CHG: "hf 14a sim" command , correct use of FLAGS

CHG: "hf 14a sim" command, changed the data collection for the attackmode in SimulateIso14443aTag.  It now uses @holiman 's original implementation. But we can't change "NR", so we do next.
CHG: "hf 14a sim" command, nonce is increase with every new auth.  This is for the "mfkey32_moebius" attack to work.

CHG: "hf mf sim" command (function void Mifare1ksim ) now handles UID' with length 10.
CHG: "hf mf sim" command nonce is increase with every new auth.  This is for the "mfkey32_moebius" attack to work.
This commit is contained in:
iceman1001 2016-04-18 13:26:16 +02:00
commit bc9393715f

View file

@ -510,6 +510,7 @@ static RAMFUNC int ManchesterDecoding(uint8_t bit, uint16_t offset, uint32_t non
// Record the sequence of commands sent by the reader to the tag, with // Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved // triggering so that we start recording at the point that the tag is moved
// near the reader. // near the reader.
// "hf 14a sniff"
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void RAMFUNC SniffIso14443a(uint8_t param) { void RAMFUNC SniffIso14443a(uint8_t param) {
// param: // param:
@ -660,13 +661,13 @@ void RAMFUNC SniffIso14443a(uint8_t param) {
} }
} // main cycle } // main cycle
FpgaDisableSscDma(); if (MF_DBGLEVEL >= 1) {
LEDsoff();
Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len); Dbprintf("maxDataLen=%d, Uart.state=%x, Uart.len=%d", maxDataLen, Uart.state, Uart.len);
Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]); Dbprintf("traceLen=%d, Uart.output[0]=%08x", BigBuf_get_traceLen(), (uint32_t)Uart.output[0]);
}
FpgaDisableSscDma();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
set_tracing(FALSE); set_tracing(FALSE);
} }
@ -856,11 +857,13 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int flags, byte_t* data) { void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
//Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2 //Here, we collect CUID, NT, NR, AR, CUID, NT2, NR2, AR2
// This can be used in a reader-only attack. // This can be used in a reader-only attack.
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0}; uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0; uint8_t ar_nr_collected = 0;
uint8_t sak = 0; uint8_t sak = 0;
uint32_t cuid = 0;
uint32_t nonce = 0;
// PACK response to PWD AUTH for EV1/NTAG // PACK response to PWD AUTH for EV1/NTAG
uint8_t response8[4] = {0,0,0,0}; uint8_t response8[4] = {0,0,0,0};
@ -926,7 +929,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
// For UID size 7, // For UID size 7,
uint8_t response2a[5] = {0x00}; uint8_t response2a[5] = {0x00};
if (flags & FLAG_7B_UID_IN_DATA) { if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA ) {
response2[0] = 0x88; // Cascade Tag marker response2[0] = 0x88; // Cascade Tag marker
response2[1] = data[0]; response2[1] = data[0];
response2[2] = data[1]; response2[2] = data[1];
@ -941,11 +944,14 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
// Configure the ATQA and SAK accordingly // Configure the ATQA and SAK accordingly
response1[0] |= 0x40; response1[0] |= 0x40;
sak |= 0x04; sak |= 0x04;
cuid = bytes_to_num(data+3, 4);
} else { } else {
memcpy(response2, data, 4); memcpy(response2, data, 4);
// Configure the ATQA and SAK accordingly // Configure the ATQA and SAK accordingly
response1[0] &= 0xBF; response1[0] &= 0xBF;
sak &= 0xFB; sak &= 0xFB;
cuid = bytes_to_num(data, 4);
} }
// Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID. // Calculate the BitCountCheck (BCC) for the first 4 bytes of the UID.
@ -968,6 +974,9 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
// TC(1) = 0x02: CID supported, NAD not supported // TC(1) = 0x02: CID supported, NAD not supported
ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]); ComputeCrc14443(CRC_14443_A, response6, 4, &response6[4], &response6[5]);
// the randon nonce
nonce = bytes_to_num(response5, 4);
// Prepare GET_VERSION (different for UL EV-1 / NTAG) // Prepare GET_VERSION (different for UL EV-1 / NTAG)
//uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION. //uint8_t response7_EV1[] = {0x00, 0x04, 0x03, 0x01, 0x01, 0x00, 0x0b, 0x03, 0xfd, 0xf7}; //EV1 48bytes VERSION.
//uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215 //uint8_t response7_NTAG[] = {0x00, 0x04, 0x04, 0x02, 0x01, 0x00, 0x11, 0x03, 0x01, 0x9e}; //NTAG 215
@ -1042,6 +1051,10 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
break; break;
} }
// incease nonce at every command recieved
nonce++;
num_to_bytes(nonce, 4, response5);
p_response = NULL; p_response = NULL;
// Okay, look at the command now. // Okay, look at the command now.
@ -1144,15 +1157,15 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
} }
} else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication) } else if (order == 7 && len == 8) { // Received {nr] and {ar} (part of authentication)
LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE); LogTrace(receivedCmd, Uart.len, Uart.startTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.endTime*16 - DELAY_AIR2ARM_AS_TAG, Uart.parity, TRUE);
uint32_t nonce = bytes_to_num(response5,4);
uint32_t nr = bytes_to_num(receivedCmd,4); uint32_t nr = bytes_to_num(receivedCmd,4);
uint32_t ar = bytes_to_num(receivedCmd+4,4); uint32_t ar = bytes_to_num(receivedCmd+4,4);
if(flags & FLAG_NR_AR_ATTACK ) { if ( (flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) {
if(ar_nr_collected < 2){ if(ar_nr_collected < 2){
// Avoid duplicates... probably not necessary, nr should vary. // Avoid duplicates... probably not necessary, nr should vary.
// nr doesn't change in pm3's reading etc. its fixed.
//if(ar_nr_responses[3] != nr){ //if(ar_nr_responses[3] != nr){
ar_nr_responses[ar_nr_collected*4] = 0; ar_nr_responses[ar_nr_collected*4] = cuid;
ar_nr_responses[ar_nr_collected*4+1] = nonce; ar_nr_responses[ar_nr_collected*4+1] = nonce;
ar_nr_responses[ar_nr_collected*4+2] = nr; ar_nr_responses[ar_nr_collected*4+2] = nr;
ar_nr_responses[ar_nr_collected*4+3] = ar; ar_nr_responses[ar_nr_collected*4+3] = ar;
@ -1161,7 +1174,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
} }
if(ar_nr_collected > 1 ) { if(ar_nr_collected > 1 ) {
if (MF_DBGLEVEL >= 2) { if (MF_DBGLEVEL >= 2 && !(flags & FLAG_INTERACTIVE)) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // CUID ar_nr_responses[0], // CUID
@ -1172,7 +1185,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
ar_nr_responses[7] // NR2 ar_nr_responses[7] // NR2
); );
} }
uint8_t len = ar_nr_collected*5*4; uint8_t len = ar_nr_collected*4*4;
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len); cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
ar_nr_collected = 0; ar_nr_collected = 0;
memset(ar_nr_responses, 0x00, len); memset(ar_nr_responses, 0x00, len);
@ -1268,6 +1281,11 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
// Count number of other messages after a halt // Count number of other messages after a halt
if(order != 6 && lastorder == 5) { happened2++; } if(order != 6 && lastorder == 5) { happened2++; }
// comment this limit if you want to simulation longer
if (!tracing) {
Dbprintf("Trace Full. Simulation stopped.");
break;
}
// comment this limit if you want to simulation longer // comment this limit if you want to simulation longer
if(cmdsRecvd > 999) { if(cmdsRecvd > 999) {
DbpString("1000 commands later..."); DbpString("1000 commands later...");
@ -1292,12 +1310,6 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data) {
(LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG, (LastTimeProxToAirStart + p_response->ProxToAirDuration)*16 + DELAY_ARM2AIR_AS_TAG,
par); par);
} }
// comment this limit if you want to simulation longer
if (!tracing) {
Dbprintf("Trace Full. Simulation stopped.");
break;
}
} }
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
@ -2065,10 +2077,8 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
uint32_t nttmp2 = nt2; uint32_t nttmp2 = nt2;
for (i = 1; i < (32768/8); ++i) { for (i = 1; i < (32768/8); ++i) {
nttmp1 = prng_successor(nttmp1, 1); nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i;
if (nttmp1 == nt2) return i; nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -i;
nttmp2 = prng_successor(nttmp2, 1);
if (nttmp2 == nt1) return -i;
nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1; nttmp1 = prng_successor(nttmp1, 1); if (nttmp1 == nt2) return i+1;
nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1); nttmp2 = prng_successor(nttmp2, 1); if (nttmp2 == nt1) return -(i+1);
@ -2096,7 +2106,6 @@ int32_t dist_nt(uint32_t nt1, uint32_t nt2) {
// (article by Nicolas T. Courtois, 2009) // (article by Nicolas T. Courtois, 2009)
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
void ReaderMifare(bool first_try, uint8_t block ) { void ReaderMifare(bool first_try, uint8_t block ) {
//uint8_t mf_auth[] = { MIFARE_AUTH_KEYA,0x00,0xf5,0x7b };
uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 }; uint8_t mf_auth[] = { MIFARE_AUTH_KEYA, block, 0x00, 0x00 };
uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 }; uint8_t mf_nr_ar[] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 };
uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0}; uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0};
@ -2120,7 +2129,7 @@ void ReaderMifare(bool first_try, uint8_t block ) {
uint16_t unexpected_random = 0; uint16_t unexpected_random = 0;
uint16_t sync_tries = 0; uint16_t sync_tries = 0;
// static variables here, is re-used in the next call? // static variables here, is re-used in the next call
static uint32_t nt_attacked = 0; static uint32_t nt_attacked = 0;
static uint32_t sync_time = 0; static uint32_t sync_time = 0;
static uint32_t sync_cycles = 0; static uint32_t sync_cycles = 0;
@ -2130,7 +2139,6 @@ void ReaderMifare(bool first_try, uint8_t block ) {
#define PRNG_SEQUENCE_LENGTH (1 << 16) #define PRNG_SEQUENCE_LENGTH (1 << 16)
#define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up. #define MAX_UNEXPECTED_RANDOM 4 // maximum number of unexpected (i.e. real) random numbers when trying to sync. Then give up.
#define MAX_SYNC_TRIES 32 #define MAX_SYNC_TRIES 32
#define MAX_STRATEGY 3
BigBuf_free(); BigBuf_Clear_ext(false); BigBuf_free(); BigBuf_Clear_ext(false);
clear_trace(); clear_trace();
@ -2145,8 +2153,6 @@ void ReaderMifare(bool first_try, uint8_t block ) {
mf_nr_ar3 = 0; mf_nr_ar3 = 0;
nt_attacked = 0; nt_attacked = 0;
par_low = 0; par_low = 0;
Dbprintf("FIRST: sync_time - %08X", sync_time);
} else { } else {
// we were unsuccessful on a previous call. // we were unsuccessful on a previous call.
// Try another READER nonce (first 3 parity bits remain the same) // Try another READER nonce (first 3 parity bits remain the same)
@ -2328,7 +2334,7 @@ void ReaderMifare(bool first_try, uint8_t block ) {
mf_nr_ar[3] &= 0x1F; mf_nr_ar[3] &= 0x1F;
if (MF_DBGLEVEL >= 1) Dbprintf("\nNumber of sent auth requestes: %u", i); if (MF_DBGLEVEL >= 4) Dbprintf("Number of sent auth requestes: %u", i);
uint8_t buf[28] = {0x00}; uint8_t buf[28] = {0x00};
memset(buf, 0x00, sizeof(buf)); memset(buf, 0x00, sizeof(buf));
@ -2381,10 +2387,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t response[MAX_MIFARE_FRAME_SIZE] = {0x00};
uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00}; uint8_t response_par[MAX_MIFARE_PARITY_SIZE] = {0x00};
uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k (4b UID) uint8_t atqa[] = {0x04, 0x00}; // Mifare classic 1k
uint8_t sak_4[] = {0x08, 0x00, 0x00}; // Mifare Classic uint8_t sak_4[] = {0x0C, 0x00, 0x00}; // CL1 - 4b uid
uint8_t sak_7[] = {0x08, 0x00, 0x00}; // CL2 - 7b uid uint8_t sak_7[] = {0x0C, 0x00, 0x00}; // CL2 - 7b uid
uint8_t sak_10[] = {0x08, 0x00, 0x00}; // CL3 - 10b uid uint8_t sak_10[] = {0x0C, 0x00, 0x00}; // CL3 - 10b uid
//uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini //uint8_t sak[] = {0x09, 0x3f, 0xcc }; // Mifare Mini
uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62}; uint8_t rUIDBCC1[] = {0xde, 0xad, 0xbe, 0xaf, 0x62};
@ -2395,61 +2401,43 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
//uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this? //uint8_t rAUTH_NT[] = {0x55, 0x41, 0x49, 0x92};// nonce from nested? why this?
uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00}; uint8_t rAUTH_AT[] = {0x00, 0x00, 0x00, 0x00};
// Here, we collect CUID, NT, AR, NR, NT2, AR2, NR2 // Here, we collect CUID, NT, NR, AR, CUID2, NT2, NR2, AR2
// This can be used in a reader-only attack. // This can be used in a reader-only attack.
uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0}; uint32_t ar_nr_responses[] = {0,0,0,0,0,0,0,0,0};
uint8_t ar_nr_collected = 0; uint8_t ar_nr_collected = 0;
// Authenticate response - nonce // Authenticate response - nonce
uint32_t nonce = bytes_to_num(rAUTH_NT, 4); uint32_t nonce = bytes_to_num(rAUTH_NT, 4);
ar_nr_responses[1] = nonce;
//-- Determine the UID //-- Determine the UID
// Can be set from emulator memory or incoming data // Can be set from emulator memory or incoming data
// Length: 4,7,or 10 bytes // Length: 4,7,or 10 bytes
if ( flags & FLAG_UID_IN_EMUL ) { if ( (flags & FLAG_UID_IN_EMUL) == FLAG_UID_IN_EMUL)
emlGetMemBt(rUIDBCC1, 0, 4); emlGetMemBt(datain, 0, 10); // load 10bytes from EMUL to the datain pointer. to be used below.
_UID_LEN = 4;
} else if (flags & FLAG_4B_UID_IN_DATA) { if ( (flags & FLAG_4B_UID_IN_DATA) == FLAG_4B_UID_IN_DATA) {
memcpy(rUIDBCC1, datain, 4); memcpy(rUIDBCC1, datain, 4);
_UID_LEN = 4; _UID_LEN = 4;
} else if (flags & FLAG_7B_UID_IN_DATA) { } else if ( (flags & FLAG_7B_UID_IN_DATA) == FLAG_7B_UID_IN_DATA) {
memcpy(&rUIDBCC1[1], datain, 3); memcpy(&rUIDBCC1[1], datain, 3);
memcpy( rUIDBCC2, datain+3, 4); memcpy( rUIDBCC2, datain+3, 4);
_UID_LEN = 7; _UID_LEN = 7;
} else if (flags & FLAG_10B_UID_IN_DATA) { } else if ( (flags & FLAG_10B_UID_IN_DATA) == FLAG_10B_UID_IN_DATA) {
memcpy(&rUIDBCC1[1], datain, 3); memcpy(&rUIDBCC1[1], datain, 3);
memcpy(&rUIDBCC2[1], datain+3, 4); memcpy(&rUIDBCC2[1], datain+3, 3);
memcpy( rUIDBCC3, datain+7, 4); memcpy( rUIDBCC3, datain+6, 4);
_UID_LEN = 10; _UID_LEN = 10;
} }
/*
* Save cuid to collected response array.
* Set XOR BCC (fifth byte) and modify the ATQA for 4,7 or 10-byte UID
atqa[] = 0x04, 0x00;
sak = 0x08;
if (flags & FLAG_7B_UID_IN_DATA) {
atqa[0] |= 0x40;
sak |= 0x04;
} else {
atqa[0] &= 0xBF;
sak &= 0xFB;
// Prepare the mandatory SAK (for 4 and 7 byte UID)
uint8_t response3[3] = {sak, 0x00, 0x00};
ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]);
*/
switch (_UID_LEN) { switch (_UID_LEN) {
case 4: case 4:
atqa[0] &= 0xBF;
sak_4[0] &= 0xFB; sak_4[0] &= 0xFB;
ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
// save CUID // save CUID
ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4); ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC1, 4);
// BCC // BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
if (MF_DBGLEVEL >= 1) { if (MF_DBGLEVEL >= 2) {
Dbprintf("4B UID: %02x%02x%02x%02x", Dbprintf("4B UID: %02x%02x%02x%02x",
rUIDBCC1[0], rUIDBCC1[0],
rUIDBCC1[1], rUIDBCC1[1],
@ -2460,19 +2448,16 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
break; break;
case 7: case 7:
atqa[0] |= 0x40; atqa[0] |= 0x40;
sak_7[0] |= 0x04; sak_7[0] &= 0xFB;
ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
// save CUID // save CUID
ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4); ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC2, 4);
// CascadeTag, CT
rUIDBCC1[0] = 0x88; // CascadeTag, CT rUIDBCC1[0] = 0x88;
// BCC // BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
if (MF_DBGLEVEL >= 1) { if (MF_DBGLEVEL >= 2) {
Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x", Dbprintf("7B UID: %02x %02x %02x %02x %02x %02x %02x",
//rUIDBCC1[0],
rUIDBCC1[1], rUIDBCC1[1],
rUIDBCC1[2], rUIDBCC1[2],
rUIDBCC1[3], rUIDBCC1[3],
@ -2484,27 +2469,23 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
break; break;
case 10: case 10:
atqa[0] |= 0x40; atqa[0] |= 0x80;
sak_10[0] |= 0x04; sak_10[0] &= 0xFB;
ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
// save CUID // save CUID
ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4); ar_nr_responses[0] = cuid = bytes_to_num(rUIDBCC3, 4);
rUIDBCC1[0] = 0x88; // CascadeTag, CT // CascadeTag, CT
rUIDBCC1[0] = 0x88;
rUIDBCC2[0] = 0x88;
// BCC // BCC
rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3]; rUIDBCC1[4] = rUIDBCC1[0] ^ rUIDBCC1[1] ^ rUIDBCC1[2] ^ rUIDBCC1[3];
rUIDBCC2[0] = 0x88; // CascadeTag, CT
// BCC
rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3]; rUIDBCC2[4] = rUIDBCC2[0] ^ rUIDBCC2[1] ^ rUIDBCC2[2] ^ rUIDBCC2[3];
rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3]; rUIDBCC3[4] = rUIDBCC3[0] ^ rUIDBCC3[1] ^ rUIDBCC3[2] ^ rUIDBCC3[3];
if (MF_DBGLEVEL >= 1) {
if (MF_DBGLEVEL >= 2) {
Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x", Dbprintf("10B UID: %02x %02x %02x %02x %02x %02x %02x %02x %02x %02x",
//rUIDBCC1[0],
rUIDBCC1[1], rUIDBCC1[1],
rUIDBCC1[2], rUIDBCC1[2],
rUIDBCC1[3], rUIDBCC1[3],
//rUIDBCC2[0],
rUIDBCC2[1], rUIDBCC2[1],
rUIDBCC2[2], rUIDBCC2[2],
rUIDBCC2[3], rUIDBCC2[3],
@ -2518,6 +2499,10 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
default: default:
break; break;
} }
// calc some crcs
ComputeCrc14443(CRC_14443_A, sak_4, 1, &sak_4[1], &sak_4[2]);
ComputeCrc14443(CRC_14443_A, sak_7, 1, &sak_7[1], &sak_7[2]);
ComputeCrc14443(CRC_14443_A, sak_10, 1, &sak_10[1], &sak_10[2]);
// We need to listen to the high-frequency, peak-detected path. // We need to listen to the high-frequency, peak-detected path.
iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN); iso14443a_setup(FPGA_HF_ISO14443A_TAGSIM_LISTEN);
@ -2559,6 +2544,7 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
crypto1_destroy(pcs); crypto1_destroy(pcs);
cardAUTHKEY = 0xff; cardAUTHKEY = 0xff;
LEDsoff(); LEDsoff();
nonce++;
continue; continue;
} }
@ -2626,9 +2612,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
continue; continue;
default:break; default:break;
} }
} else {
cardSTATE_TO_IDLE();
} }
cardSTATE_TO_IDLE();
break; break;
} }
case MFEMUL_SELECT3:{ case MFEMUL_SELECT3:{
@ -2650,9 +2635,8 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
LED_B_ON(); LED_B_ON();
if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer); if (MF_DBGLEVEL >= 4) Dbprintf("--> WORK. anticol3 time: %d", GetTickCount() - selTimer);
break; break;
} else {
cardSTATE_TO_IDLE();
} }
cardSTATE_TO_IDLE();
break; break;
} }
case MFEMUL_AUTH1:{ case MFEMUL_AUTH1:{
@ -2662,23 +2646,22 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
break; break;
} }
uint32_t ar = bytes_to_num(receivedCmd, 4); uint32_t nr = bytes_to_num(receivedCmd, 4);
uint32_t nr = bytes_to_num(&receivedCmd[4], 4); uint32_t ar = bytes_to_num(&receivedCmd[4], 4);
//Collect AR/NR //Collect AR/NR
//if(ar_nr_collected < 2 && cardAUTHSC == 2){ //if(ar_nr_collected < 2 && cardAUTHSC == 2){
if(ar_nr_collected < 2) { if(ar_nr_collected < 2) {
if(ar_nr_responses[2] != ar) { //if(ar_nr_responses[2] != nr) {
// Avoid duplicates... probably not necessary, ar should vary. ar_nr_responses[ar_nr_collected*4] = cuid;
//ar_nr_responses[ar_nr_collected*5] = 0; ar_nr_responses[ar_nr_collected*4+1] = nonce;
//ar_nr_responses[ar_nr_collected*5+1] = 0; ar_nr_responses[ar_nr_collected*4+2] = nr;
ar_nr_responses[ar_nr_collected*5+2] = nonce; ar_nr_responses[ar_nr_collected*4+3] = ar;
ar_nr_responses[ar_nr_collected*5+3] = nr;
ar_nr_responses[ar_nr_collected*5+4] = ar;
ar_nr_collected++; ar_nr_collected++;
} //}
// Interactive mode flag, means we need to send ACK // Interactive mode flag, means we need to send ACK
finished = (flags & FLAG_INTERACTIVE && ar_nr_collected == 2); finished = ( ((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE)&& ar_nr_collected == 2);
} }
/* /*
crypto1_word(pcs, ar , 1); crypto1_word(pcs, ar , 1);
@ -2915,31 +2898,33 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
} }
// Interactive mode flag, means we need to send ACK // Interactive mode flag, means we need to send ACK
if(flags & FLAG_INTERACTIVE) { if((flags & FLAG_INTERACTIVE) == FLAG_INTERACTIVE) {
//May just aswell send the collected ar_nr in the response aswell //May just aswell send the collected ar_nr in the response aswell
uint8_t len = ar_nr_collected*5*4; uint8_t len = ar_nr_collected * 4 * 4;
cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len); cmd_send(CMD_ACK, CMD_SIMULATE_MIFARE_CARD, len, 0, &ar_nr_responses, len);
} }
if(flags & FLAG_NR_AR_ATTACK && MF_DBGLEVEL >= 1 ) { if( ((flags & FLAG_NR_AR_ATTACK) == FLAG_NR_AR_ATTACK ) && MF_DBGLEVEL >= 1 ) {
if(ar_nr_collected > 1 ) { if(ar_nr_collected > 1 ) {
Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:"); Dbprintf("Collected two pairs of AR/NR which can be used to extract keys from reader:");
Dbprintf("../tools/mfkey/mfkey32 %08x %08x %08x %08x %08x %08x", Dbprintf("../tools/mfkey/mfkey32v2.exe %08x %08x %08x %08x %08x %08x %08x",
ar_nr_responses[0], // CUID ar_nr_responses[0], // CUID
ar_nr_responses[1], // NT ar_nr_responses[1], // NT1
ar_nr_responses[2], // AR1 ar_nr_responses[2], // NR1
ar_nr_responses[3], // NR1 ar_nr_responses[3], // AR1
ar_nr_responses[4], // AR2 //ar_nr_responses[4], // CUID2
ar_nr_responses[5] // NR2 ar_nr_responses[5], // NT2
ar_nr_responses[6], // NR2
ar_nr_responses[7] // AR2
); );
} else { } else {
Dbprintf("Failed to obtain two AR/NR pairs!"); Dbprintf("Failed to obtain two AR/NR pairs!");
if(ar_nr_collected > 0 ) { if(ar_nr_collected == 1 ) {
Dbprintf("Only got these: UID=%08x, nonce=%08x, AR1=%08x, NR1=%08x", Dbprintf("Only got these: UID=%08x, nonce=%08x, NR1=%08x, AR1=%08x",
ar_nr_responses[0], // CUID ar_nr_responses[0], // CUID
ar_nr_responses[1], // NT ar_nr_responses[1], // NT
ar_nr_responses[2], // AR1 ar_nr_responses[2], // NR1
ar_nr_responses[3] // NR1 ar_nr_responses[3] // AR1
); );
} }
} }
@ -2957,10 +2942,9 @@ void Mifare1ksim(uint8_t flags, uint8_t exitAfterNReads, uint8_t arg2, uint8_t *
// //
// if no activity for 2sec, it sends the collected data to the client. // if no activity for 2sec, it sends the collected data to the client.
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// "hf mf sniff"
void RAMFUNC SniffMifare(uint8_t param) { void RAMFUNC SniffMifare(uint8_t param) {
// param:
// bit 0 - trigger from first card answer
// bit 1 - trigger from first reader 7-bit request
LEDsoff(); LEDsoff();
// free eventually allocated BigBuf memory // free eventually allocated BigBuf memory
@ -3098,9 +3082,10 @@ void RAMFUNC SniffMifare(uint8_t param) {
} // main cycle } // main cycle
if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
FpgaDisableSscDma(); FpgaDisableSscDma();
MfSniffEnd(); MfSniffEnd();
if (MF_DBGLEVEL >= 1) Dbprintf("maxDataLen=%x, Uart.state=%x, Uart.len=%x", maxDataLen, Uart.state, Uart.len);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff(); LEDsoff();
set_tracing(FALSE); set_tracing(FALSE);