Merge pull request #1627 from lnv42/iso15rawSlowAnd2SC

[iso15] Add support for recieving slow and/or dual subcarriers answers from any raw commands
This commit is contained in:
Iceman 2022-03-20 07:59:25 +01:00 committed by GitHub
commit bda8062bff
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 437 additions and 370 deletions

View file

@ -1264,7 +1264,7 @@ static bool iclass_send_cmd_with_retries(uint8_t *cmd, size_t cmdsize, uint8_t *
return true; return true;
} }
if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time)) { if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time, false, true)) {
return true; return true;
} }
} }
@ -1296,7 +1296,7 @@ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint3
// wakeup // wakeup
uint32_t start_time = GetCountSspClk(); uint32_t start_time = GetCountSspClk();
iclass_send_as_reader(act_all, 1, &start_time, eof_time); iclass_send_as_reader(act_all, 1, &start_time, eof_time);
int len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time); int len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time, false, true);
if (len < 0) if (len < 0)
return false; return false;
@ -1305,7 +1305,7 @@ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint3
iclass_send_as_reader(identify, 1, &start_time, eof_time); iclass_send_as_reader(identify, 1, &start_time, eof_time);
// expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC // expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true);
if (len != 10) if (len != 10)
return false; return false;
@ -1317,7 +1317,7 @@ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint3
iclass_send_as_reader(select, sizeof(select), &start_time, eof_time); iclass_send_as_reader(select, sizeof(select), &start_time, eof_time);
// expect a 10-byte response here, 8 byte CSN and 2 byte CRC // expect a 10-byte response here, 8 byte CSN and 2 byte CRC
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true);
if (len != 10) if (len != 10)
return false; return false;
@ -1329,7 +1329,7 @@ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint3
iclass_send_as_reader(read_conf, sizeof(read_conf), &start_time, eof_time); iclass_send_as_reader(read_conf, sizeof(read_conf), &start_time, eof_time);
// expect a 8-byte response here // expect a 8-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true);
if (len != 10) if (len != 10)
return false; return false;
@ -1347,7 +1347,7 @@ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint3
iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time); iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time);
// expect a 10-byte response here // expect a 10-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true);
if (len != 10) if (len != 10)
return false; return false;
@ -1361,7 +1361,7 @@ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint3
iclass_send_as_reader(read_check_cc, sizeof(read_check_cc), &start_time, eof_time); iclass_send_as_reader(read_check_cc, sizeof(read_check_cc), &start_time, eof_time);
// expect a 8-byte response here // expect a 8-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true);
if (len != 8) if (len != 8)
return false; return false;
@ -1383,7 +1383,7 @@ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint3
iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time); iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time);
// expect a 10-byte response here // expect a 10-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time); len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true);
if (len != 10) if (len != 10)
return false; return false;
@ -1870,7 +1870,7 @@ void iClass_WriteBlock(uint8_t *msg) {
return; return;
} else { } else {
if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time) == 10) { if (GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time, false, true) == 10) {
res = true; res = true;
break; break;
} }

View file

@ -647,23 +647,346 @@ static void DecodeTagInit(DecodeTag_t *tag, uint8_t *data, uint16_t max_len) {
DecodeTagReset(tag); DecodeTagReset(tag);
} }
//=============================================================================
// An ISO 15693 decoder for tag responses in FSK (two subcarriers) mode.
// Subcarriers frequencies are 424kHz and 484kHz (fc/32 and fc/28),
// LED handling:
// LED C -> ON once we have received the SOF and are expecting the rest.
// LED C -> OFF once we have received EOF or are unsynced
//
// Returns: true if we received a EOF
// false if we are still waiting for some more
//=============================================================================
//#define DEBUG 1
#define FREQ_IS_484(f) ((f & 1) == 1) //(f >= 26 && f <= 30)
#define FREQ_IS_424(f) ((f & 2) == 2) //(f >= 30 && f <= 34)
#define FREQ_IS_0(f) ((f & 3) == 0) // (f <= 24 || f >= 36)
#define SEOF_COUNT(c, s) ((s) ? (c >= 11 && c <= 13) : (c >= 45 && c <= 51))
#define LOGIC_COUNT(c, s) ((s) ? (c >= 3 && c <= 6) : (c >= 14 && c <= 20))
#define MAX_COUNT(c, s) ((s) ? (c >= 13) : (c >= 52))
typedef struct DecodeTagFSK {
enum {
STATE_FSK_ERROR,
STATE_FSK_BEFORE_SOF,
STATE_FSK_SOF_484,
STATE_FSK_SOF_424,
STATE_FSK_SOF_END_484,
STATE_FSK_SOF_END_424,
STATE_FSK_RECEIVING_DATA_484,
STATE_FSK_RECEIVING_DATA_424,
STATE_FSK_EOF
} state;
enum {
LOGIC0_PART1,
LOGIC1_PART1,
LOGIC0_PART2,
LOGIC1_PART2,
SOF
} lastBit;
uint8_t count;
uint8_t bitCount;
uint8_t shiftReg;
uint16_t len;
uint16_t max_len;
uint8_t *output;
} DecodeTagFSK_t;
static void DecodeTagFSKReset(DecodeTagFSK_t *DecodeTag) {
DecodeTag->state = STATE_FSK_BEFORE_SOF;
DecodeTag->bitCount = 0;
DecodeTag->len = 0;
DecodeTag->shiftReg = 0;
}
static void DecodeTagFSKInit(DecodeTagFSK_t *DecodeTag, uint8_t *data, uint16_t max_len) {
DecodeTag->output = data;
DecodeTag->max_len = max_len;
DecodeTagFSKReset(DecodeTag);
}
// Performances of this function are crutial for stability
// as it is called in real time for every samples
static int RAMFUNC Handle15693FSKSamplesFromTag(uint8_t freq, DecodeTagFSK_t *DecodeTag, bool recv_speed)
{
switch(DecodeTag->state) {
case STATE_FSK_BEFORE_SOF:
if (FREQ_IS_484(freq))
{ // possible SOF starting
DecodeTag->state = STATE_FSK_SOF_484;
DecodeTag->lastBit = LOGIC0_PART1;
DecodeTag->count = 1;
}
break;
case STATE_FSK_SOF_484:
//DbpString("STATE_FSK_SOF_484");
if (FREQ_IS_424(freq) && SEOF_COUNT(DecodeTag->count, recv_speed))
{ // SOF part1 continue at 424
DecodeTag->state = STATE_FSK_SOF_424;
DecodeTag->count = 1;
}
else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF at 484
{
DecodeTag->count++;
}
else // SOF failed, roll back
{
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_SOF_424:
//DbpString("STATE_FSK_SOF_424");
if (FREQ_IS_484(freq) && SEOF_COUNT(DecodeTag->count, recv_speed))
{ // SOF part 1 finished
DecodeTag->state = STATE_FSK_SOF_END_484;
DecodeTag->count = 1;
}
else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF at 424
DecodeTag->count++;
else // SOF failed, roll back
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("SOF_424 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_SOF_END_484:
if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{
DecodeTag->state = STATE_FSK_SOF_END_424;
DecodeTag->count = 1;
}
else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF_END_484
DecodeTag->count++;
else // SOF failed, roll back
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("SOF_END_484 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_SOF_END_424:
if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{ // SOF finished at 484
DecodeTag->count = 1;
DecodeTag->lastBit = SOF;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_484;
LED_C_ON();
}
else if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count-2, recv_speed))
{ // SOF finished at 424 (wait count+2 to be sure that next freq is 424)
DecodeTag->count = 2;
DecodeTag->lastBit = SOF;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_424;
LED_C_ON();
}
else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF_END_424
DecodeTag->count++;
else // SOF failed, roll back
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("SOF_END_424 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_RECEIVING_DATA_424:
if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{
if (DecodeTag->lastBit == LOGIC1_PART1)
{ // logic 1 finished, goto 484
DecodeTag->lastBit = LOGIC1_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->shiftReg |= 0x80;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
else
{ // end of LOGIC0_PART1
DecodeTag->lastBit = LOGIC0_PART1;
}
DecodeTag->count = 1;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_484;
}
else if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count-2, recv_speed) &&
DecodeTag->lastBit == LOGIC1_PART1)
{ // logic 1 finished, stay in 484
DecodeTag->lastBit = LOGIC1_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->shiftReg |= 0x80;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
DecodeTag->count = 2;
}
else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 424
DecodeTag->count++;
else if (FREQ_IS_484(freq) && DecodeTag->lastBit == LOGIC0_PART2 &&
SEOF_COUNT(DecodeTag->count, recv_speed))
{ // EOF has started
#ifdef DEBUG
if (DEBUG)
Dbprintf("RECEIVING_DATA_424->EOF: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state);
#endif
DecodeTag->count = 1;
DecodeTag->state = STATE_FSK_EOF;
LED_C_OFF();
}
else // error
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("RECEIVING_DATA_424 error: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state);
#endif
DecodeTag->state = STATE_FSK_ERROR;
LED_C_OFF();
return true;
}
break;
case STATE_FSK_RECEIVING_DATA_484:
if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{
if (DecodeTag->lastBit == LOGIC0_PART1)
{ // logic 0 finished, goto 424
DecodeTag->lastBit = LOGIC0_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
else
{ // end of LOGIC1_PART1
DecodeTag->lastBit = LOGIC1_PART1;
}
DecodeTag->count = 1;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_424;
}
else if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count-2, recv_speed) &&
DecodeTag->lastBit == LOGIC0_PART1)
{ // logic 0 finished, stay in 424
DecodeTag->lastBit = LOGIC0_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
DecodeTag->count = 2;
}
else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 484
DecodeTag->count++;
else // error
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("RECEIVING_DATA_484 error: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state);
#endif
LED_C_OFF();
DecodeTag->state = STATE_FSK_ERROR;
return true;
}
break;
case STATE_FSK_EOF:
if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 484
{
DecodeTag->count++;
if (SEOF_COUNT(DecodeTag->count, recv_speed))
return true; // end of the transmission
}
else // error
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("EOF error: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_ERROR;
return true;
}
break;
case STATE_FSK_ERROR:
LED_C_OFF();
#ifdef DEBUG
if (DEBUG)
Dbprintf("FSK error: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
return true; // error
break;
}
return false;
}
/* /*
* Receive and decode the tag response, also log to tracebuffer * Receive and decode the tag response, also log to tracebuffer
*/ */
int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) { int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time, bool fsk, bool recv_speed) {
int samples = 0, ret = 0; int samples = 0, ret = 0;
// the Decoder data structure // the Decoder data structure
DecodeTag_t dtm = { 0 }; DecodeTag_t dtm = { 0 };
DecodeTag_t *dt = &dtm; DecodeTag_t *dt = &dtm;
DecodeTagInit(dt, response, max_len);
DecodeTagFSK_t dtfm = { 0 };
DecodeTagFSK_t *dtf = &dtfm;
if (!fsk)
DecodeTagInit(dt, response, max_len);
else
DecodeTagFSKInit(dtf, response, max_len);
// wait for last transfer to complete // wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY));
// And put the FPGA in the appropriate mode // And put the FPGA in the appropriate mode
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
// Setup and start DMA. // Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
@ -719,56 +1042,102 @@ int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeo
} }
} }
if (Handle15693SamplesFromTag(tagdata, dt, true)) { if (!fsk) {
if (Handle15693SamplesFromTag(tagdata & 0x3FFF, dt, recv_speed)) {
*eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM; // end of EOF *eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM; // end of EOF
if (dt->lastBit == SOF_PART2) { if (dt->lastBit == SOF_PART2) {
*eof_time -= (8 * 16); // needed 8 additional samples to confirm single SOF (iCLASS) *eof_time -= (8 * 16); // needed 8 additional samples to confirm single SOF (iCLASS)
}
if (dt->len > dt->max_len) {
ret = -2; // buffer overflow
Dbprintf("overflow (%d > %d", dt->len, dt->max_len);
}
break;
} }
if (dt->len > dt->max_len) {
ret = -2; // buffer overflow // timeout
Dbprintf("overflow (%d > %d", dt->len, dt->max_len); if (samples > timeout && dt->state < STATE_TAG_RECEIVING_DATA) {
ret = -3;
break;
} }
break;
} }
else {
if (Handle15693FSKSamplesFromTag(tagdata >> 14, dtf, recv_speed)) {
// timeout *eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM; // end of EOF
if (samples > timeout && dt->state < STATE_TAG_RECEIVING_DATA) {
ret = -3; if (dtf->lastBit == SOF) {
break; *eof_time -= (8 * 16); // needed 8 additional samples to confirm single SOF (iCLASS)
}
if (dtf->len > dtf->max_len) {
ret = -2; // buffer overflow
Dbprintf("overflow (%d > %d", dtf->len, dtf->max_len);
}
break;
}
// timeout
if (samples > timeout && dtf->state < STATE_FSK_RECEIVING_DATA_484) {
ret = -3;
break;
}
} }
} }
FpgaDisableSscDma(); FpgaDisableSscDma();
FpgaDisableTracing(); FpgaDisableTracing();
uint32_t sof_time = *eof_time uint32_t sof_time = *eof_time - (32 * 16); // time for SOF transfer
- (dt->len * 8 * 8 * 16) // time for byte transfers
- (32 * 16) // time for SOF transfer
- (dt->lastBit != SOF_PART2 ? (32 * 16) : 0); // time for EOF transfer
if (g_dbglevel >= DBG_EXTENDED) { if (!fsk) {
Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d, maxlen = %u", sof_time -= (dt->len * 8 * 8 * 16) // time for byte transfers
samples, + (dt->lastBit != SOF_PART2 ? (32 * 16) : 0); // time for EOF transfer
ret,
dt->state, if (g_dbglevel >= DBG_EXTENDED) {
dt->lastBit, Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d, maxlen = %u",
dt->len, samples,
dt->bitCount, ret,
dt->posCount, dt->state,
dt->max_len dt->lastBit,
dt->len,
dt->bitCount,
dt->posCount,
dt->max_len
); );
Dbprintf("timing: sof_time = %d, eof_time = %d", (sof_time * 4), (*eof_time * 4)); Dbprintf("timing: sof_time = %d, eof_time = %d", (sof_time * 4), (*eof_time * 4));
}
}
else {
sof_time -= (dtf->len * 8 * 8 * 16) // time for byte transfers
+ (dtf->lastBit != SOF ? (32 * 16) : 0); // time for EOF transfer
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("samples = %d, ret = %d, FSK Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, count = %d, maxlen = %u",
samples,
ret,
dtf->state,
dtf->lastBit,
dtf->len,
dtf->bitCount,
dtf->count,
dtf->max_len
);
Dbprintf("timing: sof_time = %d, eof_time = %d", (sof_time * 4), (*eof_time * 4));
}
} }
if (ret < 0) { if (ret < 0) {
return ret; return ret;
} }
LogTrace_ISO15693(dt->output, dt->len, (sof_time * 4), (*eof_time * 4), NULL, false); if (!fsk) {
return dt->len; LogTrace_ISO15693(dt->output, dt->len, (sof_time * 4), (*eof_time * 4), NULL, false);
return dt->len;
}
LogTrace_ISO15693(dtf->output, dtf->len, (sof_time * 4), (*eof_time * 4), NULL, false);
return dtf->len;
} }
@ -1259,323 +1628,6 @@ void AcquireRawAdcSamplesIso15693(void) {
LEDsoff(); LEDsoff();
} }
//=============================================================================
// An ISO 15693 decoder for tag responses in FSK (two subcarriers) mode.
// Subcarriers frequencies are 424kHz and 484kHz (fc/32 and fc/28),
// LED handling:
// LED C -> ON once we have received the SOF and are expecting the rest.
// LED C -> OFF once we have received EOF or are unsynced
//
// Returns: true if we received a EOF
// false if we are still waiting for some more
//=============================================================================
//#define DEBUG 1
#define FREQ_IS_484(f) ((f & 1) == 1) //(f >= 26 && f <= 30)
#define FREQ_IS_424(f) ((f & 2) == 2) //(f >= 30 && f <= 34)
#define FREQ_IS_0(f) ((f & 3) == 0) // (f <= 24 || f >= 36)
#define SEOF_COUNT(c, s) ((s) ? (c >= 11 && c <= 13) : (c >= 44 && c <= 52))
#define LOGIC_COUNT(c, s) ((s) ? (c >= 3 && c <= 6) : (c >= 13 && c <= 21))
#define MAX_COUNT(c, s) ((s) ? (c >= 13) : (c >= 52))
#define MIN_COUNT(c, s) ((s) ? (c <= 2) : (c <= 4))
typedef struct DecodeTagFSK {
enum {
STATE_FSK_ERROR,
STATE_FSK_BEFORE_SOF,
STATE_FSK_SOF_484,
STATE_FSK_SOF_424,
STATE_FSK_SOF_END_484,
STATE_FSK_SOF_END_424,
STATE_FSK_RECEIVING_DATA_484,
STATE_FSK_RECEIVING_DATA_424,
STATE_FSK_EOF
} state;
enum {
LOGIC0_PART1,
LOGIC1_PART1,
LOGIC0_PART2,
LOGIC1_PART2,
SOF
} lastBit;
uint8_t count;
uint8_t bitCount;
uint8_t shiftReg;
uint16_t len;
uint16_t max_len;
uint8_t *output;
} DecodeTagFSK_t;
static void DecodeTagFSKReset(DecodeTagFSK_t *DecodeTag) {
DecodeTag->state = STATE_FSK_BEFORE_SOF;
DecodeTag->bitCount = 0;
DecodeTag->len = 0;
DecodeTag->shiftReg = 0;
}
static void DecodeTagFSKInit(DecodeTagFSK_t *DecodeTag, uint8_t *data, uint16_t max_len) {
DecodeTag->output = data;
DecodeTag->max_len = max_len;
DecodeTagFSKReset(DecodeTag);
}
// Performances of this function are crutial for stability
// as it is called in real time for every samples
static int RAMFUNC Handle15693FSKSamplesFromTag(uint8_t freq, DecodeTagFSK_t *DecodeTag, bool recv_speed)
{
switch(DecodeTag->state) {
case STATE_FSK_BEFORE_SOF:
if (FREQ_IS_484(freq))
{ // possible SOF starting
DecodeTag->state = STATE_FSK_SOF_484;
DecodeTag->lastBit = LOGIC0_PART1;
DecodeTag->count = 1;
}
break;
case STATE_FSK_SOF_484:
//DbpString("STATE_FSK_SOF_484");
if (FREQ_IS_424(freq) && SEOF_COUNT(DecodeTag->count, recv_speed))
{ // SOF part1 continue at 424
DecodeTag->state = STATE_FSK_SOF_424;
DecodeTag->count = 1;
}
else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF at 484
{
DecodeTag->count++;
}
else // SOF failed, roll back
{
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_SOF_424:
//DbpString("STATE_FSK_SOF_424");
if (FREQ_IS_484(freq) && SEOF_COUNT(DecodeTag->count, recv_speed))
{ // SOF part 1 finished
DecodeTag->state = STATE_FSK_SOF_END_484;
DecodeTag->count = 1;
}
else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF at 424
DecodeTag->count++;
else // SOF failed, roll back
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("SOF_424 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_SOF_END_484:
if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{
DecodeTag->state = STATE_FSK_SOF_END_424;
DecodeTag->count = 1;
}
else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF_END_484
DecodeTag->count++;
else // SOF failed, roll back
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("SOF_END_484 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_SOF_END_424:
if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{ // SOF finished at 484
DecodeTag->count = 1;
DecodeTag->lastBit = SOF;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_484;
LED_C_ON();
}
else if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count-2, recv_speed))
{ // SOF finished at 424 (wait count+2 to be sure that next freq is 424)
DecodeTag->count = 2;
DecodeTag->lastBit = SOF;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_424;
LED_C_ON();
}
else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF_END_424
DecodeTag->count++;
else // SOF failed, roll back
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("SOF_END_424 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_BEFORE_SOF;
}
break;
case STATE_FSK_RECEIVING_DATA_424:
if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{
if (DecodeTag->lastBit == LOGIC1_PART1)
{ // logic 1 finished, goto 484
DecodeTag->lastBit = LOGIC1_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->shiftReg |= 0x80;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
else
{ // end of LOGIC0_PART1
DecodeTag->lastBit = LOGIC0_PART1;
}
DecodeTag->count = 1;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_484;
}
else if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count-2, recv_speed) &&
DecodeTag->lastBit == LOGIC1_PART1)
{ // logic 1 finished, stay in 484
DecodeTag->lastBit = LOGIC1_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->shiftReg |= 0x80;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
DecodeTag->count = 2;
}
else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 424
DecodeTag->count++;
else if (FREQ_IS_484(freq) && DecodeTag->lastBit == LOGIC0_PART2 &&
SEOF_COUNT(DecodeTag->count, recv_speed))
{ // EOF has started
#ifdef DEBUG
if (DEBUG)
Dbprintf("RECEIVING_DATA_424->EOF: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state);
#endif
DecodeTag->count = 1;
DecodeTag->state = STATE_FSK_EOF;
LED_C_OFF();
}
else // error
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("RECEIVING_DATA_424 error: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state);
#endif
DecodeTag->state = STATE_FSK_ERROR;
LED_C_OFF();
return true;
}
break;
case STATE_FSK_RECEIVING_DATA_484:
if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed))
{
if (DecodeTag->lastBit == LOGIC0_PART1)
{ // logic 0 finished, goto 424
DecodeTag->lastBit = LOGIC0_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
}
else
{ // end of LOGIC1_PART1
DecodeTag->lastBit = LOGIC1_PART1;
}
DecodeTag->count = 1;
DecodeTag->state = STATE_FSK_RECEIVING_DATA_424;
}
else if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count-2, recv_speed) &&
DecodeTag->lastBit == LOGIC0_PART1)
{ // logic 0 finished, stay in 424
DecodeTag->lastBit = LOGIC0_PART2;
DecodeTag->shiftReg >>= 1;
DecodeTag->bitCount++;
if (DecodeTag->bitCount == 8) {
DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg;
if (DecodeTag->len > DecodeTag->max_len) {
// buffer overflow, give up
LED_C_OFF();
return true;
}
DecodeTag->bitCount = 0;
DecodeTag->shiftReg = 0;
}
DecodeTag->count = 2;
}
else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 484
DecodeTag->count++;
else // error
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("RECEIVING_DATA_484 error: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state);
#endif
LED_C_OFF();
DecodeTag->state = STATE_FSK_ERROR;
return true;
}
break;
case STATE_FSK_EOF:
if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 484
{
DecodeTag->count++;
if (SEOF_COUNT(DecodeTag->count, recv_speed))
return true; // end of the transmission
}
else // error
{
#ifdef DEBUG
if (DEBUG)
Dbprintf("EOF error: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
DecodeTag->state = STATE_FSK_ERROR;
return true;
}
break;
case STATE_FSK_ERROR:
LED_C_OFF();
#ifdef DEBUG
if (DEBUG)
Dbprintf("FSK error: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed);
#endif
return true; // error
break;
}
return false;
}
void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string, bool iclass) { void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string, bool iclass) {
LEDsoff(); LEDsoff();
@ -1869,6 +1921,9 @@ int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t
start_time = GetCountSspClk(); start_time = GetCountSspClk();
} }
bool fsk = send[0] & ISO15_REQ_SUBCARRIER_TWO;
bool recv_speed = send[0] & ISO15_REQ_DATARATE_HIGH;
if (speed_fast) { if (speed_fast) {
// high speed (1 out of 4) // high speed (1 out of 4)
CodeIso15693AsReader(send, sendlen); CodeIso15693AsReader(send, sendlen);
@ -1889,13 +1944,13 @@ int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t
*eof_time = start_time + 32 * ((8 * ts->max) - 4); // subtract the 4 padding bits after EOF *eof_time = start_time + 32 * ((8 * ts->max) - 4); // subtract the 4 padding bits after EOF
LogTrace_ISO15693(send, sendlen, (start_time * 4), (*eof_time * 4), NULL, true); LogTrace_ISO15693(send, sendlen, (start_time * 4), (*eof_time * 4), NULL, true);
if (recv != NULL) { if (recv != NULL) {
res = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time); res = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time, fsk, recv_speed);
} }
} }
return res; return res;
} }
int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) { int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time, bool fsk, bool recv_speed) {
CodeIso15693AsReaderEOF(); CodeIso15693AsReaderEOF();
tosend_t *ts = get_tosend(); tosend_t *ts = get_tosend();
@ -1905,7 +1960,7 @@ int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, ui
int res = 0; int res = 0;
if (recv != NULL) { if (recv != NULL) {
res = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time); res = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time, fsk, recv_speed);
} }
return res; return res;
} }
@ -2335,10 +2390,13 @@ void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint
reply_mix(CMD_ACK, recvlen, 0, 0, NULL, 0); reply_mix(CMD_ACK, recvlen, 0, 0, NULL, 0);
} else { } else {
bool fsk = data[0] & ISO15_REQ_SUBCARRIER_TWO;
bool recv_speed = data[0] & ISO15_REQ_DATARATE_HIGH;
// send a single EOF to get the tag response // send a single EOF to get the tag response
if (request_answer) { if (request_answer) {
start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
recvlen = SendDataTagEOF((recv ? recvbuf : NULL), sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT, &eof_time); recvlen = SendDataTagEOF((recv ? recvbuf : NULL), sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT, &eof_time, fsk, recv_speed);
} }
if (recv) { if (recv) {

View file

@ -41,7 +41,7 @@ void CodeIso15693AsTag(const uint8_t *cmd, size_t len);
void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow); void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow);
int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time); int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time); void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time);
int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time); int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time, bool fsk, bool recv_speed);
//void RecordRawAdcSamplesIso15693(void); //void RecordRawAdcSamplesIso15693(void);
void AcquireRawAdcSamplesIso15693(void); void AcquireRawAdcSamplesIso15693(void);
@ -55,7 +55,7 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string, bool icla
int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv, int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv,
uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time); uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time);
int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time); int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time, bool fsk, bool recv_speed);
void SetTag15693Uid(const uint8_t *uid); void SetTag15693Uid(const uint8_t *uid);

Binary file not shown.

View file

@ -245,11 +245,11 @@ begin
if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE) if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE)
begin begin
if (subcarrier_frequency == `FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ) if (subcarrier_frequency == `FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ)
begin begin
// send amplitude + 2 bits fsk (2sc) signal + 2 bits reader signal // send amplitude + 2 bits fsk (2sc) signal + 2 bits reader signal
corr_i_out <= corr_amplitude[13:6]; corr_i_out <= corr_amplitude[13:6];
corr_q_out <= {corr_amplitude[5:2], fskout, after_hysteresis_prev_prev, after_hysteresis_prev}; corr_q_out <= {corr_amplitude[5:2], fskout, after_hysteresis_prev_prev, after_hysteresis_prev};
end end
else else
begin begin
// send amplitude plus 2 bits reader signal // send amplitude plus 2 bits reader signal
@ -279,9 +279,18 @@ begin
end end
else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE) else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE)
begin begin
// send amplitude if (subcarrier_frequency == `FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ)
corr_i_out <= {2'b00, corr_amplitude[13:8]}; begin
corr_q_out <= corr_amplitude[7:0]; // send 2 bits fsk (2sc) signal + amplitude
corr_i_out <= {fskout, corr_amplitude[13:8]};
corr_q_out <= corr_amplitude[7:0];
end
else
begin
// send amplitude
corr_i_out <= {2'b00, corr_amplitude[13:8]};
corr_q_out <= corr_amplitude[7:0];
end
end end
else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_IQ) else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_IQ)
begin begin