LF t55xx and LF em4x commands now should manchester decode data. However t55xx can have other settings and different encodings.

This commit is contained in:
iceman1001 2014-09-16 13:56:06 +02:00
commit b44e523300
9 changed files with 351 additions and 242 deletions

View file

@ -993,7 +993,7 @@ void __attribute__((noreturn)) AppMain(void)
LED_B_OFF();
LED_A_OFF();
// Init USB device`
// Init USB device
usb_enable();
// The FPGA gets its clock from us from PCK0 output, so set that up.

View file

@ -131,16 +131,15 @@ void MifareDesfireGetInformation(){
void MifareDES_Auth1(uint8_t mode, uint8_t algo, uint8_t keyno, uint8_t *datain){
uint8_t null_key_data[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
uint8_t new_key_data[8] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
int res;
//uint8_t new_key_data[8] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 };
int res = 0;
MifareDESFireKey default_key = mifare_desfire_des_key_new_with_version (null_key_data);
desfirekey_t default_key = Desfire_des_key_new_with_version (null_key_data);
res = mifare_desfire_select_application (tags[i], aid);
// res = Desfire_select_application (tags[i], aid);
if (res < 0) {
freefare_perror (tags[i], "mifare_desfire_select_application");
error = EXIT_FAILURE;
break;
print_result("default key: ", default_key->data, 24 );
return;
}
return;

View file

@ -12,5 +12,4 @@
#include "mifareutil.h"
#include "../include/common.h"
#endif

View file

@ -588,13 +588,16 @@ int CmdManchesterDemod(const char *Cmd)
}
}
PrintAndLog("Clock: %d", clock);
/* If we're not working with 1/0s, demod based off clock */
if (high != 1)
{
PrintAndLog("Entering path A");
bit = 0; /* We assume the 1st bit is zero, it may not be
* the case: this routine (I think) has an init problem.
* Ed.
*/
*/
for (; i < (int)(GraphTraceLen / clock); i++)
{
hithigh = 0;

View file

@ -524,7 +524,7 @@ int CmdHF14AMfDump(const char *Cmd)
PrintAndLog("Got %d",size);
return;
return 0;
if ( size > -1)
cmdp = (char)48+size;
@ -1027,6 +1027,18 @@ int CmdHF14AMfNested(const char *Cmd)
int CmdHF14AMfChk(const char *Cmd)
{
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf chk <block number>|<*card memory> <key type (A/B/?)> [t|d] [<key (12 hex symbols)>] [<dic (*.dic)>]");
PrintAndLog(" * - all sectors");
PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other> - 1K");
PrintAndLog("d - write keys to binary file\n");
PrintAndLog("t - write keys to emulator memory");
PrintAndLog(" sample: hf mf chk 0 A 1234567890ab keys.dic");
PrintAndLog(" hf mf chk *1 ? t");
PrintAndLog(" hf mf chk *1 ? d");
return 0;
}
FILE * f;
char filename[256]={0};
char buf[13];
@ -1070,16 +1082,6 @@ int CmdHF14AMfChk(const char *Cmd)
num_to_bytes(defaultKeys[defaultKeyCounter], 6, (uint8_t*)(keyBlock + defaultKeyCounter * 6));
}
if (strlen(Cmd)<3) {
PrintAndLog("Usage: hf mf chk <block number>|<*card memory> <key type (A/B/?)> [t] [<key (12 hex symbols)>] [<dic (*.dic)>]");
PrintAndLog(" * - all sectors");
PrintAndLog("card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, <other> - 1K");
PrintAndLog("d - write keys to binary file\n");
PrintAndLog(" sample: hf mf chk 0 A 1234567890ab keys.dic");
PrintAndLog(" hf mf chk *1 ? t");
return 0;
}
if (param_getchar(Cmd, 0)=='*') {
blockNo = 3;
switch(param_getchar(Cmd+1, 0)) {
@ -2090,49 +2092,56 @@ int GetCardSize()
// NXP MIFARE Mini 0.3k
if ( (atqa && 0xff0f == 0x0004) && (sak == 0x09) ) return 0;
if ( ( (atqa & 0xff0f) == 0x0004) && (sak == 0x09) ) return 0;
// MIFARE Classic 1K
if ( (atqa && 0xff0f == 0x0004) && (sak == 0x08) ) return 1;
if ( ((atqa & 0xff0f) == 0x0004) && (sak == 0x08) ) return 1;
// MIFARE Classik 4K
if ( (atqa && 0xff0f == 0x0002) && (sak == 0x18) ) return 4;
if ( ((atqa & 0xff0f) == 0x0002) && (sak == 0x18) ) return 4;
// SmartMX with MIFARE 1K emulation
if ( (atqa && 0xf0ff == 0x0004) ) return 1;
if ( ((atqa & 0xf0ff) == 0x0004) ) return 1;
// SmartMX with MIFARE 4K emulation
if ( (atqa && 0xf0ff == 0x0002) ) return 4;
if ( ((atqa & 0xf0ff) == 0x0002) ) return 4;
// Infineon MIFARE CLASSIC 1K
if ( (atqa && 0xffff == 0x0004) && (sak == 0x88) ) return 1;
if ( ((atqa & 0xffff) == 0x0004) && (sak == 0x88) ) return 1;
// MFC 4K emulated by Nokia 6212 Classic
if ( (atqa && 0xffff == 0x0002) && (sak == 0x38) ) return 4;
if ( ((atqa & 0xffff) == 0x0002) && (sak == 0x38) ) return 4;
// MFC 4K emulated by Nokia 6131 NFC
if ( (atqa && 0xffff == 0x0008) && (sak == 0x38) ) return 4;
if ( ((atqa & 0xffff) == 0x0008) && (sak == 0x38) ) return 4;
PrintAndLog("BEFOOO 1K %02X", (atqa & 0xff0f));
// MIFARE Plus (4 Byte UID or 4 Byte RID)
// MIFARE Plus (7 Byte UID)
if (
(atqa && 0xffff == 0x0002) ||
(atqa && 0xffff == 0x0004) ||
(atqa && 0xffff == 0x0042) ||
(atqa && 0xffff == 0x0044)
((atqa & 0xffff) == 0x0002) |
((atqa & 0xffff) == 0x0004) |
((atqa & 0xffff) == 0x0042) |
((atqa & 0xffff) == 0x0044)
)
{
switch(sak){
case 0x08:
case 0x10:
case 0x10: {
//case 0x20:
PrintAndLog("2");
return 2;
break;
}
case 0x11:
case 0x18:
case 0x18:{
//case 0x20:
PrintAndLog("4");
return 4;
break;
}
}
}

View file

@ -21,6 +21,7 @@
#include "cmdlfem4x.h"
#include "util.h"
#include "data.h"
#define LF_TRACE_BUFF_SIZE 16000
char *global_em410xId;
@ -506,41 +507,47 @@ int CmdEM410xWrite(const char *Cmd)
int CmdReadWord(const char *Cmd)
{
int Word = -1; //default to invalid word
UsbCommand c;
UsbCommand c;
sscanf(Cmd, "%d", &Word);
sscanf(Cmd, "%d", &Word);
if ( (Word > 15) | (Word < 0) ) {
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Reading word %d", Word);
PrintAndLog("Reading word %d", Word);
c.cmd = CMD_EM4X_READ_WORD;
c.d.asBytes[0] = 0x0; //Normal mode
c.arg[0] = 0;
c.arg[1] = Word;
c.arg[2] = 0;
SendCommand(&c);
c.cmd = CMD_EM4X_READ_WORD;
c.d.asBytes[0] = 0x0; //Normal mode
c.arg[0] = 0;
c.arg[1] = Word;
c.arg[2] = 0;
SendCommand(&c);
WaitForResponse(CMD_ACK, NULL);
size_t bytelength = 4096;
uint8_t data[bytelength];
memset(data, 0x00, bytelength);
uint8_t data[LF_TRACE_BUFF_SIZE];
memset(data, 0x00, LF_TRACE_BUFF_SIZE);
GetFromBigBuf(data,bytelength,3560); //3560 -- should be offset..
GetFromBigBuf(data,LF_TRACE_BUFF_SIZE,3560); //3560 -- should be offset..
WaitForResponseTimeout(CMD_ACK,NULL, 1500);
for (int j = 0; j < bytelength; j++) {
for (int j = 0; j < LF_TRACE_BUFF_SIZE; j++) {
GraphBuffer[j] = ((int)data[j]) - 128;
}
GraphTraceLen = bytelength;
RepaintGraphWindow();
manchester_decode(data, bytelength);
free(data);
GraphTraceLen = LF_TRACE_BUFF_SIZE;
// BiDirectional
//CmdDirectionalThreshold("70 -60");
// Askdemod
//Cmdaskdemod("1");
uint8_t bits[1000];
uint8_t * bitstream = bits;
memset(bitstream, 0x00, sizeof(bits));
manchester_decode(GraphBuffer, LF_TRACE_BUFF_SIZE, bitstream);
return 0;
}
@ -548,42 +555,48 @@ int CmdReadWord(const char *Cmd)
int CmdReadWordPWD(const char *Cmd)
{
int Word = -1; //default to invalid word
int Password = 0xFFFFFFFF; //default to blank password
UsbCommand c;
sscanf(Cmd, "%d %x", &Word, &Password);
int Password = 0xFFFFFFFF; //default to blank password
UsbCommand c;
sscanf(Cmd, "%d %x", &Word, &Password);
if ( (Word > 15) | (Word < 0) ) {
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Word must be between 0 and 15");
return 1;
}
PrintAndLog("Reading word %d with password %08X", Word, Password);
c.cmd = CMD_EM4X_READ_WORD;
c.d.asBytes[0] = 0x1; //Password mode
c.arg[0] = 0;
c.arg[1] = Word;
c.arg[2] = Password;
SendCommand(&c);
PrintAndLog("Reading word %d with password %08X", Word, Password);
c.cmd = CMD_EM4X_READ_WORD;
c.d.asBytes[0] = 0x1; //Password mode
c.arg[0] = 0;
c.arg[1] = Word;
c.arg[2] = Password;
SendCommand(&c);
WaitForResponse(CMD_ACK, NULL);
uint8_t data[LF_TRACE_BUFF_SIZE];
memset(data, 0x00, LF_TRACE_BUFF_SIZE);
size_t bytelength = 4096;
uint8_t data[bytelength];
memset(data, 0x00, bytelength);
GetFromBigBuf(data,bytelength,3560); //3560 -- should be offset..
GetFromBigBuf(data,LF_TRACE_BUFF_SIZE,3560); //3560 -- should be offset..
WaitForResponseTimeout(CMD_ACK,NULL, 1500);
for (int j = 0; j < bytelength; j++) {
for (int j = 0; j < LF_TRACE_BUFF_SIZE; j++) {
GraphBuffer[j] = ((int)data[j]) - 128;
}
GraphTraceLen = bytelength;
RepaintGraphWindow();
GraphTraceLen = LF_TRACE_BUFF_SIZE;
manchester_decode(data, bytelength);
free(data);
// BiDirectional
//CmdDirectionalThreshold("70 -60");
// Askdemod
//Cmdaskdemod("1");
uint8_t bits[1000];
uint8_t * bitstream = bits;
memset(bitstream, 0x00, sizeof(bits));
manchester_decode(GraphBuffer, LF_TRACE_BUFF_SIZE, bitstream);
return 0;
}
@ -636,8 +649,6 @@ int CmdWriteWordPWD(const char *Cmd)
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},

View file

@ -29,25 +29,25 @@ int CmdReadBlk(const char *Cmd)
{
//default to invalid block
int Block = -1;
UsbCommand c;
UsbCommand c;
sscanf(Cmd, "%d", &Block);
sscanf(Cmd, "%d", &Block);
if ((Block > 7) | (Block < 0)) {
PrintAndLog("Block must be between 0 and 7");
return 1;
}
PrintAndLog("Block must be between 0 and 7");
return 1;
}
PrintAndLog(" Reading page 0 block : %d", Block);
// this command fills up BigBuff
//
c.cmd = CMD_T55XX_READ_BLOCK;
c.cmd = CMD_T55XX_READ_BLOCK;
c.d.asBytes[0] = 0x00;
c.arg[0] = 0;
c.arg[1] = Block;
c.arg[2] = 0;
SendCommand(&c);
c.arg[0] = 0;
c.arg[1] = Block;
c.arg[2] = 0;
SendCommand(&c);
WaitForResponse(CMD_ACK, NULL);
uint8_t data[LF_TRACE_BUFF_SIZE];
@ -62,18 +62,17 @@ int CmdReadBlk(const char *Cmd)
GraphTraceLen = LF_TRACE_BUFF_SIZE;
// BiDirectional
CmdDirectionalThreshold("70 -60");
//CmdDirectionalThreshold("70 60");
// Askdemod
Cmdaskdemod("1");
//Cmdaskdemod("1");
uint8_t bits[1000];
uint8_t * bitstream = bits;
uint8_t len = 0;
len = manchester_decode(data, LF_TRACE_BUFF_SIZE, bitstream);
if ( len > 0 )
PrintPaddedManchester(bitstream, len, 32);
memset(bitstream, 0x00, sizeof(bits));
manchester_decode(GraphBuffer, LF_TRACE_BUFF_SIZE, bitstream);
return 0;
}
@ -81,24 +80,24 @@ int CmdReadBlk(const char *Cmd)
int CmdReadBlkPWD(const char *Cmd)
{
int Block = -1; //default to invalid block
int Password = 0xFFFFFFFF; //default to blank Block 7
UsbCommand c;
int Password = 0xFFFFFFFF; //default to blank Block 7
UsbCommand c;
sscanf(Cmd, "%d %x", &Block, &Password);
sscanf(Cmd, "%d %x", &Block, &Password);
if ((Block > 7) | (Block < 0)) {
PrintAndLog("Block must be between 0 and 7");
return 1;
}
PrintAndLog("Block must be between 0 and 7");
return 1;
}
PrintAndLog("Reading page 0 block %d pwd %08X", Block, Password);
c.cmd = CMD_T55XX_READ_BLOCK;
c.d.asBytes[0] = 0x1; //Password mode
c.arg[0] = 0;
c.arg[1] = Block;
c.arg[2] = Password;
SendCommand(&c);
c.cmd = CMD_T55XX_READ_BLOCK;
c.d.asBytes[0] = 0x1; //Password mode
c.arg[0] = 0;
c.arg[1] = Block;
c.arg[2] = Password;
SendCommand(&c);
WaitForResponse(CMD_ACK, NULL);
uint8_t data[LF_TRACE_BUFF_SIZE];
@ -113,17 +112,16 @@ int CmdReadBlkPWD(const char *Cmd)
GraphTraceLen = LF_TRACE_BUFF_SIZE;
// BiDirectional
CmdDirectionalThreshold("70 -60");
//CmdDirectionalThreshold("70 -60");
// Askdemod
Cmdaskdemod("1");
//Cmdaskdemod("1");
uint8_t bits[1000];
uint8_t len = 0;
len = manchester_decode(data, LF_TRACE_BUFF_SIZE, bits);
if ( len > 0 )
PrintPaddedManchester(bits, len, 32);
uint8_t * bitstream = bits;
memset(bitstream, 0x00, sizeof(bits));
manchester_decode(GraphBuffer, LF_TRACE_BUFF_SIZE, bitstream);
return 0;
}
@ -197,28 +195,29 @@ int CmdReadTrace(const char *Cmd)
GraphTraceLen = LF_TRACE_BUFF_SIZE;
// BiDirectional
CmdDirectionalThreshold("70 -60");
//CmdDirectionalThreshold("70 -60");
// Askdemod
Cmdaskdemod("1");
//Cmdaskdemod("1");
uint8_t bits[512];
uint8_t len = 0;
len = manchester_decode(data,LF_TRACE_BUFF_SIZE,bits);
if ( len > 0 )
PrintPaddedManchester(bits, len, 64);
uint8_t bits[1000];
uint8_t * bitstream = bits;
memset(bitstream, 0x00, sizeof(bits));
manchester_decode(GraphBuffer, LF_TRACE_BUFF_SIZE, bitstream);
return 0;
}
static command_t CommandTable[] =
{
{"help", CmdHelp, 1, "This help"},
{"readblock", CmdReadBlk, 1, "<Block> -- Read T55xx block data (page 0)"},
{"readblockPWD", CmdReadBlkPWD, 1, "<Block> <Password> -- Read T55xx block data in password mode(page 0)"},
{"writeblock", CmdWriteBlk, 1, "<Data> <Block> -- Write T55xx block data (page 0)"},
{"writeblockPWD", CmdWriteBlkPWD, 1, "<Data> <Block> <Password> -- Write T55xx block data in password mode(page 0)"},
{"readtrace", CmdReadTrace, 1, "Read T55xx traceability data (page 1)"},
{"help", CmdHelp, 1, "This help"},
{"rd", CmdReadBlk, 0, "<Block> -- Read T55xx block data (page 0)"},
{"rdPWD", CmdReadBlkPWD, 0, "<Block> <Password> -- Read T55xx block data in password mode(page 0)"},
{"wr", CmdWriteBlk, 0, "<Data> <Block> -- Write T55xx block data (page 0)"},
{"wrPWD", CmdWriteBlkPWD, 0, "<Data> <Block> <Password> -- Write T55xx block data in password mode(page 0)"},
{"trace", CmdReadTrace, 0, "Read T55xx traceability data (page 1)"},
{NULL, NULL, 0, NULL}
};

View file

@ -92,24 +92,18 @@ void SetLogFilename(char *fn)
}
uint8_t manchester_decode(const uint8_t * data, const size_t len, uint8_t * dataout){
int manchester_decode(const int * data, const size_t len, uint8_t * dataout){
size_t bytelength = len;
uint8_t bitStream[bytelength];
memset(bitStream, 0x00, bytelength);
int clock,high, low, bit, hithigh, hitlow, first, bit2idx, lastpeak;
int i,invert, lastval;
int bitidx = 0;
int lc = 0;
int warnings = 0;
int bitlength = 0;
int i, clock, high, low, startindex;
low = startindex = 0;
high = 1;
low = bit = bit2idx = lastpeak = invert = lastval = hithigh = hitlow = first = 0;
clock = 0xFFFF;
uint8_t bitStream[len];
memset(bitStream, 0x00, len);
/* Detect high and lows */
for (i = 0; i < bytelength; i++) {
for (i = 0; i < len; i++) {
if (data[i] > high)
high = data[i];
else if (data[i] < low)
@ -117,47 +111,106 @@ uint8_t manchester_decode(const uint8_t * data, const size_t len, uint8_t * data
}
/* get clock */
int j=0;
for (i = 1; i < bytelength; i++) {
clock = GetT55x7Clock( data, len, high );
startindex = DetectFirstTransition(data, len, high, low);
PrintAndLog(" Clock : %d", clock);
PrintAndLog(" startindex : %d", startindex);
if (high != 1)
bitlength = ManchesterConvertFrom255(data, len, bitStream, high, low, clock, startindex);
else
bitlength= ManchesterConvertFrom1(data, len, bitStream, clock, startindex);
if ( bitlength > 0 ){
PrintPaddedManchester(bitStream, bitlength, clock);
}
memcpy(dataout, bitStream, bitlength);
free(bitStream);
return bitlength;
}
int GetT55x7Clock( const int * data, const size_t len, int peak ){
int i,lastpeak,clock;
clock = 0xFFFF;
lastpeak = 0;
/* Detect peak if we don't have one */
if (!peak) {
for (i = 0; i < len; ++i) {
if (data[i] > peak) {
peak = data[i];
}
}
}
for (i = 1; i < len; ++i) {
/* if this is the beginning of a peak */
j = i-1;
if ( data[j] != data[i] &&
data[i] == high)
{
if ( data[i-1] != data[i] && data[i] == peak) {
/* find lowest difference between peaks */
if (lastpeak && i - lastpeak < clock)
clock = i - lastpeak;
lastpeak = i;
}
}
int tolerance = clock/4;
PrintAndLog(" Detected clock: %d",clock);
//return clock;
//defaults clock to precise values.
switch(clock){
case 8:
case 16:
case 32:
case 40:
case 50:
case 64:
case 100:
case 128:
return clock;
break;
default: break;
}
return 32;
}
int DetectFirstTransition(const int * data, const size_t len, int high, int low){
/* Detect first transition */
/* Lo-Hi (arbitrary) */
/* skip to the first high */
for (i= 0; i < bytelength; i++)
int i, retval;
retval = 0;
/*
Detect first transition Lo-Hi (arbitrary)
skip to the first high
*/
for (i = 0; i < len; ++i)
if (data[i] == high)
break;
/* now look for the first low */
for (; i < bytelength; i++) {
for (; i < len; ++i) {
if (data[i] == low) {
lastval = i;
retval = i;
break;
}
}
/* If we're not working with 1/0s, demod based off clock */
if (high != 1)
return retval;
}
int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex){
int i, j, hithigh, hitlow, first, bit, bitIndex;
i = startIndex;
bitIndex = 0;
/*
* We assume the 1st bit is zero, it may not be
* the case: this routine (I think) has an init problem.
* Ed.
*/
bit = 0;
for (; i < (int)(len / clock); i++)
{
bit = 0; /* We assume the 1st bit is zero, it may not be
* the case: this routine (I think) has an init problem.
* Ed.
*/
for (; i < (int)(bytelength / clock); i++)
{
hithigh = 0;
hitlow = 0;
first = 1;
@ -179,94 +232,125 @@ uint8_t manchester_decode(const uint8_t * data, const size_t len, uint8_t * data
if (hithigh && hitlow)
break;
}
}
/* If we didn't hit both high and low peaks, we had a bit transition */
if (!hithigh || !hitlow)
/* If we didn't hit both high and low peaks, we had a bit transition */
if (!hithigh || !hitlow)
bit ^= 1;
bitStream[bit2idx++] = bit ^ invert;
}
dataout[bitIndex++] = bit;
}
/* standard 1/0 bitstream */
else {
/* Then detect duration between 2 successive transitions */
for (bitidx = 1; i < bytelength; i++) {
if (data[i-1] != data[i]) {
lc = i-lastval;
lastval = i;
return bitIndex;
}
int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex){
// Error check: if bitidx becomes too large, we do not
// have a Manchester encoded bitstream or the clock is really
// wrong!
if (bitidx > (bytelength*2/clock+8) ) {
PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
return 0;
}
// Then switch depending on lc length:
// Tolerance is 1/4 of clock rate (arbitrary)
if (abs(lc-clock/2) < tolerance) {
// Short pulse : either "1" or "0"
bitStream[bitidx++] = data[i-1];
} else if (abs(lc-clock) < tolerance) {
// Long pulse: either "11" or "00"
bitStream[bitidx++] = data[i-1];
bitStream[bitidx++] = data[i-1];
} else {
// Error
warnings++;
PrintAndLog("Warning: Manchester decode error for pulse width detection.");
if (warnings > 10) {
PrintAndLog("Error: too many detection errors, aborting.");
return 0;
}
int i,j, bitindex, lc, tolerance, warnings;
warnings = 0;
int upperlimit = len*2/clock+8;
i = startIndex;
j = 0;
tolerance = clock/4;
uint8_t decodedArr[len];
/* Then detect duration between 2 successive transitions */
for (bitindex = 1; i < len; i++) {
if (data[i-1] != data[i]) {
lc = i - startIndex;
startIndex = i;
// Error check: if bitindex becomes too large, we do not
// have a Manchester encoded bitstream or the clock is really wrong!
if (bitindex > upperlimit ) {
PrintAndLog("Error: the clock you gave is probably wrong, aborting.");
return 0;
}
// Then switch depending on lc length:
// Tolerance is 1/4 of clock rate (arbitrary)
if (abs((lc-clock)/2) < tolerance) {
// Short pulse : either "1" or "0"
decodedArr[bitindex++] = data[i-1];
} else if (abs(lc-clock) < tolerance) {
// Long pulse: either "11" or "00"
decodedArr[bitindex++] = data[i-1];
decodedArr[bitindex++] = data[i-1];
} else {
++warnings;
PrintAndLog("Warning: Manchester decode error for pulse width detection.");
if (warnings > 10) {
PrintAndLog("Error: too many detection errors, aborting.");
return 0;
}
}
}
}
// At this stage, we now have a bitstream of "01" ("1") or "10" ("0"), parse it into final decoded bitstream
// Actually, we overwrite BitStream with the new decoded bitstream, we just need to be careful
// to stop output at the final bitidx2 value, not bitidx
for (i = 0; i < bitidx; i += 2) {
if ((bitStream[i] == 0) && (bitStream[i+1] == 1)) {
bitStream[bit2idx++] = 1 ^ invert;
}
else if ((bitStream[i] == 1) && (bitStream[i+1] == 0)) {
bitStream[bit2idx++] = 0 ^ invert;
}
else {
// We cannot end up in this state, this means we are unsynchronized,
// move up 1 bit:
/*
* We have a decodedArr of "01" ("1") or "10" ("0")
* parse it into final decoded dataout
*/
for (i = 0; i < bitindex; i += 2) {
if ((decodedArr[i] == 0) && (decodedArr[i+1] == 1)) {
dataout[j++] = 1;
} else if ((decodedArr[i] == 1) && (decodedArr[i+1] == 0)) {
dataout[j++] = 0;
} else {
i++;
warnings++;
PrintAndLog("Unsynchronized, resync...");
if (warnings > 10) {
PrintAndLog("(too many of those messages mean the stream is not Manchester encoded)");
if (warnings > 10) {
PrintAndLog("Error: too many decode errors, aborting.");
return 0;
}
}
}
PrintAndLog("%s", sprint_hex(dataout, j));
return j;
}
void ManchesterDiffDecodedString(const uint8_t* bitstream, size_t len, uint8_t invert){
/*
* We have a bitstream of "01" ("1") or "10" ("0")
* parse it into final decoded bitstream
*/
int i, j, warnings;
uint8_t decodedArr[(len/2)+1];
// PrintAndLog(" Manchester decoded bitstream : %d bits", (bit2idx-16));
// uint8_t mod = (bit2idx-16) % blocksize;
// uint8_t div = (bit2idx-16) / blocksize;
// // Now output the bitstream to the scrollback by line of 16 bits
// for (i = 0; i < div*blocksize; i+=blocksize) {
// PrintAndLog(" %s", sprint_bin(bitStream+i,blocksize) );
// }
// if ( mod > 0 ){
// PrintAndLog(" %s", sprint_bin(bitStream+i, mod) );
// }
j = warnings = 0;
if ( bit2idx > 0 )
memcpy(dataout, bitStream, bit2idx);
uint8_t lastbit = 0;
free(bitStream);
return bit2idx;
for (i = 0; i < len; i += 2) {
uint8_t first = bitstream[i];
uint8_t second = bitstream[i+1];
if ( first == second ) {
++i;
++warnings;
if (warnings > 10) {
PrintAndLog("Error: too many decode errors, aborting.");
return;
}
}
else if ( lastbit != first ) {
decodedArr[j++] = 0 ^ invert;
}
else {
decodedArr[j++] = 1 ^ invert;
}
lastbit = second;
}
PrintAndLog("%s", sprint_hex(decodedArr, j));
}
void PrintPaddedManchester( uint8_t* bitStream, size_t len, size_t blocksize){
PrintAndLog(" Manchester decoded bitstream : %d bits", len);

View file

@ -25,6 +25,11 @@ extern int PlotGridX, PlotGridY, PlotGridXdefault, PlotGridYdefault;
extern int offline;
extern int flushAfterWrite; //buzzy
uint8_t manchester_decode(const uint8_t * data, const size_t len, uint8_t * dataout);
int manchester_decode(const int * data, const size_t len, uint8_t * dataout);
int GetT55x7Clock( const int * data, const size_t len, int high );
int DetectFirstTransition(const int * data, const size_t len, int high, int low);
void PrintPaddedManchester( uint8_t * bitStream, size_t len, size_t blocksize);
void ManchesterDiffDecodedString( const uint8_t *bitStream, size_t len, uint8_t invert );
int ManchesterConvertFrom255(const int * data, const size_t len, uint8_t * dataout, int high, int low, int clock, int startIndex);
int ManchesterConvertFrom1(const int * data, const size_t len, uint8_t * dataout, int clock, int startIndex);
#endif