fix: Hitag S read/write in plain mode

Switch the counter clock to MCK/32 to allow a longer overflow time
This commit is contained in:
douniwan5788 2024-08-22 02:20:26 +08:00
commit b76ebd9124
2 changed files with 39 additions and 56 deletions

View file

@ -3,6 +3,7 @@ All notable changes to this project will be documented in this file.
This project uses the changelog in accordance with [keepchangelog](http://keepachangelog.com/). Please use this to write notable changes, which is not the same as git commit log...
## [unreleased][unreleased]
- Fixed Hitag S read/write in plain mode (@douniwan5788)
- Fixed fm11rf08s script for non-4B UID (FM11RF08S-7B) (@Foxushka)
- Fixed missing require of ansicolors in `lf_hid_bulkclone_v2.lua` script (@whiteneon)
- Added `lf_t55xx_reset.lua` - a script to aid in quickly resetting t55xx chips (@whiteneon)

View file

@ -75,17 +75,17 @@ static uint32_t rnd = 0x74124485; // random number
#define ht2bs_4b(a,b,c,d) (~(((d|c)&(a^b))^(d|a|b)))
#define ht2bs_5c(a,b,c,d,e) (~((((((c^e)|d)&a)^b)&(c^b))^(((d^e)|a)&((d^b)|c))))
// Sam7s has several timers, we will use the source TIMER_CLOCK1 (aka AT91C_TC_CLKS_TIMER_DIV1_CLOCK)
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// Sam7s has several timers, we will use the source TIMER_CLOCK3 (aka AT91C_TC_CLKS_TIMER_DIV3_CLOCK)
// TIMER_CLOCK3 = MCK/32, MCK is running at 48 MHz, Timer is running at 48MHz/32 = 1500 KHz
// Hitag units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
// T0 = TIMER_CLOCK3 / 125000 = 12
#define T0 192
#define T0 12
#define HITAG_FRAME_LEN 20
// TC0 and TC1 will overflow at 341 * T0, so avoid setting these timings above 341 when comparing without considering overflow,
// as they will never reach that value.
// TC0 and TC1 are 16-bit counters and will overflow after 5461 * T0
// Ensure not to set these timings above 5461 (~43ms) when comparing without considering overflow, as they will never reach that value.
#define HITAG_T_STOP 36 /* T_EOF should be > 36 */
#define HITAG_T_LOW 8 /* T_LOW should be 4..10 */
@ -96,7 +96,7 @@ static uint32_t rnd = 0x74124485; // random number
// #define HITAG_T_EOF 40 /* T_EOF should be > 36 */
#define HITAG_T_EOF 80 /* T_EOF should be > 36 */
#define HITAG_T_WAIT_RESP 200 /* T_wresp should be 204..212 */
#define HITAG_T_WAIT_SC 90 /* T_wsc should be 90..5000 */
#define HITAG_T_WAIT_SC 200 /* T_wsc should be 90..5000 */
#define HITAG_T_WAIT_FIRST 300 /* T_wfc should be 280..565 (T_ttf) */
#define HITAG_T_PROG_MAX 750 /* T_prog should be 716..726 */
@ -277,6 +277,7 @@ static void hitag_reader_send_bit(int bit, bool ledcontrol) {
if (ledcontrol) LED_A_ON();
// Reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV > 0);
// Binary puls length modulation (BPLM) is used to encode the data stream
// This means that a transmission of a one takes longer than that of a zero
@ -324,7 +325,7 @@ static void hitag_reader_send_frame(const uint8_t *frame, size_t frame_len, bool
}
// send EOF
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV > 0);
HIGH(GPIO_SSC_DOUT);
// Wait for 4-10 times the carrier period
@ -336,8 +337,8 @@ static void hitag_reader_send_frame(const uint8_t *frame, size_t frame_len, bool
static void hitagS_init_clock(void) {
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
// Timer Counter 0, used to measure exact timing before answering
// Timer Counter 1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
@ -346,39 +347,34 @@ static void hitagS_init_clock(void) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC0: Capture mode, clock source = MCK/32 (TIMER_CLOCK3), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
// TC1: Capture mode, clock source = MCK/32 (TIMER_CLOCK3), TIOA is external trigger,
// external trigger falling edge, set RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR =
AT91C_TC_CLKS_TIMER_DIV1_CLOCK |
AT91C_TC_ETRGEDG_FALLING |
AT91C_TC_ABETRG |
AT91C_TC_LDRA_FALLING |
AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
AT91C_TC_CLKS_TIMER_DIV3_CLOCK |
AT91C_TC_ETRGEDG_FALLING | // external trigger on falling edge
AT91C_TC_ABETRG | // TIOA is used as an external trigger.
AT91C_TC_LDRA_FALLING | // load RA on on falling edge
AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit)
AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit)
AT91C_BASE_TC0->TC_RC = 0; // set TIOA (carry bit) on overflow, return to zero
AT91C_BASE_TC0->TC_RA = 1; // clear carry bit on next clock cycle
AT91C_BASE_TC1->TC_RA = 1; // clear carry bit on next clock cycle
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Typically 2 or 3, indicating that our execution is slow enough to wait for TC0 reset.
// If I am calculating correctly, theoretically, for AT91C_TC_CLKS_TIMER_DIV1_CLOCK, 2 instruction statements are sufficient?
// Dbprintf("TC_CV:%i", AT91C_BASE_TC0->TC_CV);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// for (size_t i = 0; i < 10; i++) __asm("");
// uint16_t cv0 = AT91C_BASE_TC0->TC_CV;
// synchronized startup procedure
// Waiting for TC0 to return to 0 takes a considerable amount of time (around 2730us),
// and we should be able to tolerate 1 * T0. Or is this even necessary?
while (AT91C_BASE_TC0->TC_CV > T0) {}; // wait until TC0 returned to zero
// In theory, with MCK/32, we shouldn't be waiting longer than 32 instruction statements, right?
while (AT91C_BASE_TC0->TC_CV > 0) {}; // wait until TC0 returned to zero
// while (AT91C_BASE_TC0->TC_CV < 2) {}; // and has started (TC_CV > TC_RA, now TC1 is cleared)
// Dbprintf("TC_CV0:%i TC_CV:%i", cv0, AT91C_BASE_TC0->TC_CV);
// Dbprintf("TC0_CV0:%i TC0_CV:%i TC1_CV:%i", cv0, AT91C_BASE_TC0->TC_CV, AT91C_BASE_TC1->TC_CV);
}
static void hitagS_stop_clock(void) {
@ -879,8 +875,8 @@ void SimulateHitagSTag(bool tag_mem_supplied, const uint8_t *data, bool ledcontr
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
// Timer Counter 0, used to measure exact timing before answering
// Timer Counter 1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
@ -889,12 +885,12 @@ void SimulateHitagSTag(bool tag_mem_supplied, const uint8_t *data, bool ledcontr
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC0: Capture mode, default timer source = MCK/32 (TIMER_CLOCK3), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK;
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// TC1: Capture mode, default timer source = MCK/32 (TIMER_CLOCK3), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK
| AT91C_TC_ETRGEDG_RISING | AT91C_TC_ABETRG | AT91C_TC_LDRA_RISING;
// Enable and reset counter
@ -1004,11 +1000,6 @@ static void hitagS_receive_frame(uint8_t *rx, size_t sizeofrx, size_t *rxlen, ui
bool bSkip = true;
*resptime = 0;
uint32_t errorCount = 0;
// clk overflow but I failed moving TC0 & TC1 to
// slower clock AT91C_TC_CLKS_TIMER_DIV3_CLOCK
// so tracking overflow manually...
uint32_t overcount = 0;
uint32_t prevcv = 0;
bool bStarted = false;
uint32_t ra_i=0, h2 = 0, h3 = 0, h4 = 0;
@ -1017,14 +1008,7 @@ static void hitagS_receive_frame(uint8_t *rx, size_t sizeofrx, size_t *rxlen, ui
// Dbprintf("TC0_CV:%i TC1_CV:%i TC1_RA:%i", AT91C_BASE_TC0->TC_CV, AT91C_BASE_TC1->TC_CV ,AT91C_BASE_TC1->TC_RA);
// Receive frame, watch for at most T0*HITAG_T_PROG_MAX periods
while (AT91C_BASE_TC0->TC_CV + (overcount << 16) < (T0 * HITAG_T_PROG_MAX)) {
// detect and track counter overflows
uint32_t tmpcv = AT91C_BASE_TC0->TC_CV;
if (tmpcv < prevcv) {
overcount++;
}
prevcv = tmpcv;
while (AT91C_BASE_TC0->TC_CV < (T0 * HITAG_T_PROG_MAX)) {
// Check if falling edge in tag modulation is detected
if (AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
@ -1035,21 +1019,19 @@ static void hitagS_receive_frame(uint8_t *rx, size_t sizeofrx, size_t *rxlen, ui
// Reset timer every frame, we have to capture the last edge for timing
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
prevcv = 0;
overcount = 0;
if (ledcontrol) LED_B_ON();
// Capture tag frame (manchester decoding using only falling edges)
if (bStarted == false) {
// Capture the T0 periods that have passed since last communication or field drop (reset)
*resptime = ra - HITAG_T_TAG_HALF_PERIOD;
if (ra >= HITAG_T_WAIT_RESP) {
bStarted = true;
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always receive a 'one' first, which has the falling edge after a half period |-_|
*resptime = ra - HITAG_T_TAG_HALF_PERIOD;
// We always receive a 'one' first, which has the falling edge after a half period |-_|
rx[0] = 0x80;
(*rxlen)++;
} else {
@ -1093,7 +1075,7 @@ static void hitagS_receive_frame(uint8_t *rx, size_t sizeofrx, size_t *rxlen, ui
}
// if we saw over 100 weird values break it probably isn't hitag...
if (errorCount > 100) {
if (errorCount > 100 || (*rxlen) / 8 >= sizeofrx) {
break;
}
@ -1108,7 +1090,7 @@ static void hitagS_receive_frame(uint8_t *rx, size_t sizeofrx, size_t *rxlen, ui
}
}
if (g_dbglevel >= DBG_EXTENDED) {
Dbprintf("RX0 %i:%02X.. err:%i resptime:%i h2:%i h3:%i h4:%i edges", *rxlen, rx[0], errorCount, *resptime, h2, h3, h4);
Dbprintf("RX0 %i:%02X.. err:%i resptime:%i h2:%i h3:%i h4:%i edges:", *rxlen, rx[0], errorCount, *resptime, h2, h3, h4);
Dbhexdump(ra_i, edges, false);
}
}