCD; NFCFrame.state = STATE_UNSYNCD;
NFCFrame.posCnt = 0; NFCFrame.posCnt = 0;
NFCFrame.crc_ok = 0; NFCFrame.crc_ok = false;
NFCFrame.byte_offset = 0; NFCFrame.byte_offset = 0;
NFCFrame.rolling_crc = 0; }
static void NFCInit(uint8_t *data) {
NFCFrame.framebytes = data;
NFCFrameReset();
} }
//shift byte into frame, reversing it at the same time //shift byte into frame, reversing it at the same time
static void shiftInByte(uint8_t bt) { static void shiftInByte(uint8_t bt) {
uint8_t j;
for(int j=0; j < NFCFrame.byte_offset; j++) { for(j=0; j < NFCFrame.byte_offset; j++) {
NFCFrame.framebytes[NFCFrame.posCnt] = ( NFCFrame.framebytes[NFCFrame.posCnt]<<1 ) + (bt & 1); NFCFrame.framebytes[NFCFrame.posCnt] = ( NFCFrame.framebytes[NFCFrame.posCnt]<<1 ) + (bt & 1);
bt >>= 1; bt >>= 1;
} }
NFCFrame.posCnt++; NFCFrame.posCnt++;
NFCFrame.rem_len--; NFCFrame.rem_len--;
for(int j = NFCFrame.byte_offset; j<8; j++) { for(j = NFCFrame.byte_offset; j<8; j++) {
NFCFrame.framebytes[NFCFrame.posCnt] = (NFCFrame.framebytes[NFCFrame.posCnt]<<1 ) + (bt & 1); NFCFrame.framebytes[NFCFrame.posCnt] = (NFCFrame.framebytes[NFCFrame.posCnt]<<1 ) + (bt & 1);
bt >>= 1; bt >>= 1;
} }
} }
//crc table - from lammertb/libcrc //expect framebuf to be preset with len...
static uint16_t crc_tabccitt[256]; void AddCrc(uint8_t* buf, int len) {
static uint8_t crc_tabccitt_init = 0;
static void init_crcccitt_tab( void ) { // buf[2] == length
uint16_t i, j, crc, c; //uint8_t len = buf[2];
uint16_t crc = crc16_xmodem( buf+2, len);
for (i=0; i<256; i++) { buf[2 + len] = (crc >> 8);
buf[3 + len] = (crc & 0xff);
crc = 0;
c = i << 8;
for (j=0; j<8; j++) {
if ( (crc ^ c) & 0x8000 )
crc = ( crc << 1 ) ^ 0x1021;
else
crc = crc << 1;
c = c << 1;
}
crc_tabccitt[i] = crc;
}
crc_tabccitt_init = true;
}
static uint16_t update_crc_ccitt( uint16_t crc, unsigned char c ) {
return (crc << 8) ^ crc_tabccitt[ ((crc >> 8) ^ (uint16_t) c) & 0x00FF ];
}
void SetcrcToFrame(uint8_t * framebf) {
//expect framebuf to be preset with len...
uint16_t crc = 0;
for (int i=2; i < 2 + framebf[2]; i++) {
crc = update_crc_ccitt(crc, framebf[i]);
}
framebf[2 + framebf[2]] = (crc >> 8);
framebf[3 + framebf[2]] = (crc & 0xff);
} }
static void ProcessNFCByte(uint8_t bt) { static void ProcessNFCByte(uint8_t bt) {
@ -106,7 +90,7 @@ static void ProcessNFCByte(uint8_t bt) {
case STATE_UNSYNCD: { case STATE_UNSYNCD: {
//almost any nonzero byte can be start of SYNC. SYNC should be preceded by zeros, but that is not alsways the case //almost any nonzero byte can be start of SYNC. SYNC should be preceded by zeros, but that is not alsways the case
if (bt > 0) { if (bt > 0) {
NFCFrame.shiftReg = reflect(bt, 8); NFCFrame.shiftReg = reflect8(bt);
NFCFrame.state = STATE_TRYING_SYNC; NFCFrame.state = STATE_TRYING_SYNC;
} }
break; break;
@ -117,7 +101,7 @@ static void ProcessNFCByte(uint8_t bt) {
NFCFrame.shiftReg = bt; NFCFrame.shiftReg = bt;
NFCFrame.state = STATE_UNSYNCD; NFCFrame.state = STATE_UNSYNCD;
} else { } else {
for (int i=0; i<8; i++) { for (uint8_t i=0; i<8; i++) {
if (NFCFrame.shiftReg == SYNC_16BIT) { if (NFCFrame.shiftReg == SYNC_16BIT) {
//SYNC done! //SYNC done!
@ -126,7 +110,7 @@ static void ProcessNFCByte(uint8_t bt) {
NFCFrame.framebytes[1] = 0x4d; //write SYNC NFCFrame.framebytes[1] = 0x4d; //write SYNC
NFCFrame.byte_offset = i; NFCFrame.byte_offset = i;
//shift in remaining byte, slowly... //shift in remaining byte, slowly...
for(int j=i; j<8; j++) { for(uint8_t j=i; j<8; j++) {
NFCFrame.framebytes[2] = (NFCFrame.framebytes[2] << 1) + (bt & 1); NFCFrame.framebytes[2] = (NFCFrame.framebytes[2] << 1) + (bt & 1);
bt >>= 1; bt >>= 1;
} }
@ -154,18 +138,12 @@ static void ProcessNFCByte(uint8_t bt) {
case STATE_GET_LENGTH: { case STATE_GET_LENGTH: {
shiftInByte(bt); shiftInByte(bt);
NFCFrame.rem_len = NFCFrame.framebytes[2] - 1; NFCFrame.rem_len = NFCFrame.framebytes[2] - 1;
NFCFrame.rolling_crc = update_crc_ccitt(0, NFCFrame.framebytes[2]); //start calculating CRC for later
NFCFrame.len = NFCFrame.framebytes[2] + 4; //with crc and sync NFCFrame.len = NFCFrame.framebytes[2] + 4; //with crc and sync
NFCFrame.state = STATE_GET_DATA; NFCFrame.state = STATE_GET_DATA;
break; break;
} }
case STATE_GET_DATA: { case STATE_GET_DATA: {
shiftInByte(bt); shiftInByte(bt);
if (NFCFrame.byte_offset != 0)
NFCFrame.rolling_crc = update_crc_ccitt(NFCFrame.rolling_crc, NFCFrame.framebytes[NFCFrame.posCnt-1] );
else
NFCFrame.rolling_crc = update_crc_ccitt(NFCFrame.rolling_crc, NFCFrame.framebytes[NFCFrame.posCnt]);
if (NFCFrame.rem_len <= 0) { if (NFCFrame.rem_len <= 0) {
NFCFrame.state = STATE_GET_CRC; NFCFrame.state = STATE_GET_CRC;
NFCFrame.rem_len = 2; NFCFrame.rem_len = 2;
@ -174,8 +152,11 @@ static void ProcessNFCByte(uint8_t bt) {
} }
case STATE_GET_CRC: { case STATE_GET_CRC: {
shiftInByte(bt); shiftInByte(bt);
if ( NFCFrame.rem_len <= 0 ) { if ( NFCFrame.rem_len <= 0 ) {
NFCFrame.crc_ok = ((NFCFrame.rolling_crc & 0xff) == NFCFrame.framebytes[NFCFrame.len-1] && (NFCFrame.rolling_crc >> 8) == NFCFrame.framebytes[NFCFrame.len-2]); // skip sync 2bytes. IF ok, residue should be 0x0000
uint16_t crc = crc16_xmodem(NFCFrame.framebytes+2, NFCFrame.len-2);
NFCFrame.crc_ok = (crc == 0);
NFCFrame.state = STATE_FULL; NFCFrame.state = STATE_FULL;
NFCFrame.rem_len = 0; NFCFrame.rem_len = 0;
} }
@ -187,9 +168,303 @@ static void ProcessNFCByte(uint8_t bt) {
} }
} }
void HfSnoopISO18(uint32_t samplesToSkip, uint32_t triggersToSkip) { /* Perform FeliCa polling card
if (!crc_tabccitt_init) * Currently does NOT do any collision handling.
init_crcccitt_tab(); * It expects 0-1 cards in the device's range.
*/
static uint8_t felica_select_card(felica_card_select_t *card) {
// POLL command (sync 0xB2, 0x4B, including CRC 0x09, 0x21)
static uint8_t poll[10] = {0xb2,0x4d,0x06,0x00,0xff,0xff,0x00,0x00,0x09,0x21};
felica_setup();
int len = 20;
// We try 20 times, or if answer was received.
do {
// polling card
TransmitFor18092_AsReader(poll, 10, GetCountSspClk()+8, 1, 0);
// polling card failed
if ( WaitForFelicaReply(512) )
break;
WDT_HIT();
} while (--len);
// timed-out
if ( len == 0 )
return 1;
// wrong answer
if (NFCFrame.framebytes[3] != FELICA_POLL_ACK)
return 2;
// VALIDATE CRC residue is 0, hence if crc is a value it failed.
if (crc16_xmodem(NFCFrame.framebytes+2, NFCFrame.len-2))
return 3;
// copy UID
if (card)
memcpy(card->uid, NFCFrame.framebytes + 4, 8);
// more status bytes?
return 0;
}
// poll-0: 0xb2,0x4d,0x06,0x00,0xff,0xff,0x00,0x00,0x09,0x21,
// resp: 0xb2,0x4d,0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80,0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7f,
// poll-1 (reply with available system codes - NFC Tag3 specs, IIRC): 0xb2,0x4d,0x06,0x00,0xff,0xff,0x01,0x00,0x3a,0x10
// resp: 0xb2,0x4d,0x14,0x01, 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX, 0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00, 0x88,0xb4,0x0c,0xe2,
// page-req: 0xb2,0x4d,0x10,0x06, 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX, 0x01, 0x0b,0x00, 0x01, 0x80,0x00, 0x2e,0xb3,
// page-req: 0x06, IDm(8), ServiceNum(1),Slist(2*num) BLocknum (1) BLockids(2-3*num)
// page-resp: 0xb2,0x4d,0x1d,0x07, 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX, 0x00, 0x00, 0x01, 0x10,0x04,0x01,0x00,0x0d,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x23, 0xcb,0x6e,
//builds a readblock frame for felica lite(s). Felica standart has a different file system, AFAIK
// 8-byte ndef, number of blocks, blocks numbers
// number of blocks limited to 4 for FelicaLite(S)
static void BuildFliteRdblk(uint8_t* ndef, int blocknum, uint16_t *blocks ) {
if (blocknum > 4 || blocknum <= 0)
Dbprintf("Invalid number of blocks, %d. Up to 4 are allowed.", blocknum);
uint8_t c = 0, i = 0;
frameSpace[c++] = 0xb2;
frameSpace[c++] = 0x4d;
c++; //set length later
frameSpace[c++] = FELICA_RDBLK_REQ; //command number
//card IDm, from poll
frameSpace[c++] = ndef[0];
frameSpace[c++] = ndef[1];
frameSpace[c++] = ndef[2];
frameSpace[c++] = ndef[3];
frameSpace[c++] = ndef[4];
frameSpace[c++] = ndef[5];
frameSpace[c++] = ndef[6];
frameSpace[c++] = ndef[7];
frameSpace[c++] = 0x01; //number of services
frameSpace[c++] = FLITE_SERVICE_RO & 0xFF; //service code -big endian?
frameSpace[c++] = (FLITE_SERVICE_RO >> 8);
frameSpace[c++] = blocknum; //number of blocks
for (i=0; i < blocknum; i++) {
//3-byte block
if (blocks[i] >= 256) {
frameSpace[c++] = 0x00;
frameSpace[c++] = (blocks[i] >> 8); //block number, little endian....
frameSpace[c++] = (blocks[i] & 0xff);
} else {
frameSpace[c++] = 0x80;
frameSpace[c++] = blocks[i];
}
}
//set length
frameSpace[2] = c-2;
AddCrc(frameSpace, c-2);
}
static void TransmitFor18092_AsReader(uint8_t * frame, int len, uint32_t waitTill, uint8_t power, uint8_t highspeed) {
volatile uint16_t b;
int c;
uint32_t ThisTransferTime = 0;
uint8_t flags = FPGA_MAJOR_MODE_ISO18092;
if ( power )
flags |= FPGA_HF_ISO18092_FLAG_READER;
if (highspeed)
flags |= FPGA_HF_ISO18092_FLAG_424K;
FpgaWriteConfWord(flags);
if (waitTill > 0) {
while( (ThisTransferTime = GetCountSspClk()) < waitTill) {};
}
WDT_HIT();
// preamble
// sending 6 0x00 bytes.
for (c = 0; c < 6;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00;
c++;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint16_t)(AT91C_BASE_SSC->SSC_RHR); (void)b;
}
}
// sending data
for (c = 0; c < len;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = frame[c];
c++;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint16_t)(AT91C_BASE_SSC->SSC_RHR); (void)b;
}
}
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) {};
AT91C_BASE_SSC->SSC_THR = 0x00; //minimum delay
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) {};
AT91C_BASE_SSC->SSC_THR = 0x00; //spin
//disable
if (power)
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 |FPGA_HF_ISO18092_FLAG_READER | 1);
else
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | 1 );
// log
LogTrace(frame, len, 0, 0, NULL, true);
}
bool WaitForFelicaReply(uint16_t maxbytes) {
uint16_t cnt = 0;
NFCFrameReset();
// power, no modulation
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_NOMOD | FPGA_HF_ISO18092_FLAG_READER);
// clear RXRDY:
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for (; cnt < maxbytes; ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
b = (uint8_t)(AT91C_BASE_SSC->SSC_RHR);
ProcessNFCByte(b);
cnt++;
if (NFCFrame.state == STATE_FULL) {
LogTrace(NFCFrame.framebytes, NFCFrame.len, 0, 0, NULL, false);
if (NFCFrame.crc_ok) {
return true;
} else {
Dbprintf("Got frame %d with wrong crc", NFCFrame.framebytes[3]);
return false;
}
break ;
}
}
}
return false;
}
// Set up FeliCa communication (similar to iso14443a_setup)
// field is setup for "Sending as Reader"
static void felica_setup() {
if (MF_DBGLEVEL > 3) Dbprintf("FeliCa_setup Enter");
LEDsoff();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// allocate command receive buffer
BigBuf_free(); BigBuf_Clear_ext(false);
// Initialize Demod and Uart structs
//DemodInit(BigBuf_malloc(MAX_FRAME_SIZE));
NFCInit(BigBuf_malloc(NFC_MAX_FRAME_SIZE));
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Set up the synchronous serial port
FpgaSetupSsc();
init_table(CRC_FELICA);
// Signal field is on with the appropriate LED
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_READER |FPGA_HF_ISO18092_FLAG_NOMOD);
SpinDelay(100);
// Start the timer
StartCountSspClk();
LED_D_ON();
if (MF_DBGLEVEL > 3) Dbprintf("FeliCa_setup Exit");
}
//-----------------------------------------------------------------------------
// RAW FeliCa commands. Send out commands and store answers.
//-----------------------------------------------------------------------------
// arg0 FeliCa flags
// arg1 len of commandbytes
// d.asBytes command bytes to send
void felica_sendraw(UsbCommand *c) {
if (MF_DBGLEVEL > 3) Dbprintf("FeliCa_sendraw Enter");
felica_command_t param = c->arg[0];
size_t len = c->arg[1] & 0xffff;
uint8_t *cmd = c->d.asBytes;
uint32_t arg0 = 0;
felica_card_select_t card;
if ((param & FELICA_CONNECT))
clear_trace();
set_tracing(true);
if ((param & FELICA_CONNECT)) {
felica_setup();
// notify client selecting status.
// if failed selecting, turn off antenna and quite.
if( !(param & FELICA_NO_SELECT) ) {
arg0 = felica_select_card(&card);
cmd_send(CMD_ACK, arg0, sizeof(card.uid), 0, &card, sizeof(felica_card_select_t));
if ( arg0 > 0 )
goto OUT;
}
}
if ((param & FELICA_RAW)) {
// 2 sync, 1 len, 2crc == 5
uint8_t *buf = BigBuf_malloc(len+5);
// add sync bits
buf[0] = 0xb2;
buf[1] = 0x4d;
buf[2] = len;
// copy command
memcpy(buf+2, cmd, len);
if ((param & FELICA_APPEND_CRC)) {
// Don't append crc on empty bytearray...
if ( len > 0 ) {
AddCrc(buf, len);
len += 2;
}
}
TransmitFor18092_AsReader(buf, buf[2]+4, GetCountSspClk()+8, 1, 0);
arg0 = !WaitForFelicaReply(512);
cmd_send(CMD_ACK, arg0, 0, 0, NFCFrame.framebytes+2, NFCFrame.len-2);
}
if ((param & FELICA_NO_DISCONNECT))
return;
OUT:
switch_off();
if (MF_DBGLEVEL > 3) Dbprintf("FeliCa_sendraw Exit");
}
void felica_sniff(uint32_t samplesToSkip, uint32_t triggersToSkip) {
int remFrames = (samplesToSkip) ? samplesToSkip : 0; int remFrames = (samplesToSkip) ? samplesToSkip : 0;
@ -206,8 +481,8 @@ void HfSnoopISO18(uint32_t samplesToSkip, uint32_t triggersToSkip) {
BigBuf_free(); BigBuf_Clear_ext(false); BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace(); clear_trace();
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092|FPGA_HF_ISO18092_FLAG_NOMOD); FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_NOMOD);
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0); AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
SpinDelay(100); SpinDelay(100);
//the frame bits are slow enough. //the frame bits are slow enough.
@ -216,8 +491,10 @@ void HfSnoopISO18(uint32_t samplesToSkip, uint32_t triggersToSkip) {
uint8_t *dest = (uint8_t *)BigBuf_get_addr(); uint8_t *dest = (uint8_t *)BigBuf_get_addr();
uint8_t *destend = dest + n-2; uint8_t *destend = dest + n-2;
ResetNFCFrame(); NFCFrameReset();
init_table(CRC_FELICA);
StartCountSspClk(); //for apx frame timing StartCountSspClk(); //for apx frame timing
uint32_t endframe = GetCountSspClk(); uint32_t endframe = GetCountSspClk();
@ -242,7 +519,7 @@ void HfSnoopISO18(uint32_t samplesToSkip, uint32_t triggersToSkip) {
//crc NOT checked //crc NOT checked
if (NFCFrame.state == STATE_FULL) { if (NFCFrame.state == STATE_FULL) {
endframe = GetCountSspClk(); endframe = GetCountSspClk();
*dest = NFCFrame.crc_ok; //kind of wasteful //*dest = NFCFrame.crc_ok; //kind of wasteful
dest++; dest++;
for(int i=0; i < NFCFrame.len; i++) { for(int i=0; i < NFCFrame.len; i++) {
*dest = NFCFrame.framebytes[i]; *dest = NFCFrame.framebytes[i];
@ -257,7 +534,7 @@ void HfSnoopISO18(uint32_t samplesToSkip, uint32_t triggersToSkip) {
numbts += NFCFrame.len; numbts += NFCFrame.len;
ResetNFCFrame(); NFCFrameReset();
} }
} }
} }
@ -272,138 +549,13 @@ void HfSnoopISO18(uint32_t samplesToSkip, uint32_t triggersToSkip) {
cmd_send(CMD_ACK,1, numbts,0,0,0); cmd_send(CMD_ACK,1, numbts,0,0,0);
} }
// poll-0: 0xb2,0x4d,0x06,0x00,0xff,0xff,0x00,0x00,0x09,0x21,
// resp: 0xb2,0x4d,0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80,0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7f,
// poll-1 (reply with available system codes - NFC Tag3 specs, IIRC): 0xb2,0x4d,0x06,0x00,0xff,0xff,0x01,0x00,0x3a,0x10
// resp: 0xb2,0x4d,0x14,0x01, 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX, 0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00, 0x88,0xb4,0x0c,0xe2,
// page-req: 0xb2,0x4d,0x10,0x06, 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX, 0x01, 0x0b,0x00, 0x01, 0x80,0x00, 0x2e,0xb3,
// page-req: 0x06, IDm(8), ServiceNum(1),Slist(2*num) BLocknum (1) BLockids(2-3*num)
// page-resp: 0xb2,0x4d,0x1d,0x07, 0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX,0xXX, 0x00, 0x00, 0x01, 0x10,0x04,0x01,0x00,0x0d,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x00,0x00,0x00,0x23, 0xcb,0x6e,
//builds a readblock frame for felica lite(s). Felica standart has a different file system, AFAIK
// 8-byte ndef, number of blocks, blocks numbers
// number of blocks limited to 4 for FelicaLite(S)
static void BuildFliteRdblk(uint8_t* ndef, int blocknum,uint16_t * blocks ) {
if (blocknum > 4 || blocknum <= 0)
Dbprintf("Invalid number of blocks, %d. Up to 4 are allowed.", blocknum);
int c = 0, i = 0;
frameSpace[c++] = 0xb2;
frameSpace[c++] = 0x4d;
c++; //set length later
frameSpace[c++] = FELICA_RDBLK_REQ; //command number
for (i=0; i <8; i++) //card IDm, from poll
frameSpace[c++] = ndef[i];
frameSpace[c++]= 0x01; //number of services
frameSpace[c++]= (uint8_t)(((uint16_t)FLITE_SERVICE_RO)&0xff);//service code -big endian?
frameSpace[c++]= (uint8_t)(((uint16_t)FLITE_SERVICE_RO)>>8);
frameSpace[c++]= blocknum; //number of blocks
for (i=0; i < blocknum; i++) {
//3-byte block
if (blocks[i] >= 256) {
frameSpace[c++] = 0x00;
frameSpace[c++] = (blocks[i] >> 8); //block number, little endian....
frameSpace[c++] = (blocks[i] & 0xff);
} else {
frameSpace[c++] = 0x80;
frameSpace[c++] = blocks[i];
}
}
frameSpace[2] = c-2; //set length
SetcrcToFrame(frameSpace);
}
//legacy, technically.
static int manch_tbl_fill = 0;
static uint8_t manch_tbl[16] = {0};
static void fillManch() {
for(uint8_t obs = 0; obs < 16; obs++) {
uint8_t res = 0;
uint8_t tmp = obs << 4;
for(int j=0; j<4; j++) {
res <<= 2;
if (tmp & 0x80)
res += 2;
else
res += 1;
tmp <<= 1;
}
manch_tbl[obs] = res;
}
manch_tbl_fill = 1;
}
static void TransmitFor18092_AsReader(uint8_t * frame, int len, uint32_t waitTill, uint8_t power, uint8_t highspeed) {
if (!manch_tbl_fill)
fillManch();
volatile uint32_t b;
int c;
uint32_t ThisTransferTime = 0;
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | (power ? FPGA_HF_ISO18092_FLAG_READER : 0) | ( highspeed ? FPGA_HF_ISO18092_FLAG_424K : 0) );
if (power)
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_READER | (highspeed > 0) );
else
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 );
if (waitTill > 0) {
while( (ThisTransferTime = GetCountSspClk()) < waitTill)
WDT_HIT();
}
//preamble
for (c = 0; c < 6;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00;
c++;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint16_t)(AT91C_BASE_SSC->SSC_RHR); (void)b;
}
}
for (c = 0; c < len;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = frame[c];
c++;
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
b = (uint16_t)(AT91C_BASE_SSC->SSC_RHR); (void)b;
}
}
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) {};
AT91C_BASE_SSC->SSC_THR = 0x00; //minimum delay
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) {};
AT91C_BASE_SSC->SSC_THR = 0x00; //spin
//disable
if (power)
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 |FPGA_HF_ISO18092_FLAG_READER | 1);
else
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | 1 );
}
#define R_POLL0_LEN 0x16 #define R_POLL0_LEN 0x16
#define R_POLL1_LEN 0x18 #define R_POLL1_LEN 0x18
#define R_READBLK_LEN 0x21 #define R_READBLK_LEN 0x21
//simulate NFC Tag3 card - for now only poll response works //simulate NFC Tag3 card - for now only poll response works
// second half (4 bytes) of NDEF2 goes into nfcid2_0, first into nfcid2_1 // second half (4 bytes) of NDEF2 goes into nfcid2_0, first into nfcid2_1
void HfSimLite( uint64_t nfcid) { void felica_sim_lite(uint64_t nfcid) {
if (!crc_tabccitt_init)
init_crcccitt_tab();
if (!manch_tbl_fill)
fillManch();
int i, curlen = 0; int i, curlen = 0;
uint8_t *curresp = 0; uint8_t *curresp = 0;
@ -418,8 +570,7 @@ void HfSimLite( uint64_t nfcid) {
//NFC tag 3/ ISo technically. Many overlapping standards //NFC tag 3/ ISo technically. Many overlapping standards
DbpString("Felica Lite-S sim start"); DbpString("Felica Lite-S sim start");
Dbprintf("NDEF2 UID: %02x %02x %02x %02x %02x %02x %02x %02x", Dbprintf("NDEF2 UID: %02x %02x %02x %02x %02x %02x %02x %02x",
ndef[0], ndef[1], ndef[2], ndef[3], ndef[0], ndef[1], ndef[2], ndef[3], ndef[4], ndef[5], ndef[6], ndef[7]
ndef[4], ndef[5], ndef[6], ndef[7]
); );
//fill in blanks //fill in blanks
@ -430,9 +581,9 @@ void HfSimLite( uint64_t nfcid) {
} }
//calculate and set CRC //calculate and set CRC
SetcrcToFrame(resp_poll0); AddCrc(resp_poll0, resp_poll0[2]);
SetcrcToFrame(resp_poll1); AddCrc(resp_poll1, resp_poll1[2]);
SetcrcToFrame(resp_readblk); AddCrc(resp_readblk, resp_readblk[2]);
// Select correct configs // Select correct configs
FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
@ -441,19 +592,21 @@ void HfSimLite( uint64_t nfcid) {
// connect Demodulated Signal to ADC: // connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD); SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_NOMOD);
SpinDelay(100);
//it might be possible to use MSB? //it might be possible to use MSB?
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0); AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
ResetNFCFrame(); NFCFrameReset();
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_NOMOD);
SpinDelay(100);
StartCountSspClk(); // should work without now, this is mostly for debugging StartCountSspClk(); // should work without now, this is mostly for debugging
bool listenmode = true; bool listenmode = true;
uint32_t frtm = GetCountSspClk(); uint32_t frtm = GetCountSspClk();
for(;;) { for(;;) {
if( BUTTON_PRESS()) break;
WDT_HIT(); WDT_HIT();
if (listenmode) { if (listenmode) {
@ -491,10 +644,10 @@ void HfSimLite( uint64_t nfcid) {
listenmode = false; listenmode = false;
} }
//clear frame //clear frame
ResetNFCFrame(); NFCFrameReset();
} else { } else {
//frame invalid, clear it out to allow for the next one //frame invalid, clear it out to allow for the next one
ResetNFCFrame(); NFCFrameReset();
} }
} }
} }
@ -507,123 +660,78 @@ void HfSimLite( uint64_t nfcid) {
//switch back //switch back
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_NOMOD); FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_NOMOD);
ResetNFCFrame(); NFCFrameReset();
listenmode = true; listenmode = true;
curlen = 0; curlen = 0;
curresp = NULL; curresp = NULL;
} }
if( BUTTON_PRESS()) break;
} }
switch_off(); switch_off();
DbpString("Felica Lite-S sim end"); DbpString("Felica Lite-S sim end");
} }
int WaitForFelicaReply(int maxbytes) { void felica_dump_lite_s() {
int bcnt = 0;
ResetNFCFrame();
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_NOMOD | FPGA_HF_ISO18092_FLAG_READER);
for (; bcnt < maxbytes; ) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
uint8_t dist = (uint8_t)(AT91C_BASE_SSC->SSC_RHR);
ProcessNFCByte(dist);
bcnt++;
if (NFCFrame.state == STATE_FULL) {
if (NFCFrame.crc_ok) {
return 1;
} else {
Dbprintf("Got frame %d with wrong crc, crc %02x %02x"
, NFCFrame.framebytes[3]
, (NFCFrame.rolling_crc & 0xff)
, (NFCFrame.rolling_crc >> 8)
);
Dbhexdump(25, NFCFrame.framebytes, false);
return 0;
}
break ;
}
}
}
return 0;
}
void HfDumpFelicaLiteS() {
// setup device.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// connect Demodulated Signal to ADC:
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// Set up the synchronous serial port
FpgaSetupSsc();
// allocate command receive buffer
BigBuf_free(); BigBuf_Clear_ext(false);
LED_D_ON();
uint8_t ndef[8]; uint8_t ndef[8];
uint8_t poll[10] = { 0xb2,0x4d,0x06,0x00,0xff,0xff,0x00,0x00,0x09,0x21}; uint8_t poll[10] = { 0xb2,0x4d,0x06,0x00,0xff,0xff,0x00,0x00,0x09,0x21};
uint16_t liteblks[28] = {0x00, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x90,0x91,0x92,0xa0}; uint16_t liteblks[28] = {0x00, 0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x90,0x91,0x92,0xa0};
if (!crc_tabccitt_init) // setup device.
init_crcccitt_tab(); felica_setup();
if (!manch_tbl_fill)
fillManch();
ResetNFCFrame();
FpgaWriteConfWord(FPGA_MAJOR_MODE_ISO18092 | FPGA_HF_ISO18092_FLAG_READER |FPGA_HF_ISO18092_FLAG_NOMOD);
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0); AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
SpinDelay(100);
// Start the timer uint8_t blknum;
StartCountSspClk();
int c;
bool isOK = false; bool isOK = false;
uint16_t cnt = 0, cntfails = 0; uint16_t cnt = 0, cntfails = 0;
uint8_t *dest = (uint8_t *)BigBuf_get_addr(); uint8_t *dest = BigBuf_get_addr();
while (!BUTTON_PRESS() && !usb_poll_validate_length()) { while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT(); WDT_HIT();
// polling?
TransmitFor18092_AsReader(poll, 10, GetCountSspClk()+8, 1, 0); TransmitFor18092_AsReader(poll, 10, GetCountSspClk()+8, 1, 0);
if (WaitForFelicaReply(512) && NFCFrame.framebytes[3] == FELICA_POLL_ACK) { if (WaitForFelicaReply(512) && NFCFrame.framebytes[3] == FELICA_POLL_ACK) {
for (c=0; c < 8; c++) // copy 8bytes to ndef.
ndef[c] = NFCFrame.framebytes[c+4]; memcpy(ndef, NFCFrame.framebytes + 4, 8);
// for (c=0; c < 8; c++)
// ndef[c] = NFCFrame.framebytes[c+4];
for (c=0; c < 28;) { for (blknum=0; blknum < sizeof(liteblks); ) {
BuildFliteRdblk(ndef, 1, &liteblks[c]);
// block to read.
BuildFliteRdblk(ndef, 1, &liteblks[blknum]);
TransmitFor18092_AsReader(frameSpace, frameSpace[2]+4, GetCountSspClk()+8, 1, 0); TransmitFor18092_AsReader(frameSpace, frameSpace[2]+4, GetCountSspClk()+8, 1, 0);
// read block
if (WaitForFelicaReply(1024) && NFCFrame.framebytes[3] == FELICA_RDBLK_ACK) { if (WaitForFelicaReply(1024) && NFCFrame.framebytes[3] == FELICA_RDBLK_ACK) {
dest[cnt++] = liteblks[c]; dest[cnt++] = liteblks[blknum];
uint8_t * fb = NFCFrame.framebytes; uint8_t *fb = NFCFrame.framebytes;
dest[cnt++] = fb[12]; dest[cnt++] = fb[12];
dest[cnt++] = fb[13]; dest[cnt++] = fb[13];
//memcpy(dest+cnt, NFCFrame.framebytes + 15, 16);
//cnt += 16;
for(uint8_t j=0; j < 16; j++) for(uint8_t j=0; j < 16; j++)
dest[cnt++] = fb[15+j]; dest[cnt++] = fb[15+j];
c++; blknum++;
cntfails = 0; cntfails = 0;
// // print raw log.
// Dbprintf("LEN %u | Dump bytes count %u ", NFCFrame.len, cnt);
Dbhexdump(NFCFrame.len, NFCFrame.framebytes+15, 0);
} else { } else {
cntfails++; cntfails++;
if (cntfails > 12) { if (cntfails > 12) {
c++; blknum++;
cntfails = 0; cntfails = 0;
} }
} }
@ -632,7 +740,7 @@ void HfDumpFelicaLiteS() {
break; break;
} }
} }
switch_off(); switch_off();
//Resetting Frame mode (First set in fpgaloader.c) //Resetting Frame mode (First set in fpgaloader.c)
@ -641,4 +749,4 @@ void HfDumpFelicaLiteS() {
//setting tracelen - important! it was set by buffer overflow before //setting tracelen - important! it was set by buffer overflow before
set_tracelen(cnt); set_tracelen(cnt);
cmd_send(CMD_ACK, isOK, cnt, 0, 0, 0); cmd_send(CMD_ACK, isOK, cnt, 0, 0, 0);
} }

View file

@ -52,13 +52,14 @@ typedef struct {
uint8_t *output; uint8_t *output;
uint8_t *parity; uint8_t *parity;
} tDemod; } tDemod;
/*
typedef enum { typedef enum {
MOD_NOMOD = 0, MOD_NOMOD = 0,
MOD_SECOND_HALF, MOD_SECOND_HALF,
MOD_FIRST_HALF, MOD_FIRST_HALF,
MOD_BOTH_HALVES MOD_BOTH_HALVES
} Modulation_t; } Modulation_t;
*/
typedef struct { typedef struct {
enum { enum {

View file

@ -1039,7 +1039,7 @@ void BruteforceIso15693Afi(uint32_t speed) {
data[2] = 0; // AFI data[2] = 0; // AFI
data[3] = 0; // mask length data[3] = 0; // mask length
for (int i = 0; i < 256; i++) { for (uint16_t i = 0; i < 256; i++) {
data[2] = i & 0xFF; data[2] = i & 0xFF;
datalen = AddCrc(data, 4); datalen = AddCrc(data, 4);
recvlen = SendDataTag(data, datalen, false, speed, buf); recvlen = SendDataTag(data, datalen, false, speed, buf);

View file

@ -278,11 +278,19 @@ int CmdAnalyseCRC(const char *Cmd) {
len >>= 1; len >>= 1;
PrintAndLog("\nTests with | %s", sprint_hex(data, len)); PrintAndLog("\nTests with | %s", sprint_hex(data, len));
init_table(CRC_LEGIC);
// 51 f5 7a d6
uint8_t uid[] = {0x51, 0xf5, 0x7a, 0xd6}; //12 34 56
uint8_t legic8 = CRC8Legic(uid, sizeof(uid));
PrintAndLog("LEGIC | %X (EF6F expected) %02x", crc16_legic(data, sizeof(len), legic8), legic8);
PrintAndLog("\nTests of reflection. Current methods in source code"); PrintAndLog("\nTests of reflection. Current methods in source code");
PrintAndLog(" reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L,3) ); PrintAndLog(" reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L,3) );
PrintAndLog(" reflect8(0x80) is %02X == 0x01", reflect8(0x80)); PrintAndLog(" reflect8(0x80) is %02X == 0x01", reflect8(0x80));
PrintAndLog(" reflect16(0x8000) is %04X == 0x0001", reflect16(0x8000)); PrintAndLog(" reflect16(0x8000) is %04X == 0x0001", reflect16(0xc6c6));
// //
// Test of CRC16, '123456789' string. // Test of CRC16, '123456789' string.
// //
@ -290,41 +298,65 @@ int CmdAnalyseCRC(const char *Cmd) {
PrintAndLog("\nTests with '123456789' string"); PrintAndLog("\nTests with '123456789' string");
uint8_t dataStr[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39 }; uint8_t dataStr[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39 };
uint8_t legic8 = CRC8Legic(dataStr, sizeof(dataStr)); legic8 = CRC8Legic(dataStr, sizeof(dataStr));
PrintAndLog("LEGIC: CRC16: %X", CRC16Legic(dataStr, sizeof(dataStr), legic8));
//these below has been tested OK. //these below has been tested OK.
PrintAndLog("Confirmed CRC Implementations"); PrintAndLog("Confirmed CRC Implementations");
printf("\n"); printf("-------------------------------------\n");
PrintAndLog("LEGIC: CRC8 : %X (0xC6 expected)", legic8); printf("CRC 8 based\n\n");
PrintAndLog("MAXIM: CRC8 : %X (0xA1 expected)", CRC8Maxim(dataStr, sizeof(dataStr))); PrintAndLog("LEGIC: CRC8 : %X (C6 expected)", legic8);
PrintAndLog("DNP : CRC16: %X (0x82EA expected)", CRC16_DNP(dataStr, sizeof(dataStr))); PrintAndLog("MAXIM: CRC8 : %X (A1 expected)", CRC8Maxim(dataStr, sizeof(dataStr)));
PrintAndLog("CCITT: CRC16: %X (0xE5CC expected)", CRC16_CCITT(dataStr, sizeof(dataStr))); printf("-------------------------------------\n");
PrintAndLog("ICLASS org: CRC16: %X (0x expected)", iclass_crc16( dataStr, sizeof(dataStr))); printf("CRC16 based\n\n");
init_table(CRC_DNP);
PrintAndLog("DNP | %X (EA82 expected)", crc16_dnp(dataStr, sizeof(dataStr)));
init_table(CRC_CCITT);
PrintAndLog("CCITT | %X (29B1 expected)", crc16_ccitt(dataStr, sizeof(dataStr)));
init_table(CRC_FELICA);
PrintAndLog("FeliCa | %X (31C3 expected)", crc16_xmodem( dataStr, sizeof(dataStr)));
//uint8_t poll[10] = { 0xb2,0x4d,0x06,0x00,0xff,0xff,0x00,0x00,0x09,0x21};
uint8_t poll[] = {0xb2,0x4d,0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80,
0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7f};
PrintAndLog("FeliCa | %X (B37F expected)", crc16_xmodem( poll+2, sizeof(poll)-4));
PrintAndLog("FeliCa | %X (0000 expected)", crc16_xmodem( poll+2, sizeof(poll)-2));
printf("-------------------------------------\n");
printf("\n\n");
// ISO14443 crc A // ISO14443 crc A
// table test.
init_table(CRC_14A);
uint16_t crcA = crc16_a(dataStr, sizeof(dataStr)); uint16_t crcA = crc16_a(dataStr, sizeof(dataStr));
ComputeCrc14443(CRC_14443_A, dataStr, sizeof(dataStr), &b1, &b2); ComputeCrc14443(CRC_14443_A, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcAA = b1 << 8 | b2; uint16_t crcAA = b1 << 8 | b2;
printf("ISO14443 crc A | %04x == %04x\n", crcA, crcAA); printf("ISO14443 crc A | %04x == %04x (BF05 expected)\n", crcA, crcAA);
// ISO14443 crc B // ISO14443 crc B
uint16_t crcB = crc16_a(dataStr, sizeof(dataStr)); init_table(CRC_14B);
ComputeCrc14443(CRC_14443_B, dataStr, sizeof(dataStr)-2, &b1, &b2); uint16_t crcB = crc16_x25(dataStr, sizeof(dataStr));
ComputeCrc14443(CRC_14443_B, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcBB = b1 << 8 | b2; uint16_t crcBB = b1 << 8 | b2;
printf("ISO14443 crc B | %04x == %04x\n", crcB, crcBB); printf("ISO14443 crc B | %04x == %04x (906E expected)\n", crcB, crcBB);
// ISO15693 crc (x.25) // ISO15693 crc (x.25)
init_table(CRC_15);
uint16_t x25 = crc16_x25(dataStr, sizeof(dataStr)); uint16_t x25 = crc16_x25(dataStr, sizeof(dataStr));
uint16_t iso = Iso15693Crc(dataStr, sizeof(dataStr)); uint16_t iso = Iso15693Crc(dataStr, sizeof(dataStr));
printf("ISO15693 crc X25 | %04x == %04x\n", iso, x25 ); printf("ISO15693 crc X25 | %04x == %04x (906E expected)\n", iso, x25 );
// ICLASS ( // ICLASS
uint16_t iclass = crc16_iclass(dataStr, sizeof(dataStr)); init_table(CRC_15_ICLASS);
uint16_t iclass_org = iclass_crc16(dataStr, sizeof(dataStr)); uint16_t iclass_new = crc16_iclass(dataStr, sizeof(dataStr));
printf("ICLASS crc | %04x == %04x\n", iclass, iclass_org); ComputeCrc14443(CRC_ICLASS, dataStr, sizeof(dataStr), &b1, &b2);
uint16_t crcCC = b1 << 8 | b2;
printf("ICLASS crc | %04x == %04x \n", crcCC, iclass_new);
free(data); free(data);
return 0; return 0;
} }
@ -452,14 +484,9 @@ int CmdAnalyseA(const char *Cmd){
printf("14b crc u14b == 0 [%s] %02x %02x\n", (b1==0 && b2==0) ? "YES": "NO" , b1,b2); printf("14b crc u14b == 0 [%s] %02x %02x\n", (b1==0 && b2==0) ? "YES": "NO" , b1,b2);
ComputeCrc14443(CRC_14443_B, u14b, sizeof(u14b)-2, &b1, &b2); ComputeCrc14443(CRC_14443_B, u14b, sizeof(u14b)-2, &b1, &b2);
printf("14b crc u14b == 0 [%s] %02x %02x\n", (b1==0 && b2==0) ? "YES": "NO" , b1,b2); printf("14b crc u14b == 0 [%s] %02x %02x\n", (b1==0 && b2==0) ? "YES": "NO" , b1,b2);
uint8_t data[] = {0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39};
uint16_t kermit = crc16_kermit(data, sizeof(data));
uint16_t xmodem = crc16_xmodem(data, sizeof(data));
printf("x25 or 14b command %04X == (3973)\n", crc16_x25(u14b, sizeof(u14b)-2));
printf(">>> KERMIT 5F6E | XMODEM 9C58 <<<\n"); printf("x25 or 14b command %04X == (0)\n", crc16_x25(u14b, sizeof(u14b)));
printf(" %04X | XMODEM %04X \n", kermit, xmodem);
printf("\n\n"); printf("\n\n");
return 0; return 0;
@ -469,78 +496,47 @@ int CmdAnalyseA(const char *Cmd){
uint64_t t1 = msclock(); uint64_t t1 = msclock();
// test CRC-A etc // test CRC-A etc
for (int foo=0; foo < 10000000; foo++) { for (int foo=0; foo < 10000000; foo++) {
crc16_a(data, sizeof(data)); crc16_a(atqs, sizeof(atqs));
data[1] = rand(); atqs[1] = rand();
data[2] = rand(); atqs[2] = rand();
data[3] = rand(); atqs[3] = rand();
data[4] = rand(); atqs[4] = rand();
} }
t1 = msclock() - t1; printf("ticks crc_a %" PRIu64 "\n", t1); t1 = msclock() - t1; printf("ticks crc_a %" PRIu64 "\n", t1);
t1 = msclock(); t1 = msclock();
for (int foo=0; foo < 10000000; foo++) { for (int foo=0; foo < 10000000; foo++) {
ComputeCrc14443(CRC_14443_A, data, sizeof(data), &b1, &b2); ComputeCrc14443(CRC_14443_A, atqs, sizeof(atqs), &b1, &b2);
data[1] = rand(); atqs[1] = rand();
data[2] = rand(); atqs[2] = rand();
data[3] = rand(); atqs[3] = rand();
data[4] = rand(); } atqs[4] = rand(); }
t1 = msclock() - t1; printf("ticks curr CRC-a %" PRIu64 "\n", t1); t1 = msclock() - t1; printf("ticks curr CRC-a %" PRIu64 "\n", t1);
// test ISO15693 crc // test ISO15693 crc
t1 = msclock(); t1 = msclock();
for (int foo=0; foo < 10000000; foo++) { for (int foo=0; foo < 10000000; foo++) {
crc16_x25(data, sizeof(data)); crc16_x25(atqs, sizeof(atqs));
data[1] = rand(); atqs[1] = rand();
data[2] = rand(); atqs[2] = rand();
data[3] = rand(); atqs[3] = rand();
data[4] = rand(); atqs[4] = rand();
} }
t1 = msclock() - t1; printf("ticks x25 %" PRIu64 "\n", t1); t1 = msclock() - t1; printf("ticks x25 %" PRIu64 "\n", t1);
t1 = msclock(); t1 = msclock();
for (int foo=0; foo < 10000000; foo++) { for (int foo=0; foo < 10000000; foo++) {
Iso15693Crc(data, sizeof(data)); Iso15693Crc(atqs, sizeof(atqs));
data[1] = rand(); atqs[1] = rand();
data[2] = rand(); atqs[2] = rand();
data[3] = rand(); atqs[3] = rand();
data[4] = rand(); } atqs[4] = rand(); }
t1 = msclock() - t1; printf("ticks curr iso15 (x25) %" PRIu64 "\n", t1); t1 = msclock() - t1; printf("ticks curr iso15 (x25) %" PRIu64 "\n", t1);
return 0; //return 0;
uint16_t v = 1;
for(uint8_t i = 0; i < 16; i++) {
uint16_t r = reflect16(v);
printf(" 0x%04x <-> 0x%04x | ", v, r);
for(uint8_t i = 0; i < 16; i++) {
printf("%c", (v & (1 << i) ) ? '1':'0');
}
printf(" | ");
for(uint8_t i = 0; i < 16; i++) {
printf("%c", (r & (1 << i) ) ? '1':'0');
}
printf("\n");
v <<= 1;
}
uint8_t b = 1;
for(uint8_t i = 0; i < 8; i++) {
uint8_t r = reflect8(b);
printf(" 0x%02x <-> 0x%02x | ", b, r);
for(uint8_t i = 0; i < 8; i++) {
printf("%c", (b & (1 << i) ) ? '1':'0');
}
printf(" | ");
for(uint8_t i = 0; i < 8; i++) {
printf("%c", (r & (1 << i) ) ? '1':'0');
}
printf("\n");
b <<= 1;
}
// 16bit test // 16bit test
uint8_t md; uint8_t md;
uint32_t mb, mc; uint32_t mb, mc;

View file

@ -75,28 +75,44 @@ int CmdHFFelicaList(const char *Cmd) {
int CmdHFFelicaReader(const char *Cmd) { int CmdHFFelicaReader(const char *Cmd) {
bool silent = (Cmd[0] == 's' || Cmd[0] == 'S'); bool silent = (Cmd[0] == 's' || Cmd[0] == 'S');
UsbCommand cDisconnect = {CMD_READER_ISO_14443a, {0,0,0}}; //UsbCommand cDisconnect = {CMD_FELICA_COMMAND, {0,0,0}};
UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}}; UsbCommand c = {CMD_FELICA_COMMAND, {FELICA_CONNECT, 0, 0}};
clearCommandBuffer(); clearCommandBuffer();
SendCommand(&c); SendCommand(&c);
UsbCommand resp; UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) {
if (!silent) PrintAndLog("iso14443a card select failed"); if (!silent) PrintAndLog("FeliCa card select failed");
SendCommand(&cDisconnect); //SendCommand(&cDisconnect);
return 0; return 0;
} }
iso14a_card_select_t card; felica_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t)); memcpy(&card, (felica_card_select_t *)resp.d.asBytes, sizeof(felica_card_select_t));
uint64_t select_status = resp.arg[0]; uint64_t status = resp.arg[0];
if (select_status == 0) { switch(status) {
if (!silent) PrintAndLog("iso14443a card select failed"); case 1: {
SendCommand(&cDisconnect); if (!silent)
return 0; PrintAndLog("Card timeout");
break;
}
case 2: {
if (!silent)
PrintAndLog("Card answered wrong");
break;
}
case 3: {
if (!silent)
PrintAndLog("CRC check failed");
break;
}
case 0: {
PrintAndLog("FeliCa Card found");
PrintAndLog("UID: %s", sprint_hex(card.uid, sizeof(card.uid)));
break;
}
} }
return status;
return select_status;
} }
// simulate iso18092 / FeliCa tag // simulate iso18092 / FeliCa tag
@ -369,6 +385,9 @@ int CmdHFFelicaDumpLite(const char *Cmd) {
if ( tracelen > 0 ) { if ( tracelen > 0 ) {
GetFromBigBuf(trace, tracelen, 0); GetFromBigBuf(trace, tracelen, 0);
PrintAndLog("[+] Recorded Activity (trace len = %d bytes)", tracelen); PrintAndLog("[+] Recorded Activity (trace len = %d bytes)", tracelen);
print_hex_break(trace, tracelen, 32);
printSep(); printSep();
uint16_t tracepos = 0; uint16_t tracepos = 0;
while (tracepos < tracelen) while (tracepos < tracelen)
@ -521,7 +540,7 @@ void waitCmdFelica(uint8_t iSelect) {
UsbCommand resp; UsbCommand resp;
uint16_t len = 0; uint16_t len = 0;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
len = iSelect ? (resp.arg[1] & 0xffff) : (resp.arg[0] & 0xffff); len = iSelect ? (resp.arg[1] & 0xffff) : (resp.arg[0] & 0xffff);
PrintAndLog("received %i octets", len); PrintAndLog("received %i octets", len);
if(!len) if(!len)

View file

@ -25,6 +25,7 @@
#include "iso14443crc.h" #include "iso14443crc.h"
#include "data.h" #include "data.h"
#include "cmdhf.h" // list cmd #include "cmdhf.h" // list cmd
#include "mifare.h" // felica_card_select_t struct
extern int CmdHFFelica(const char *Cmd); extern int CmdHFFelica(const char *Cmd);
extern int CmdHFFelicaList(const char *Cmd); extern int CmdHFFelicaList(const char *Cmd);

View file

@ -723,7 +723,8 @@ int CmdLegicCalcCrc(const char *Cmd){
switch (type){ switch (type){
case 16: case 16:
PrintAndLog("Legic crc16: %X", CRC16Legic(data, len, uidcrc)); init_table(CRC_LEGIC);
PrintAndLog("Legic crc16: %X", crc16_legic(data, len, uidcrc));
break; break;
default: default:
PrintAndLog("Legic crc8: %X", CRC8Legic(data, len) ); PrintAndLog("Legic crc8: %X", CRC8Legic(data, len) );

View file

@ -125,38 +125,4 @@ uint32_t CRC8Legic(uint8_t *buff, size_t size) {
for ( int i = 0; i < size; ++i) for ( int i = 0; i < size; ++i)
crc_update2(&crc, buff[i], 8); crc_update2(&crc, buff[i], 8);
return reflect8(crc_finish(&crc)); return reflect8(crc_finish(&crc));
} }
// This CRC-16 is used in Legic Advant systems.
// poly=0xB400, reversed poly=0x init=depends refin=true refout=true xorout=0x0000 check= name="CRC-16/LEGIC"
uint32_t CRC16Legic(uint8_t *buff, size_t size, uint8_t uidcrc) {
#define CRC16_POLY_LEGIC 0xB400
uint16_t initial = reflect(uidcrc, 8);
//uint16_t initial = uidcrc;
initial |= initial << 8;
crc_t crc;
crc_init_ref(&crc, 16, CRC16_POLY_LEGIC, initial, 0, true, true);
for ( int i=0; i < size; ++i)
crc_update(&crc, buff[i], 8);
return reflect16(crc_finish(&crc));
}
// poly=0x3d65 init=0x0000 refin=true refout=true xorout=0xffff check=0xea82 name="CRC-16/DNP"
uint32_t CRC16_DNP(uint8_t *buff, size_t size) {
crc_t crc;
crc_init_ref(&crc, 16, 0x3d65, 0, 0xffff, true, true);
for ( int i=0; i < size; ++i)
crc_update2(&crc, buff[i], 8);
return BSWAP_16(crc_finish(&crc));
}
// poly=0x1021 init=0x1d0f refin=false refout=false xorout=0x0000 check=0xe5cc name="CRC-16/AUG-CCITT"
uint32_t CRC16_CCITT(uint8_t *buff, size_t size) {
crc_t crc;
crc_init(&crc, 16, 0x1021, 0x1d0f, 0);
for ( int i=0; i < size; ++i)
crc_update(&crc, buff[i], 8);
return crc_finish(&crc);
}

View file

@ -62,15 +62,6 @@ uint32_t CRC4Legic(uint8_t *buff, size_t size);
// Calculate CRC-8/Legic checksum // Calculate CRC-8/Legic checksum
uint32_t CRC8Legic(uint8_t *buff, size_t size); uint32_t CRC8Legic(uint8_t *buff, size_t size);
// Calculate CRC-16/Legic checksum
// the initial_value is based on the previous legic_Crc8 of the UID.
// ie: uidcrc = 0x78 then initial_value == 0x7878
uint32_t CRC16Legic(uint8_t *buff, size_t size, uint8_t uidcrc);
// test crc 16.
uint32_t CRC16_DNP(uint8_t *buff, size_t size);
uint32_t CRC16_CCITT(uint8_t *buff, size_t size);
/* Static initialization of a crc structure */ /* Static initialization of a crc structure */
#define CRC_INITIALIZER(_order, _polynom, _initial_value, _final_xor) { \ #define CRC_INITIALIZER(_order, _polynom, _initial_value, _final_xor) { \
.state = ((_initial_value) & ((1L<<(_order))-1)), \ .state = ((_initial_value) & ((1L<<(_order))-1)), \

View file

@ -5,8 +5,97 @@
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// CRC16 // CRC16
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
#include "crc16.h" #include "crc16.h"
static uint16_t crc_table[256];
static bool crc_table_init = false;
static CrcType_t crc_type = CRC_NONE;
void init_table(CrcType_t ct) {
// same crc algo, and initialised already
if ( ct == crc_type && crc_table_init)
return;
// not the same crc algo. reset table.
if ( ct != crc_type)
reset_table();
crc_type = ct;
switch (ct) {
case CRC_14A:
case CRC_14B:
case CRC_15:
case CRC_15_ICLASS: generate_table(CRC16_POLY_CCITT, true); break;
case CRC_FELICA: generate_table(CRC16_POLY_CCITT, false); break;
case CRC_LEGIC: generate_table(CRC16_POLY_LEGIC, true); break;
case CRC_DNP: generate_table(CRC16_POLY_DNP, true); break;
case CRC_CCITT: generate_table(CRC16_POLY_CCITT, false); break;
default:
crc_table_init = false;
crc_type = CRC_NONE;
break;
}
}
void generate_table( uint16_t polynomial, bool refin) {
uint16_t i, j, crc, c;
for (i = 0; i < 256; i++) {
crc = 0;
if (refin)
c = reflect8(i) << 8;
else
c = i << 8;
for (j = 0; j < 8; j++) {
if ( (crc ^ c) & 0x8000 )
crc = ( crc << 1 ) ^ polynomial;
else
crc = crc << 1;
c = c << 1;
}
if (refin)
crc = reflect16(crc);
crc_table[i] = crc;
}
crc_table_init = true;
}
void reset_table(void) {
memset(crc_table, 0, sizeof(crc_table));
crc_table_init = false;
crc_type = CRC_NONE;
}
uint16_t crc16_fast(uint8_t const *d, size_t n, uint16_t initval, bool refin, bool refout) {
// fast lookup table algorithm without augmented zero bytes, e.g. used in pkzip.
// only usable with polynom orders of 8, 16, 24 or 32.
if (n == 0)
return (~initval);
uint16_t crc = initval;
if (refin)
crc = reflect16(crc);
if (!refin)
while (n--) crc = (crc << 8) ^ crc_table[ ((crc >> 8) ^ *d++) & 0xFF ];
else
while (n--) crc = (crc >> 8) ^ crc_table[ (crc & 0xFF) ^ *d++];
if (refout^refin)
crc = reflect16(crc);
return crc;
}
uint16_t update_crc16_ex( uint16_t crc, uint8_t c, uint16_t polynomial ) { uint16_t update_crc16_ex( uint16_t crc, uint8_t c, uint16_t polynomial ) {
uint16_t i, v, tmp = 0; uint16_t i, v, tmp = 0;
@ -27,11 +116,8 @@ uint16_t update_crc16( uint16_t crc, uint8_t c ) {
return update_crc16_ex( crc, c, CRC16_POLY_CCITT); return update_crc16_ex( crc, c, CRC16_POLY_CCITT);
} }
// two ways. // two ways. msb or lsb loop.
// msb or lsb loop.
//
uint16_t crc16(uint8_t const *d, size_t length, uint16_t remainder, uint16_t polynomial, bool refin, bool refout) { uint16_t crc16(uint8_t const *d, size_t length, uint16_t remainder, uint16_t polynomial, bool refin, bool refout) {
if (length == 0) if (length == 0)
return (~remainder); return (~remainder);
@ -51,52 +137,69 @@ uint16_t crc16(uint8_t const *d, size_t length, uint16_t remainder, uint16_t pol
remainder <<= 1; remainder <<= 1;
} }
} }
/*
c = (c ^ (uint8_t)(remainder & 0x00FF));
c = (c ^ (c << 4));
remainder = (remainder >> 8) ^ ((uint16_t) c << 8) ^ ((uint16_t) c << 3) ^ ((uint16_t) c >> 4);
*/
} }
if (refout) if (refout)
remainder = reflect16(remainder); remainder = reflect16(remainder);
return remainder; return remainder;
} }
//poly=0x1021 init=0xffff refin=false refout=false xorout=0x0000 check=0x29b1 residue=0x0000 name="CRC-16/CCITT-FALSE"
uint16_t crc16_ccitt(uint8_t const *d, size_t n) { uint16_t crc16_ccitt(uint8_t const *d, size_t n) {
return crc16(d, n, 0xffff, CRC16_POLY_CCITT, false, false); return crc16_fast(d, n, 0xffff, false, false);
} }
//poly=0x1021 init=0x0000 refin=true refout=true xorout=0x0000 name="KERMIT" //poly=0x1021 init=0x0000 refin=true refout=true xorout=0x0000 name="KERMIT"
uint16_t crc16_kermit(uint8_t const *d, size_t n) { uint16_t crc16_kermit(uint8_t const *d, size_t n) {
return crc16(d, n, 0x0000, CRC16_POLY_CCITT, true, true); return crc16_fast(d, n, 0x0000, true, true);
} }
//FeliCa uses XMODEM // FeliCa uses XMODEM
//poly=0x1021 init=0x0000 refin=false refout=false xorout=0x0000 name="XMODEM" //poly=0x1021 init=0x0000 refin=false refout=false xorout=0x0000 name="XMODEM"
uint16_t crc16_xmodem(uint8_t const *d, size_t n) { uint16_t crc16_xmodem(uint8_t const *d, size_t n) {
return crc16(d, n, 0x0000, CRC16_POLY_CCITT, false, false); return crc16_fast(d, n, 0x0000, false, false);
} }
//ISO 15693 uses X-25, CRC_B (or 14443-3 )
// Following standards uses X-25
// ISO 15693,
// ISO 14443 CRC-B
// ISO/IEC 13239 (formerly ISO/IEC 3309)
//poly=0x1021 init=0xffff refin=true refout=true xorout=0xffff name="X-25" //poly=0x1021 init=0xffff refin=true refout=true xorout=0xffff name="X-25"
uint16_t crc16_x25(uint8_t const *d, size_t n) { uint16_t crc16_x25(uint8_t const *d, size_t n) {
uint16_t crc = crc16(d, n, 0xffff, CRC16_POLY_CCITT, true, true); uint16_t crc = crc16_fast(d, n, 0xffff, true, true);
crc ^= 0xFFFF; crc = ~crc;
return crc; return crc;
} }
//CRC-A (14443-3) // CRC-A (14443-3)
//poly=0x1021 init=0xc6c6 refin=true refout=true xorout=0x0000 name="CRC-A" //poly=0x1021 init=0xc6c6 refin=true refout=true xorout=0x0000 name="CRC-A"
uint16_t crc16_a(uint8_t const *d, size_t n) { uint16_t crc16_a(uint8_t const *d, size_t n) {
return crc16(d, n, 0xc6c6, 0x1021, true, true); return crc16_fast(d, n, 0xC6C6, true, true);
} }
//width=16 poly=0x8408 init=0xffff refin=true refout=true xorout=0x0BC3 check=0xF0B8 name="CRC-16/ICLASS" // iClass crc
// initvalue 0x4807 reflected 0xE012
// poly 0x1021 reflected 0x8408
// poly=0x1021 init=0x4807 refin=true refout=true xorout=0x0BC3 check=0xF0B8 name="CRC-16/ICLASS"
uint16_t crc16_iclass(uint8_t const *d, size_t n) { uint16_t crc16_iclass(uint8_t const *d, size_t n) {
uint16_t crc = crc16(d, n, 0xffff, CRC16_POLY_CCITT, true, true); return crc16_fast(d, n, 0x4807, true, true);
crc ^= 0x0BC3; }
// This CRC-16 is used in Legic Advant systems.
// poly=0xB400, init=depends refin=true refout=true xorout=0x0000 check= name="CRC-16/LEGIC"
uint16_t crc16_legic(uint8_t const *d, size_t n, uint8_t uidcrc) {
//uint16_t initial = reflect8(uidcrc);
//initial |= initial << 8;
uint16_t initial = uidcrc << 8 | uidcrc;
return crc16_fast(d, n, initial, true, true);
}
// poly=0x3d65 init=0x0000 refin=true refout=true xorout=0xffff check=0xea82 name="CRC-16/DNP"
uint16_t crc16_dnp(uint8_t const *d, size_t n) {
uint16_t crc = crc16_fast(d, n, 0, true, true);
crc = ~crc;
return crc; return crc;
} }
// CHECK functions. // -----------------CHECK functions.
bool check_crc16_ccitt(uint8_t const *d, size_t n) { bool check_crc16_ccitt(uint8_t const *d, size_t n) {
if (n < 3) return false; if (n < 3) return false;

View file

@ -9,22 +9,60 @@
#define __CRC16_H #define __CRC16_H
#include <stdint.h> #include <stdint.h>
#include "util.h" // SwapBits #include <stdio.h>
#include "util.h"
#define CRC16_POLY_CCITT 0x1021 #define CRC16_POLY_CCITT 0x1021
#define CRC16_POLY 0x8408 #define CRC16_POLY_LEGIC 0xc6c6 //0x6363
#define CRC16_POLY_DNP 0x3d65
typedef enum {
CRC_NONE,
CRC_14A,
CRC_14B,
CRC_15,
CRC_15_ICLASS,
CRC_FELICA,
CRC_LEGIC,
CRC_DNP,
CRC_CCITT,
} CrcType_t;
uint16_t update_crc16_ex( uint16_t crc, uint8_t c, uint16_t polynomial ); uint16_t update_crc16_ex( uint16_t crc, uint8_t c, uint16_t polynomial );
uint16_t update_crc16(uint16_t crc, uint8_t c); uint16_t update_crc16(uint16_t crc, uint8_t c);
uint16_t crc16(uint8_t const *message, size_t length, uint16_t remainder, uint16_t polynomial, bool refin, bool refout); uint16_t crc16(uint8_t const *message, size_t length, uint16_t remainder, uint16_t polynomial, bool refin, bool refout);
// Calculate CRC-16/CCITT-FALSE checksum
uint16_t crc16_ccitt(uint8_t const *d, size_t n); uint16_t crc16_ccitt(uint8_t const *d, size_t n);
// Calculate CRC-16/KERMIT checksum
uint16_t crc16_kermit(uint8_t const *d, size_t n); uint16_t crc16_kermit(uint8_t const *d, size_t n);
// Calculate CRC-16/XMODEM (FeliCa) checksum
uint16_t crc16_xmodem(uint8_t const *d, size_t n); uint16_t crc16_xmodem(uint8_t const *d, size_t n);
// Calculate CRC-16/X25 (ISO15693, ISO14443 CRC-B,ISO/IEC 13239) checksum
uint16_t crc16_x25(uint8_t const *d, size_t n); uint16_t crc16_x25(uint8_t const *d, size_t n);
// Calculate CRC-16/CRC-A (ISO14443 CRC-A) checksum
uint16_t crc16_a(uint8_t const *d, size_t n); uint16_t crc16_a(uint8_t const *d, size_t n);
uint16_t crc16_iclass(uint8_t const *d, size_t size);
// Calculate CRC-16/iCLASS checksum
uint16_t crc16_iclass(uint8_t const *d, size_t n);
// Calculate CRC-16/DNP checksum
uint16_t crc16_dnp(uint8_t const *d, size_t n);
// Calculate CRC-16/Legic checksum
// the initial_value is based on the previous legic_Crc8 of the UID.
// ie: uidcrc = 0x78 then initial_value == 0x7878
uint16_t crc16_legic(uint8_t const *d, size_t n, uint8_t uidcrc);
// table implementation
void init_table(CrcType_t crctype);
void reset_table(void);
void generate_table(uint16_t polynomial, bool refin);
uint16_t crc16_fast(uint8_t const *d, size_t n, uint16_t initval, bool refin, bool refout);
//checks //checks
bool check_crc16_ccitt(uint8_t const *d, size_t n); bool check_crc16_ccitt(uint8_t const *d, size_t n);