FIX: 'lf hitag' - init of TC0 missing (@piwi)

CHG: 'lf hitag' - factoring code (@iceman)
This commit is contained in:
iceman1001 2019-03-13 10:16:12 +01:00
commit c01497b8af
4 changed files with 283 additions and 250 deletions

View file

@ -60,7 +60,7 @@ APP_CFLAGS = $(PLATFORM_DEFS) \
SRC_LCD = fonts.c LCD.c
SRC_LF = lfops.c hitag2.c hitagS.c lfsampling.c pcf7931.c lfdemod.c
SRC_LF = lfops.c hitag2_crypto.c hitag2.c hitagS.c lfsampling.c pcf7931.c lfdemod.c
SRC_ISO15693 = iso15693.c iso15693tools.c
#SRC_ISO14443a = iso14443a.c mifareutil.c mifarecmd.c epa.c mifaresim.c
SRC_ISO14443a = iso14443a.c mifareutil.c mifarecmd.c epa.c

View file

@ -3,7 +3,7 @@
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Hitag2 emulation (preliminary test version)
// Hitag2 emulation
//
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
//-----------------------------------------------------------------------------
@ -15,11 +15,13 @@
//
// (c) 2012 Roel Verdult
//-----------------------------------------------------------------------------
// Piwi, 2019
// Iceman, 2019
#include "hitag2_crypto.h"
#include "proxmark3.h"
#include "apps.h"
#include "util.h"
#include "hitag2.h"
#include "string.h"
#include "BigBuf.h"
@ -29,20 +31,6 @@ static bool bAuthenticating;
static bool bPwd;
static bool bSuccessful;
struct hitag2_tag {
uint32_t uid;
enum {
TAG_STATE_RESET = 0x01, // Just powered up, awaiting GetSnr
TAG_STATE_ACTIVATING = 0x02, // In activation phase (password mode), sent UID, awaiting reader password
TAG_STATE_ACTIVATED = 0x03, // Activation complete, awaiting read/write commands
TAG_STATE_WRITING = 0x04, // In write command, awaiting sector contents to be written
} state;
unsigned int active_sector;
uint8_t crypto_active;
uint64_t cs;
uint8_t sectors[12][4];
};
static struct hitag2_tag tag = {
.state = TAG_STATE_RESET,
.sectors = { // Password mode: | Crypto mode:
@ -81,87 +69,6 @@ static uint8_t key[8];
static uint8_t writedata[4];
static uint64_t cipher_state;
/* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
// Software optimized 48-bit Philips/NXP Mifare Hitag2 PCF7936/46/47/52 stream cipher algorithm by I.C. Wiener 2006-2007.
// For educational purposes only.
// No warranties or guarantees of any kind.
// This code is released into the public domain by its author.
// Basic macros:
#define u8 uint8_t
#define u32 uint32_t
#define u64 uint64_t
#define rev8(x) ((((x)>>7)&1)+((((x)>>6)&1)<<1)+((((x)>>5)&1)<<2)+((((x)>>4)&1)<<3)+((((x)>>3)&1)<<4)+((((x)>>2)&1)<<5)+((((x)>>1)&1)<<6)+(((x)&1)<<7))
#define rev16(x) (rev8 (x)+(rev8 (x>> 8)<< 8))
#define rev32(x) (rev16(x)+(rev16(x>>16)<<16))
#define rev64(x) (rev32(x)+(rev32(x>>32)<<32))
#define bit(x,n) (((x)>>(n))&1)
#define bit32(x,n) ((((x)[(n)>>5])>>((n)))&1)
#define inv32(x,i,n) ((x)[(i)>>5]^=((u32)(n))<<((i)&31))
#define rotl64(x, n) ((((u64)(x))<<((n)&63))+(((u64)(x))>>((0-(n))&63)))
// Single bit Hitag2 functions:
#define i4(x,a,b,c,d) ((u32)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
static const u32 ht2_f4a = 0x2C79; // 0010 1100 0111 1001
static const u32 ht2_f4b = 0x6671; // 0110 0110 0111 0001
static const u32 ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
static u32 _f20(const u64 x) {
u32 i5;
i5 = ((ht2_f4a >> i4(x, 1, 2, 4, 5)) & 1) * 1
+ ((ht2_f4b >> i4(x, 7, 11, 13, 14)) & 1) * 2
+ ((ht2_f4b >> i4(x, 16, 20, 22, 25)) & 1) * 4
+ ((ht2_f4b >> i4(x, 27, 28, 30, 32)) & 1) * 8
+ ((ht2_f4a >> i4(x, 33, 42, 43, 45)) & 1) * 16;
return (ht2_f5c >> i5) & 1;
}
static u64 _hitag2_init(const u64 key, const u32 serial, const u32 IV) {
u32 i;
u64 x = ((key & 0xFFFF) << 32) + serial;
for (i = 0; i < 32; i++) {
x >>= 1;
x += (u64)(_f20(x) ^ (((IV >> i) ^ (key >> (i + 16))) & 1)) << 47;
}
return x;
}
static u64 _hitag2_round(u64 *state) {
u64 x = *state;
x = (x >> 1) +
((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6)
^ (x >> 7) ^ (x >> 8) ^ (x >> 16) ^ (x >> 22)
^ (x >> 23) ^ (x >> 26) ^ (x >> 30) ^ (x >> 41)
^ (x >> 42) ^ (x >> 43) ^ (x >> 46) ^ (x >> 47)) & 1) << 47);
*state = x;
return _f20(x);
}
// "MIKRON" = O N M I K R
// Key = 4F 4E 4D 49 4B 52 - Secret 48-bit key
// Serial = 49 43 57 69 - Serial number of the tag, transmitted in clear
// Random = 65 6E 45 72 - Random IV, transmitted in clear
//~28~DC~80~31 = D7 23 7F CE - Authenticator value = inverted first 4 bytes of the keystream
// The code below must print out "D7 23 7F CE 8C D0 37 A9 57 49 C1 E6 48 00 8A B6".
// The inverse of the first 4 bytes is sent to the tag to authenticate.
// The rest is encrypted by XORing it with the subsequent keystream.
static u32 _hitag2_byte(u64 *x) {
u32 i, c;
for (i = 0, c = 0; i < 8; i++) {
c += (u32) _hitag2_round(x) << (i ^ 7);
}
return c;
}
static int hitag2_reset(void) {
tag.state = TAG_STATE_RESET;
tag.crypto_active = 0;
@ -173,48 +80,13 @@ static int hitag2_init(void) {
return 0;
}
static void hitag2_cipher_reset(struct hitag2_tag *tag, const uint8_t *iv) {
uint64_t key = ((uint64_t)tag->sectors[2][2]) |
((uint64_t)tag->sectors[2][3] << 8) |
((uint64_t)tag->sectors[1][0] << 16) |
((uint64_t)tag->sectors[1][1] << 24) |
((uint64_t)tag->sectors[1][2] << 32) |
((uint64_t)tag->sectors[1][3] << 40);
uint32_t uid = ((uint32_t)tag->sectors[0][0]) |
((uint32_t)tag->sectors[0][1] << 8) |
((uint32_t)tag->sectors[0][2] << 16) |
((uint32_t)tag->sectors[0][3] << 24);
uint32_t iv_ = (((uint32_t)(iv[0]))) |
(((uint32_t)(iv[1])) << 8) |
(((uint32_t)(iv[2])) << 16) |
(((uint32_t)(iv[3])) << 24);
tag->cs = _hitag2_init(rev64(key), rev32(uid), rev32(iv_));
}
static int hitag2_cipher_authenticate(uint64_t *cs, const uint8_t *authenticator_is) {
uint8_t authenticator_should[4];
authenticator_should[0] = ~_hitag2_byte(cs);
authenticator_should[1] = ~_hitag2_byte(cs);
authenticator_should[2] = ~_hitag2_byte(cs);
authenticator_should[3] = ~_hitag2_byte(cs);
return (memcmp(authenticator_should, authenticator_is, 4) == 0);
}
static int hitag2_cipher_transcrypt(uint64_t *cs, uint8_t *data, unsigned int bytes, unsigned int bits) {
int i;
for (i = 0; i < bytes; i++) data[i] ^= _hitag2_byte(cs);
for (i = 0; i < bits; i++) data[bytes] ^= _hitag2_round(cs) << (7 - i);
return 0;
}
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
#ifndef T0
#define T0 192
#define SHORT_COIL() LOW(GPIO_SSC_DOUT)
#define OPEN_COIL() HIGH(GPIO_SSC_DOUT)
#endif
#define HITAG_FRAME_LEN 20
#define HITAG_T_STOP 36 /* T_EOF should be > 36 */
@ -241,7 +113,6 @@ static int hitag2_cipher_transcrypt(uint64_t *cs, uint8_t *data, unsigned int by
#define HITAG_T_TAG_CAPTURE_THREE_HALF 41
#define HITAG_T_TAG_CAPTURE_FOUR_HALF 57
static void hitag_send_bit(int bit) {
LED_A_ON();
// Reset clock for the next bit
@ -279,7 +150,6 @@ static void hitag_send_frame(const uint8_t *frame, size_t frame_len) {
LOW(GPIO_SSC_DOUT);
}
static void hitag2_handle_reader_command(uint8_t *rx, const size_t rxlen, uint8_t *tx, size_t *txlen) {
uint8_t rx_air[HITAG_FRAME_LEN];
@ -419,7 +289,6 @@ static void hitag_reader_send_bit(int bit) {
// Wait for 4-10 times the carrier period
while (AT91C_BASE_TC0->TC_CV < T0 * 6);
// SpinDelayUs(8*8);
// Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT);
@ -435,7 +304,6 @@ static void hitag_reader_send_bit(int bit) {
LED_A_OFF();
}
static void hitag_reader_send_frame(const uint8_t *frame, size_t frame_len) {
// Send the content of the frame
for (size_t i = 0; i < frame_len; i++) {
@ -605,8 +473,8 @@ static bool hitag2_crypto(uint8_t *rx, const size_t rxlen, uint8_t *tx, size_t *
if (!bCrypto) {
uint64_t ui64key = key[0] | ((uint64_t)key[1]) << 8 | ((uint64_t)key[2]) << 16 | ((uint64_t)key[3]) << 24 | ((uint64_t)key[4]) << 32 | ((uint64_t)key[5]) << 40;
uint32_t ui32uid = rx[0] | ((uint32_t)rx[1]) << 8 | ((uint32_t)rx[2]) << 16 | ((uint32_t)rx[3]) << 24;
Dbprintf("hitag2_crypto: key=0x%x%x uid=0x%x", (uint32_t)((rev64(ui64key)) >> 32), (uint32_t)((rev64(ui64key)) & 0xffffffff), rev32(ui32uid));
cipher_state = _hitag2_init(rev64(ui64key), rev32(ui32uid), 0);
Dbprintf("hitag2_crypto: key=0x%x%x uid=0x%x", (uint32_t)((REV64(ui64key)) >> 32), (uint32_t)((REV64(ui64key)) & 0xffffffff), REV32(ui32uid));
cipher_state = _hitag2_init(REV64(ui64key), REV32(ui32uid), 0);
memset(tx, 0x00, 4);
memset(tx + 4, 0xff, 4);
hitag2_cipher_transcrypt(&cipher_state, tx + 4, 4, 0);
@ -802,6 +670,9 @@ static bool hitag2_read_uid(uint8_t *rx, const size_t rxlen, uint8_t *tx, size_t
}
void SniffHitag(uint32_t type) {
StopTicks();
int frame_count;
int response;
int overflow;
@ -818,8 +689,6 @@ void SniffHitag(uint32_t type) {
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
// Clean up trace and prepare it for storing frames
clear_trace();
set_tracing(true);
@ -829,19 +698,20 @@ void SniffHitag(uint32_t type) {
auth_table = (uint8_t *)BigBuf_malloc(AUTH_TABLE_LENGTH);
memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
DbpString("Starting Hitag2 sniff");
DbpString("Starting Hitag2 sniffing");
LED_D_ON();
// Set up eavesdropping mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
//125Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95);
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER |= GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER |= GPIO_SSC_DOUT;
// Disable modulation, we are going to eavesdrop, not modulate ;)
LOW(GPIO_SSC_DOUT);
@ -852,14 +722,16 @@ void SniffHitag(uint32_t type) {
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
uint32_t t1_channel_mode = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
AT91C_BASE_TC1->TC_CMR = t1_channel_mode;
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// synchronized startup procedure
while (AT91C_BASE_TC1->TC_CV > 0); // wait until TC0 returned to zero
// Reset the received frame, frame count and timing info
memset(rx, 0x00, sizeof(rx));
@ -1005,24 +877,25 @@ void SniffHitag(uint32_t type) {
// Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
}
LED_A_ON();
LED_B_OFF();
LED_C_OFF();
LED_D_OFF();
LEDsoff();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LED_A_OFF();
set_tracing(false);
// Dbprintf("frame received: %d",frame_count);
// Dbprintf("Authentication Attempts: %d",(auth_table_len/8));
// DbpString("All done");
// release allocated memory from BigBuff.
BigBuf_free();
StartTicks();
DbpString("Hitag2 sniffing end, use `lf hitag list` for annotations");
}
void SimulateHitagTag(bool tag_mem_supplied, uint8_t *data) {
int frame_count;
int response;
int overflow;
StopTicks();
int frame_count = 0, response = 0, overflow = 0;
uint8_t rx[HITAG_FRAME_LEN];
size_t rxlen = 0;
uint8_t tx[HITAG_FRAME_LEN];
@ -1035,19 +908,19 @@ void SimulateHitagTag(bool tag_mem_supplied, uint8_t *data) {
// free eventually allocated BigBuf memory
BigBuf_free();
BigBuf_Clear_ext(false);
// Clean up trace and prepare it for storing frames
clear_trace();
set_tracing(true);
auth_table_len = 0;
auth_table_pos = 0;
uint8_t *auth_table;
auth_table = (uint8_t *)BigBuf_malloc(AUTH_TABLE_LENGTH);
uint8_t *auth_table = BigBuf_malloc(AUTH_TABLE_LENGTH);
memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
// Reset the received frame, frame count and timing info
memset(rx, 0x00, sizeof(rx));
DbpString("Starting Hitag2 simulation");
LED_D_ON();
hitag2_init();
@ -1064,44 +937,44 @@ void SimulateHitagTag(bool tag_mem_supplied, uint8_t *data) {
}
Dbprintf("| %d | %08x |", i, block);
}
// Set up simulator mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
SpinDelay(50);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER |= GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER |= GPIO_SSC_DOUT;
// Disable modulation at default, which means release resistance
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
// Reset the received frame, frame count and timing info
memset(rx, 0x00, sizeof(rx));
frame_count = 0;
response = 0;
overflow = 0;
// Enable and reset counter
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// synchronized startup procedure
while (AT91C_BASE_TC1->TC_CV > 0); // wait until TC0 returned to zero
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
// Watchdog hit
@ -1200,17 +1073,25 @@ void SimulateHitagTag(bool tag_mem_supplied, uint8_t *data) {
// Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
}
LED_B_OFF();
LED_D_OFF();
LEDsoff();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// release allocated memory from BigBuff.
BigBuf_free();
StartTicks();
DbpString("Sim Stopped");
set_tracing(false);
}
void ReaderHitag(hitag_function htf, hitag_data *htd) {
StopTicks();
int frame_count = 0;
int response = 0;
uint8_t rx[HITAG_FRAME_LEN];
@ -1274,6 +1155,7 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
default: {
Dbprintf("Error, unknown function: %d", htf);
set_tracing(false);
StartTicks();
return;
}
}
@ -1286,33 +1168,35 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
LED_D_ON();
hitag2_init();
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// RELAY_OFF();
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER |= GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER |= GPIO_SSC_DOUT;
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
// PIO_A - BSR
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
@ -1320,22 +1204,25 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// synchronized startup procedure
while (AT91C_BASE_TC0->TC_CV > 0); // wait until TC0 returned to zero
// Tag specific configuration settings (sof, timings, etc.)
if (htf < 10) {
// hitagS settings
reset_sof = 1;
t_wait = 200;
// DbpString("Configured for hitagS reader");
DbpString("Configured for hitagS reader");
} else if (htf < 20) {
// hitag1 settings
reset_sof = 1;
t_wait = 200;
// DbpString("Configured for hitag1 reader");
DbpString("Configured for hitag1 reader");
} else if (htf < 30) {
// hitag2 settings
reset_sof = 4;
t_wait = HITAG_T_WAIT_2;
// DbpString("Configured for hitag2 reader");
DbpString("Configured for hitag2 reader");
} else {
Dbprintf("Error, unknown hitag reader type: %d", htf);
goto out;
@ -1477,11 +1364,16 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
out:
LEDsoff();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
// release allocated memory from BigBuff.
BigBuf_free();
StartTicks();
if (bSuccessful)
cmd_send(CMD_ACK, bSuccessful, 0, 0, (uint8_t *)tag.sectors, 48);
else
@ -1489,6 +1381,9 @@ out:
}
void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
StopTicks();
int frame_count;
int response;
uint8_t rx[HITAG_FRAME_LEN];
@ -1502,9 +1397,9 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
int tag_sof;
int t_wait = HITAG_T_WAIT_MAX;
bool bStop;
bool bQuitTraceFull = false;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
// Reset the return status
bSuccessful = false;
@ -1525,12 +1420,12 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
bQuiet = false;
bCrypto = false;
bAuthenticating = false;
bQuitTraceFull = true;
writestate = WRITE_STATE_START;
}
break;
default: {
Dbprintf("Error, unknown function: %d", htf);
StartTicks();
return;
}
break;
@ -1540,8 +1435,8 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
hitag2_init();
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_OER |= GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER |= GPIO_SSC_DOUT;
// Set fpga in edge detect with reader field, we can modulate as reader now
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
@ -1549,25 +1444,25 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
// Set Frequency divisor which will drive the FPGA and analog mux selection
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
// Give it a bit of time for the resonant antenna to settle.
SpinDelay(30);
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
// Enable Peripheral Clock for TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC1: Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
@ -1575,6 +1470,8 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV > 0);
// Reset the received frame, frame count and timing info
frame_count = 0;
response = 0;
@ -1608,16 +1505,7 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
// Check if frame was captured and store it
if (rxlen > 0) {
frame_count++;
if (!bQuiet) {
if (!LogTraceHitag(rx, rxlen, response, 0, false)) {
DbpString("Trace full");
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
LogTraceHitag(rx, rxlen, response, 0, false);
}
// By default reset the transmission buffer
@ -1656,16 +1544,8 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
// Add transmitted frame to total count
if (txlen > 0) {
frame_count++;
if (!bQuiet) {
// Store the frame in the trace
if (!LogTraceHitag(tx, txlen, HITAG_T_WAIT_2, 0, true)) {
if (bQuitTraceFull) {
break;
} else {
bQuiet = true;
}
}
}
// Store the frame in the trace
LogTraceHitag(tx, txlen, HITAG_T_WAIT_2, 0, true);
}
// Reset values for receiving frames
@ -1760,14 +1640,15 @@ void WriterHitag(hitag_function htf, hitag_data *htd, int page) {
while (AT91C_BASE_TC0->TC_CV < T0 * (HITAG_T_PROG - HITAG_T_WAIT_MAX));
}
}
// Dbprintf("DEBUG: Done waiting for frame");
LED_B_OFF();
LED_D_OFF();
LEDsoff();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// Dbprintf("frame received: %d",frame_count);
// DbpString("All done");
StartTicks();
cmd_send(CMD_ACK, bSuccessful, 0, 0, (uint8_t *)tag.sectors, 48);
}

116
armsrc/hitag2_crypto.c Normal file
View file

@ -0,0 +1,116 @@
//-----------------------------------------------------------------------------
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Hitag2 Crypto
//
// (c) 2009 Henryk Plötz <henryk@ploetzli.ch>
// (c) 2012 Roel Verdult
// (c) 2019 Iceman
//-----------------------------------------------------------------------------
#include "hitag2_crypto.h"
/* Following is a modified version of cryptolib.com/ciphers/hitag2/ */
// Software optimized 48-bit Philips/NXP Mifare Hitag2 PCF7936/46/47/52 stream cipher algorithm by I.C. Wiener 2006-2007.
// For educational purposes only.
// No warranties or guarantees of any kind.
// This code is released into the public domain by its author.
// Single bit Hitag2 functions:
#ifndef i4
#define i4(x,a,b,c,d) ((uint32_t)((((x)>>(a))&1)+(((x)>>(b))&1)*2+(((x)>>(c))&1)*4+(((x)>>(d))&1)*8))
#endif
static const uint32_t ht2_f4a = 0x2C79; // 0010 1100 0111 1001
static const uint32_t ht2_f4b = 0x6671; // 0110 0110 0111 0001
static const uint32_t ht2_f5c = 0x7907287B; // 0111 1001 0000 0111 0010 1000 0111 1011
uint32_t _f20(const uint64_t x) {
uint32_t i5;
i5 = ((ht2_f4a >> i4(x, 1, 2, 4, 5)) & 1) * 1
+ ((ht2_f4b >> i4(x, 7, 11, 13, 14)) & 1) * 2
+ ((ht2_f4b >> i4(x, 16, 20, 22, 25)) & 1) * 4
+ ((ht2_f4b >> i4(x, 27, 28, 30, 32)) & 1) * 8
+ ((ht2_f4a >> i4(x, 33, 42, 43, 45)) & 1) * 16;
return (ht2_f5c >> i5) & 1;
}
uint64_t _hitag2_init(const uint64_t key, const uint32_t serial, const uint32_t IV) {
uint32_t i;
uint64_t x = ((key & 0xFFFF) << 32) + serial;
for (i = 0; i < 32; i++) {
x >>= 1;
x += (uint64_t)(_f20(x) ^ (((IV >> i) ^ (key >> (i + 16))) & 1)) << 47;
}
return x;
}
uint64_t _hitag2_round(uint64_t *state) {
uint64_t x = *state;
x = (x >> 1) +
((((x >> 0) ^ (x >> 2) ^ (x >> 3) ^ (x >> 6)
^ (x >> 7) ^ (x >> 8) ^ (x >> 16) ^ (x >> 22)
^ (x >> 23) ^ (x >> 26) ^ (x >> 30) ^ (x >> 41)
^ (x >> 42) ^ (x >> 43) ^ (x >> 46) ^ (x >> 47)) & 1) << 47);
*state = x;
return _f20(x);
}
// "MIKRON" = O N M I K R
// Key = 4F 4E 4D 49 4B 52 - Secret 48-bit key
// Serial = 49 43 57 69 - Serial number of the tag, transmitted in clear
// Random = 65 6E 45 72 - Random IV, transmitted in clear
//~28~DC~80~31 = D7 23 7F CE - Authenticator value = inverted first 4 bytes of the keystream
// The code below must print out "D7 23 7F CE 8C D0 37 A9 57 49 C1 E6 48 00 8A B6".
// The inverse of the first 4 bytes is sent to the tag to authenticate.
// The rest is encrypted by XORing it with the subsequent keystream.
uint32_t _hitag2_byte(uint64_t *x) {
uint32_t i, c;
for (i = 0, c = 0; i < 8; i++) {
c += (uint32_t) _hitag2_round(x) << (i ^ 7);
}
return c;
}
void hitag2_cipher_reset(struct hitag2_tag *tag, const uint8_t *iv) {
uint64_t key = ((uint64_t)tag->sectors[2][2]) |
((uint64_t)tag->sectors[2][3] << 8) |
((uint64_t)tag->sectors[1][0] << 16) |
((uint64_t)tag->sectors[1][1] << 24) |
((uint64_t)tag->sectors[1][2] << 32) |
((uint64_t)tag->sectors[1][3] << 40);
uint32_t uid = ((uint32_t)tag->sectors[0][0]) |
((uint32_t)tag->sectors[0][1] << 8) |
((uint32_t)tag->sectors[0][2] << 16) |
((uint32_t)tag->sectors[0][3] << 24);
uint32_t iv_ = (((uint32_t)(iv[0]))) |
(((uint32_t)(iv[1])) << 8) |
(((uint32_t)(iv[2])) << 16) |
(((uint32_t)(iv[3])) << 24);
tag->cs = _hitag2_init(REV64(key), REV32(uid), REV32(iv_));
}
int hitag2_cipher_authenticate(uint64_t *cs, const uint8_t *authenticator_is) {
uint8_t authenticator_should[4];
authenticator_should[0] = ~_hitag2_byte(cs);
authenticator_should[1] = ~_hitag2_byte(cs);
authenticator_should[2] = ~_hitag2_byte(cs);
authenticator_should[3] = ~_hitag2_byte(cs);
return (memcmp(authenticator_should, authenticator_is, 4) == 0);
}
int hitag2_cipher_transcrypt(uint64_t *cs, uint8_t *data, uint16_t bytes, uint16_t bits) {
int i;
for (i = 0; i < bytes; i++) data[i] ^= _hitag2_byte(cs);
for (i = 0; i < bits; i++) data[bytes] ^= _hitag2_round(cs) << (7 - i);
return 0;
}

36
armsrc/hitag2_crypto.h Normal file
View file

@ -0,0 +1,36 @@
#ifndef __HITAG2_CRYPTO_H
#define __HITAG2_CRYPTO_H
#ifdef __cplusplus
extern "C" {
#endif
#include "string.h"
#include "util.h"
struct hitag2_tag {
uint32_t uid;
enum {
TAG_STATE_RESET = 0x01, // Just powered up, awaiting GetSnr
TAG_STATE_ACTIVATING = 0x02, // In activation phase (password mode), sent UID, awaiting reader password
TAG_STATE_ACTIVATED = 0x03, // Activation complete, awaiting read/write commands
TAG_STATE_WRITING = 0x04, // In write command, awaiting sector contents to be written
} state;
uint16_t active_sector;
uint8_t crypto_active;
uint64_t cs;
uint8_t sectors[12][4];
};
extern uint32_t _f20(const uint64_t x);
extern uint64_t _hitag2_init(const uint64_t key, const uint32_t serial, const uint32_t IV);
extern uint64_t _hitag2_round(uint64_t *state);
extern uint32_t _hitag2_byte(uint64_t *x);
extern void hitag2_cipher_reset(struct hitag2_tag *tag, const uint8_t *iv);
extern int hitag2_cipher_authenticate(uint64_t *cs, const uint8_t *authenticator_is);
extern int hitag2_cipher_transcrypt(uint64_t *cs, uint8_t *data, uint16_t bytes, uint16_t bits) ;
#ifdef __cplusplus
}
#endif
#endif