merged trunk changes into branch

This commit is contained in:
martin.holst@gmail.com 2013-09-16 19:08:19 +00:00
commit b13fa4448f
15 changed files with 729 additions and 630 deletions

View file

@ -156,6 +156,7 @@ void EPA_PACE_Collect_Nonce(UsbCommand * c);
// mifarecmd.h
void ReaderMifare(bool first_try);
int32_t dist_nt(uint32_t nt1, uint32_t nt2);
void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *data);
void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain);
void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain);

View file

@ -432,7 +432,7 @@ int EPA_Setup()
}
// send the PPS request
ReaderTransmit((uint8_t *)pps, sizeof(pps));
ReaderTransmit((uint8_t *)pps, sizeof(pps), NULL);
uint8_t pps_response[3];
return_code = ReaderReceive(pps_response);
if (return_code != 3 || pps_response[0] != 0xD0) {

View file

@ -1218,47 +1218,75 @@ void SimulateIso14443aTag(int tagType, int uid_1st, int uid_2nd, byte_t* data)
LED_A_OFF();
}
// prepare a delayed transfer. This simply shifts ToSend[] by a number
// of bits specified in the delay parameter.
void PrepareDelayedTransfer(uint16_t delay)
{
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
delay &= 0x07;
if (delay) {
for (uint16_t i = 0; i < delay; i++) {
bitmask |= (0x01 << i);
}
ToSend[++ToSendMax] = 0x00;
for (uint16_t i = 0; i < ToSendMax; i++) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
bits_shifted = bits_to_shift;
}
}
}
//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
// Parameter timing:
// if NULL: ignored
// if == 0: return time of transfer
// if != 0: delay transfer until time specified
//-----------------------------------------------------------------------------
static void TransmitFor14443a(const uint8_t *cmd, int len, int *samples, int *wait)
static void TransmitFor14443a(const uint8_t *cmd, int len, uint32_t *timing)
{
int c;
int c;
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
if (wait)
if(*wait < 10)
*wait = 10;
for(c = 0; c < *wait;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing!
c++;
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
if (timing) {
if(*timing == 0) { // Measure time
*timing = (GetCountMifare() + 8) & 0xfffffff8;
} else {
PrepareDelayedTransfer(*timing & 0x00000007); // Delay transfer (fine tuning - up to 7 MF clock ticks)
}
if(MF_DBGLEVEL >= 4 && GetCountMifare() >= (*timing & 0xfffffff8)) Dbprintf("TransmitFor14443a: Missed timing");
while(GetCountMifare() < (*timing & 0xfffffff8)); // Delay transfer (multiple of 8 MF clock ticks)
}
for(c = 0; c < 10;) { // standard delay for each transfer (allow tag to be ready after last transmission)
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00;
c++;
}
}
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
}
c = 0;
for(;;) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = cmd[c];
c++;
if(c >= len) {
break;
}
}
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR;
(void)r;
}
WDT_HIT();
}
if (samples) *samples = (c + *wait) << 3;
}
//-----------------------------------------------------------------------------
@ -1528,10 +1556,10 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
for(;;) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
if (elapsed) (*elapsed)++;
}
// if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
// AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!!
// if (elapsed) (*elapsed)++;
// }
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if(c < iso14a_timeout) { c++; } else { return FALSE; }
b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@ -1547,17 +1575,13 @@ static int GetIso14443aAnswerFromTag(uint8_t *receivedResponse, int maxLen, int
}
}
void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par)
void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing)
{
int wait = 0;
int samples = 0;
// This is tied to other size changes
// uint8_t* frame_addr = ((uint8_t*)BigBuf) + 2024;
CodeIso14443aBitsAsReaderPar(frame,bits,par);
// Select the card
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
TransmitFor14443a(ToSend, ToSendMax, timing);
if(trigger)
LED_A_ON();
@ -1565,15 +1589,15 @@ void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par)
if (tracing) LogTrace(frame,nbytes(bits),0,par,TRUE);
}
void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par)
void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing)
{
ReaderTransmitBitsPar(frame,len*8,par);
ReaderTransmitBitsPar(frame,len*8,par, timing);
}
void ReaderTransmit(uint8_t* frame, int len)
void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing)
{
// Generate parity and redirect
ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len));
ReaderTransmitBitsPar(frame,len*8,GetParity(frame,len), timing);
}
int ReaderReceive(uint8_t* receivedAnswer)
@ -1612,7 +1636,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
int len;
// Broadcast for a card, WUPA (0x52) will force response from all cards in the field
ReaderTransmitBitsPar(wupa,7,0);
ReaderTransmitBitsPar(wupa,7,0, NULL);
// Receive the ATQA
if(!ReaderReceive(resp)) return 0;
// Dbprintf("atqa: %02x %02x",resp[0],resp[1]);
@ -1636,7 +1660,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
sel_uid[0] = sel_all[0] = 0x93 + cascade_level * 2;
// SELECT_ALL
ReaderTransmit(sel_all,sizeof(sel_all));
ReaderTransmit(sel_all,sizeof(sel_all), NULL);
if (!ReaderReceive(resp)) return 0;
// First backup the current uid
@ -1644,15 +1668,15 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
uid_resp_len = 4;
// Dbprintf("uid: %02x %02x %02x %02x",uid_resp[0],uid_resp[1],uid_resp[2],uid_resp[3]);
// calculate crypto UID
if(cuid_ptr) {
*cuid_ptr = bytes_to_num(uid_resp, 4);
// calculate crypto UID. Always use last 4 Bytes.
if(cuid_ptr) {
*cuid_ptr = bytes_to_num(uid_resp, 4);
}
// Construct SELECT UID command
memcpy(sel_uid+2,resp,5);
AppendCrc14443a(sel_uid,7);
ReaderTransmit(sel_uid,sizeof(sel_uid));
ReaderTransmit(sel_uid,sizeof(sel_uid), NULL);
// Receive the SAK
if (!ReaderReceive(resp)) return 0;
@ -1687,7 +1711,7 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
// Request for answer to select
AppendCrc14443a(rats, 2);
ReaderTransmit(rats, sizeof(rats));
ReaderTransmit(rats, sizeof(rats), NULL);
if (!(len = ReaderReceive(resp))) return 0;
@ -1702,13 +1726,13 @@ int iso14443a_select_card(byte_t* uid_ptr, iso14a_card_select_t* p_hi14a_card, u
}
void iso14443a_setup() {
// Set up the synchronous serial port
FpgaSetupSsc();
// Set up the synchronous serial port
FpgaSetupSsc();
// Start from off (no field generated)
// Signal field is off with the appropriate LED
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(50);
// LED_D_OFF();
// FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// SpinDelay(50);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
@ -1716,7 +1740,7 @@ void iso14443a_setup() {
// Signal field is on with the appropriate LED
LED_D_ON();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
SpinDelay(50);
SpinDelay(7); // iso14443-3 specifies 5ms max.
iso14a_timeout = 2048; //default
}
@ -1730,7 +1754,7 @@ int iso14_apdu(uint8_t * cmd, size_t cmd_len, void * data) {
memcpy(real_cmd+2, cmd, cmd_len);
AppendCrc14443a(real_cmd,cmd_len+2);
ReaderTransmit(real_cmd, cmd_len+4);
ReaderTransmit(real_cmd, cmd_len+4, NULL);
size_t len = ReaderReceive(data);
uint8_t * data_bytes = (uint8_t *) data;
if (!len)
@ -1757,21 +1781,20 @@ void ReaderIso14443a(UsbCommand * c)
iso14a_command_t param = c->arg[0];
uint8_t * cmd = c->d.asBytes;
size_t len = c->arg[1];
uint32_t arg0 = 0;
byte_t buf[USB_CMD_DATA_SIZE];
uint32_t arg0 = 0;
byte_t buf[USB_CMD_DATA_SIZE];
iso14a_clear_trace();
iso14a_set_tracing(true);
iso14a_clear_trace();
iso14a_set_tracing(true);
if(param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(1);
}
iso14a_set_trigger(1);
}
if(param & ISO14A_CONNECT) {
iso14443a_setup();
arg0 = iso14443a_select_card(NULL,(iso14a_card_select_t*)buf,NULL);
arg0 = iso14443a_select_card(NULL, (iso14a_card_select_t*)buf, NULL);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(iso14a_card_select_t));
// UsbSendPacket((void *)ack, sizeof(UsbCommand));
}
if(param & ISO14A_SET_TIMEOUT) {
@ -1785,7 +1808,6 @@ void ReaderIso14443a(UsbCommand * c)
if(param & ISO14A_APDU) {
arg0 = iso14_apdu(cmd, len, buf);
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
// UsbSendPacket((void *)ack, sizeof(UsbCommand));
}
if(param & ISO14A_RAW) {
@ -1793,50 +1815,24 @@ void ReaderIso14443a(UsbCommand * c)
AppendCrc14443a(cmd,len);
len += 2;
}
ReaderTransmit(cmd,len);
ReaderTransmit(cmd,len, NULL);
arg0 = ReaderReceive(buf);
// UsbSendPacket((void *)ack, sizeof(UsbCommand));
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
cmd_send(CMD_ACK,arg0,0,0,buf,sizeof(buf));
}
if(param & ISO14A_REQUEST_TRIGGER) {
iso14a_set_trigger(0);
}
iso14a_set_trigger(0);
}
if(param & ISO14A_NO_DISCONNECT) {
return;
}
}
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
}
// prepare the Mifare AUTH transfer with an added necessary delay.
void PrepareDelayedAuthTransfer(uint8_t* frame, int len, uint16_t delay)
{
CodeIso14443aBitsAsReaderPar(frame, len*8, GetParity(frame,len));
uint8_t bitmask = 0;
uint8_t bits_to_shift = 0;
uint8_t bits_shifted = 0;
if (delay) {
for (uint16_t i = 0; i < delay; i++) {
bitmask |= (0x01 << i);
}
ToSend[++ToSendMax] = 0x00;
for (uint16_t i = 0; i < ToSendMax; i++) {
bits_to_shift = ToSend[i] & bitmask;
ToSend[i] = ToSend[i] >> delay;
ToSend[i] = ToSend[i] | (bits_shifted << (8 - delay));
bits_shifted = bits_to_shift;
}
}
}
// Determine the distance between two nonces.
// Assume that the difference is small, but we don't know which is first.
// Therefore try in alternating directions.
@ -1904,11 +1900,8 @@ void ReaderMifare(bool first_try)
StartCountMifare();
mf_nr_ar3 = 0;
iso14443a_setup();
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // resets some FPGA internal registers
while((GetCountMifare() & 0xffff0000) != 0x10000); // wait for counter to reset and "warm up"
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // sync on rising edge of ssp_frame
sync_time = GetCountMifare();
sync_time = GetCountMifare() & 0xfffffff8;
sync_cycles = 65536; // theory: Mifare Classic's random generator repeats every 2^16 cycles (and so do the nonces).
nt_attacked = 0;
nt = 0;
@ -1939,41 +1932,37 @@ void ReaderMifare(bool first_try)
LED_C_ON();
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Can't select card");
continue;
}
//keep the card active
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
PrepareDelayedAuthTransfer(mf_auth, sizeof(mf_auth), (sync_cycles + catch_up_cycles) & 0x00000007);
// CodeIso14443aBitsAsReaderPar(mf_auth, sizeof(mf_auth)*8, GetParity(mf_auth, sizeof(mf_auth)*8));
sync_time = sync_time + ((sync_cycles + catch_up_cycles) & 0xfffffff8);
sync_time = (sync_time & 0xfffffff8) + sync_cycles + catch_up_cycles;
catch_up_cycles = 0;
// if we missed the sync time already, advance to the next nonce repeat
while(GetCountMifare() > sync_time) {
sync_time = sync_time + (sync_cycles & 0xfffffff8);
sync_time = (sync_time & 0xfffffff8) + sync_cycles;
}
// now sync. After syncing, the following Classic Auth will return the same tag nonce (mostly)
while(GetCountMifare() < sync_time);
// Transmit MIFARE_CLASSIC_AUTH
int samples = 0;
int wait = 0;
TransmitFor14443a(ToSend, ToSendMax, &samples, &wait);
// Transmit MIFARE_CLASSIC_AUTH at synctime. Should result in returning the same tag nonce (== nt_attacked)
ReaderTransmit(mf_auth, sizeof(mf_auth), &sync_time);
// Receive the (4 Byte) "random" nonce
if (!ReaderReceive(receivedAnswer)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Mifare: Couldn't receive tag nonce");
continue;
}
previous_nt = nt;
nt = bytes_to_num(receivedAnswer, 4);
// Transmit reader nonce with fake par
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par);
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
if (first_try && previous_nt && !nt_attacked) { // we didn't calibrate our clock yet
int nt_distance = dist_nt(previous_nt, nt);
@ -1985,7 +1974,7 @@ void ReaderMifare(bool first_try)
continue;
}
sync_cycles = (sync_cycles - nt_distance);
// Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
if (MF_DBGLEVEL >= 3) Dbprintf("calibrating in cycle %d. nt_distance=%d, Sync_cycles: %d\n", i, nt_distance, sync_cycles);
continue;
}
}
@ -2004,11 +1993,11 @@ void ReaderMifare(bool first_try)
consecutive_resyncs = 0;
}
if (consecutive_resyncs < 3) {
Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d. nt_distance=%d. Consecutive Resyncs = %d. Trying one time catch up...\n", i, -catch_up_cycles, consecutive_resyncs);
}
else {
sync_cycles = sync_cycles + catch_up_cycles;
Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
if (MF_DBGLEVEL >= 3) Dbprintf("Lost sync in cycle %d for the fourth time consecutively (nt_distance = %d). Adjusting sync_cycles to %d.\n", i, -catch_up_cycles, sync_cycles);
}
continue;
}
@ -2018,7 +2007,7 @@ void ReaderMifare(bool first_try)
// Receive answer. This will be a 4 Bit NACK when the 8 parity bits are OK after decoding
if (ReaderReceive(receivedAnswer))
{
catch_up_cycles = 8; // the PRNG doesn't run during data transfers. 4 Bit = 8 cycles
catch_up_cycles = 8; // the PRNG is delayed by 8 cycles due to the NAC (4Bits = 0x05 encrypted) transfer
if (nt_diff == 0)
{

View file

@ -82,9 +82,9 @@ extern byte_t oddparity (const byte_t bt);
extern uint32_t GetParity(const uint8_t * pbtCmd, int iLen);
extern void AppendCrc14443a(uint8_t* data, int len);
extern void ReaderTransmit(uint8_t* frame, int len);
extern void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par);
extern void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par);
extern void ReaderTransmit(uint8_t* frame, int len, uint32_t *timing);
extern void ReaderTransmitBitsPar(uint8_t* frame, int bits, uint32_t par, uint32_t *timing);
extern void ReaderTransmitPar(uint8_t* frame, int len, uint32_t par, uint32_t *timing);
extern int ReaderReceive(uint8_t* receivedAnswer);
extern int ReaderReceivePar(uint8_t* receivedAnswer, uint32_t * parptr);

View file

@ -261,7 +261,7 @@ void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
// UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,0,0);
cmd_send(CMD_ACK,isOK,0,0,0,0);
// UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
LED_B_OFF();
@ -280,184 +280,195 @@ int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, byte_t * parity) {
(oddparity((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0;
}
//-----------------------------------------------------------------------------
// MIFARE nested authentication.
//
//-----------------------------------------------------------------------------
void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *datain)
{
// params
uint8_t blockNo = arg0;
uint8_t keyType = arg1;
uint8_t targetBlockNo = arg2 & 0xff;
uint8_t targetKeyType = (arg2 >> 8) & 0xff;
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
uint8_t targetBlockNo = arg1 & 0xff;
uint8_t targetKeyType = (arg1 >> 8) & 0xff;
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(datain, 6);
// variables
int rtr, i, j, m, len;
int davg, dmin, dmax;
uint16_t rtr, i, j, len;
uint16_t davg;
static uint16_t dmin, dmax;
uint8_t uid[10];
uint32_t cuid, nt1, nt2, nttmp, nttest, par, ks1;
uint32_t target_nt[2], target_ks[2];
uint8_t par_array[4];
nestedVector nvector[NES_MAX_INFO + 1][11];
int nvectorcount[NES_MAX_INFO + 1];
int ncount = 0;
uint16_t ncount = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
pcs = &mpcs;
uint8_t* receivedAnswer = mifare_get_bigbufptr();
//init
for (i = 0; i < NES_MAX_INFO + 1; i++) nvectorcount[i] = 11; // 11 - empty block;
uint32_t auth1_time, auth2_time;
static uint16_t delta_time;
StartCountMifare();
// clear trace
iso14a_clear_trace();
iso14a_set_tracing(false);
iso14a_set_tracing(false);
iso14443a_setup();
LED_A_ON();
LED_B_ON();
LED_C_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(200);
while((GetCountMifare() & 0xffff0000) != 0x00010000); // wait for counter to reset and "warm up"
// statistics on nonce distance
if (calibrate) { // for first call only. Otherwise reuse previous calibration
LED_B_ON();
davg = dmax = 0;
dmin = 2000;
delta_time = 0;
for (rtr = 0; rtr < 17; rtr++) {
// prepare next select. No need to power down the card.
if(mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Halt error");
rtr--;
continue;
}
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Can't select card");
rtr--;
continue;
};
auth1_time = 0;
if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth1 error");
rtr--;
continue;
};
if (delta_time) {
auth2_time = auth1_time + delta_time;
} else {
auth2_time = 0;
}
if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error");
rtr--;
continue;
};
nttmp = prng_successor(nt1, 500);
for (i = 501; i < 1200; i++) {
nttmp = prng_successor(nttmp, 1);
if (nttmp == nt2) break;
}
if (i != 1200) {
if (rtr != 0) {
davg += i;
dmin = MIN(dmin, i);
dmax = MAX(dmax, i);
}
else {
delta_time = auth2_time - auth1_time + 32; // allow some slack for proper timing
}
if (MF_DBGLEVEL >= 3) Dbprintf("Nested: calibrating... ntdist=%d", i);
}
}
if (rtr <= 1) return;
davg = (davg + (rtr - 1)/2) / (rtr - 1);
if (MF_DBGLEVEL >= 3) Dbprintf("min=%d max=%d avg=%d, delta_time=%d", dmin, dmax, davg, delta_time);
dmin = davg - 2;
dmax = davg + 2;
LED_B_OFF();
davg = dmax = 0;
dmin = 2000;
// test nonce distance
for (rtr = 0; rtr < 10; rtr++) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(100);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// Test if the action was cancelled
if(BUTTON_PRESS()) {
break;
}
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
};
if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Auth1 error");
break;
};
if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Auth2 error");
break;
};
nttmp = prng_successor(nt1, 500);
for (i = 501; i < 2000; i++) {
nttmp = prng_successor(nttmp, 1);
if (nttmp == nt2) break;
}
if (i != 2000) {
davg += i;
if (dmin > i) dmin = i;
if (dmax < i) dmax = i;
if (MF_DBGLEVEL >= 4) Dbprintf("r=%d nt1=%08x nt2=%08x distance=%d", rtr, nt1, nt2, i);
}
}
if (rtr == 0) return;
davg = davg / rtr;
if (MF_DBGLEVEL >= 3) Dbprintf("distance: min=%d max=%d avg=%d", dmin, dmax, davg);
LED_B_OFF();
// -------------------------------------------------------------------------------------------------
LED_C_ON();
// get crypted nonces for target sector
for (rtr = 0; rtr < NS_RETRIES_GETNONCE; rtr++) {
if (MF_DBGLEVEL >= 4) Dbprintf("------------------------------");
for(i=0; i < 2; i++) { // look for exactly two different nonces
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(100);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// Test if the action was cancelled
if(BUTTON_PRESS()) {
break;
}
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
break;
};
target_nt[i] = 0;
while(target_nt[i] == 0) { // continue until we have an unambiguous nonce
if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Auth1 error");
break;
};
// nested authentication
len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, &par);
if (len != 4) {
if (MF_DBGLEVEL >= 1) Dbprintf("Auth2 error len=%d", len);
break;
};
nt2 = bytes_to_num(receivedAnswer, 4);
if (MF_DBGLEVEL >= 4) Dbprintf("r=%d nt1=%08x nt2enc=%08x nt2par=%08x", rtr, nt1, nt2, par);
// Parity validity check
for (i = 0; i < 4; i++) {
par_array[i] = (oddparity(receivedAnswer[i]) != ((par & 0x08) >> 3));
par = par << 1;
}
ncount = 0;
nttest = prng_successor(nt1, dmin - NS_TOLERANCE);
for (m = dmin - NS_TOLERANCE + 1; m < dmax + NS_TOLERANCE; m++) {
nttest = prng_successor(nttest, 1);
ks1 = nt2 ^ nttest;
if (valid_nonce(nttest, nt2, ks1, par_array) && (ncount < 11)){
nvector[NES_MAX_INFO][ncount].nt = nttest;
nvector[NES_MAX_INFO][ncount].ks1 = ks1;
ncount++;
nvectorcount[NES_MAX_INFO] = ncount;
if (MF_DBGLEVEL >= 4) Dbprintf("valid m=%d ks1=%08x nttest=%08x", m, ks1, nttest);
// prepare next select. No need to power down the card.
if(mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Halt error");
continue;
}
}
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Can't select card");
continue;
};
// select vector with length less than got
if (nvectorcount[NES_MAX_INFO] != 0) {
m = NES_MAX_INFO;
auth1_time = 0;
if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth1 error");
continue;
};
// nested authentication
auth2_time = auth1_time + delta_time;
len = mifare_sendcmd_shortex(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, &par, &auth2_time);
if (len != 4) {
if (MF_DBGLEVEL >= 1) Dbprintf("Nested: Auth2 error len=%d", len);
continue;
};
nt2 = bytes_to_num(receivedAnswer, 4);
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2, par);
for (i = 0; i < NES_MAX_INFO; i++)
if (nvectorcount[i] > 10) {
m = i;
break;
}
if (m == NES_MAX_INFO)
for (i = 0; i < NES_MAX_INFO; i++)
if (nvectorcount[NES_MAX_INFO] < nvectorcount[i]) {
m = i;
// Parity validity check
for (j = 0; j < 4; j++) {
par_array[j] = (oddparity(receivedAnswer[j]) != ((par & 0x08) >> 3));
par = par << 1;
}
ncount = 0;
nttest = prng_successor(nt1, dmin - 1);
for (j = dmin; j < dmax + 1; j++) {
nttest = prng_successor(nttest, 1);
ks1 = nt2 ^ nttest;
if (valid_nonce(nttest, nt2, ks1, par_array)){
if (ncount > 0) { // we are only interested in disambiguous nonces, try again
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (ambigous), ntdist=%d", i+1, j);
target_nt[i] = 0;
break;
}
if (m != NES_MAX_INFO) {
for (i = 0; i < nvectorcount[m]; i++) {
nvector[m][i] = nvector[NES_MAX_INFO][i];
target_nt[i] = nttest;
target_ks[i] = ks1;
ncount++;
if (i == 1 && target_nt[1] == target_nt[0]) { // we need two different nonces
target_nt[i] = 0;
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#2: dismissed (= nonce#1), ntdist=%d", j);
break;
}
if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: valid, ntdist=%d", i+1, j);
}
nvectorcount[m] = nvectorcount[NES_MAX_INFO];
}
if (target_nt[i] == 0 && j == dmax+1 && MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (all invalid)", i+1);
}
}
@ -470,57 +481,26 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
memset(uid, 0x44, 4);
LogTrace(uid, 4, 0, 0, TRUE);
// UsbCommand ack = {CMD_ACK, {0, 0, 0}};
for (i = 0; i < NES_MAX_INFO; i++) {
if (nvectorcount[i] > 10) continue;
for (j = 0; j < nvectorcount[i]; j += 5) {
ncount = nvectorcount[i] - j;
if (ncount > 5) ncount = 5;
// ack.arg[0] = 0; // isEOF = 0
// ack.arg[1] = ncount;
// ack.arg[2] = targetBlockNo + (targetKeyType * 0x100);
// memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
byte_t buf[48];
memset(buf, 0x00, sizeof(buf));
memcpy(buf, &cuid, 4);
for (m = 0; m < ncount; m++) {
memcpy(buf + 8 + m * 8 + 0, &nvector[i][m + j].nt, 4);
memcpy(buf + 8 + m * 8 + 4, &nvector[i][m + j].ks1, 4);
}
LED_B_ON();
cmd_send(CMD_ACK,0,ncount,targetBlockNo + (targetKeyType * 0x100),buf,48);
// UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
LED_B_OFF();
}
}
// finalize list
// ack.arg[0] = 1; // isEOF = 1
// ack.arg[1] = 0;
// ack.arg[2] = 0;
// memset(ack.d.asBytes, 0x00, sizeof(ack.d.asBytes));
byte_t buf[4 + 4 * 4];
memcpy(buf, &cuid, 4);
memcpy(buf+4, &target_nt[0], 4);
memcpy(buf+8, &target_ks[0], 4);
memcpy(buf+12, &target_nt[1], 4);
memcpy(buf+16, &target_ks[1], 4);
LED_B_ON();
// UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
cmd_send(CMD_ACK,1,0,0,0,0);
cmd_send(CMD_ACK, 0, 2, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
LED_B_OFF();
if (MF_DBGLEVEL >= 4) DbpString("NESTED FINISHED");
if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED");
// Thats it...
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
iso14a_set_tracing(TRUE);
iso14a_set_tracing(TRUE);
}
//-----------------------------------------------------------------------------
// MIFARE check keys. key count up to 8.
// MIFARE check keys. key count up to 85.
//
//-----------------------------------------------------------------------------
void MifareChkKeys(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
@ -546,7 +526,7 @@ void MifareChkKeys(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
// clear trace
iso14a_clear_trace();
iso14a_set_tracing(TRUE);
iso14a_set_tracing(TRUE);
iso14443a_setup();
@ -554,14 +534,20 @@ void MifareChkKeys(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
LED_B_OFF();
LED_C_OFF();
SpinDelay(300);
// SpinDelay(300);
for (i = 0; i < keyCount; i++) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
SpinDelay(100);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
// SpinDelay(100);
// FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD);
// prepare next select by sending a HALT. There is no need to power down the card.
if(mifare_classic_halt(pcs, cuid)) {
if (MF_DBGLEVEL >= 1) Dbprintf("ChkKeys: Halt error");
}
// SpinDelay(50);
if(!iso14443a_select_card(uid, NULL, &cuid)) {
if (OLD_MF_DBGLEVEL >= 1) Dbprintf("Can't select card");
if (OLD_MF_DBGLEVEL >= 1) Dbprintf("ChkKeys: Can't select card");
break;
};
@ -581,12 +567,8 @@ void MifareChkKeys(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain)
memset(uid, 0x44, 4);
LogTrace(uid, 4, 0, 0, TRUE);
// UsbCommand ack = {CMD_ACK, {isOK, 0, 0}};
// if (isOK) memcpy(ack.d.asBytes, datain + i * 6, 6);
LED_B_ON();
cmd_send(CMD_ACK,isOK,0,0,datain + i * 6,6);
// UsbSendPacket((uint8_t *)&ack, sizeof(UsbCommand));
LED_B_OFF();
// Thats it...
@ -799,13 +781,13 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
// reset chip
if (needWipe){
ReaderTransmitBitsPar(wupC1,7,0);
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wipeC, sizeof(wipeC));
ReaderTransmit(wipeC, sizeof(wipeC), NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wipeC error");
break;
@ -819,20 +801,20 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
// write block
if (workFlags & 0x02) {
ReaderTransmitBitsPar(wupC1,7,0);
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wupC2, sizeof(wupC2));
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC2 error");
break;
};
}
if ((mifare_sendcmd_short(NULL, 0, 0xA0, blockNo, receivedAnswer) != 1) || (receivedAnswer[0] != 0x0a)) {
if ((mifare_sendcmd_short(NULL, 0, 0xA0, blockNo, receivedAnswer, NULL) != 1) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send command error");
break;
};
@ -840,7 +822,7 @@ void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
memcpy(d_block, datain, 16);
AppendCrc14443a(d_block, 16);
ReaderTransmit(d_block, sizeof(d_block));
ReaderTransmit(d_block, sizeof(d_block), NULL);
if ((ReaderReceive(receivedAnswer) != 1) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("write block send data error");
break;
@ -923,13 +905,13 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
while (true) {
if (workFlags & 0x02) {
ReaderTransmitBitsPar(wupC1,7,0);
ReaderTransmitBitsPar(wupC1,7,0, NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC1 error");
break;
};
ReaderTransmit(wupC2, sizeof(wupC2));
ReaderTransmit(wupC2, sizeof(wupC2), NULL);
if(!ReaderReceive(receivedAnswer) || (receivedAnswer[0] != 0x0a)) {
if (MF_DBGLEVEL >= 1) Dbprintf("wupC2 error");
break;
@ -937,7 +919,7 @@ void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datai
}
// read block
if ((mifare_sendcmd_short(NULL, 0, 0x30, blockNo, receivedAnswer) != 18)) {
if ((mifare_sendcmd_short(NULL, 0, 0x30, blockNo, receivedAnswer, NULL) != 18)) {
if (MF_DBGLEVEL >= 1) Dbprintf("read block send command error");
break;
};

View file

@ -77,12 +77,12 @@ uint8_t mf_crypto1_encrypt4bit(struct Crypto1State *pcs, uint8_t data) {
}
// send commands
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer)
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t *timing)
{
return mifare_sendcmd_shortex(pcs, crypted, cmd, data, answer, NULL);
return mifare_sendcmd_shortex(pcs, crypted, cmd, data, answer, NULL, timing);
}
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr)
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr, uint32_t *timing)
{
uint8_t dcmd[4], ecmd[4];
uint32_t pos, par, res;
@ -101,10 +101,10 @@ int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cm
par = (par >> 1) | ( ((filter(pcs->odd) ^ oddparity(dcmd[pos])) & 0x01) * 0x08 );
}
ReaderTransmitPar(ecmd, sizeof(ecmd), par);
ReaderTransmitPar(ecmd, sizeof(ecmd), par, timing);
} else {
ReaderTransmit(dcmd, sizeof(dcmd));
ReaderTransmit(dcmd, sizeof(dcmd), timing);
}
int len = ReaderReceivePar(answer, &par);
@ -133,10 +133,10 @@ int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cm
// mifare commands
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested)
{
return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL);
return mifare_classic_authex(pcs, uid, blockNo, keyType, ui64Key, isNested, NULL, NULL);
}
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr)
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr, uint32_t *timing)
{
// variables
int len;
@ -150,8 +150,8 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
uint8_t* receivedAnswer = mifare_get_bigbufptr();
// Transmit MIFARE_CLASSIC_AUTH
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer);
if (MF_DBGLEVEL >= 4) Dbprintf("rand nonce len: %x", len);
len = mifare_sendcmd_short(pcs, isNested, 0x60 + (keyType & 0x01), blockNo, receivedAnswer, timing);
if (MF_DBGLEVEL >= 4) Dbprintf("rand nonce len: %x", len);
if (len != 4) return 1;
ar[0] = 0x55;
@ -205,7 +205,7 @@ int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, uint8_t blockN
}
// Transmit reader nonce and reader answer
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par);
ReaderTransmitPar(mf_nr_ar, sizeof(mf_nr_ar), par, NULL);
// Receive 4 bit answer
len = ReaderReceive(receivedAnswer);
@ -235,7 +235,7 @@ int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blo
uint8_t* receivedAnswer = mifare_get_bigbufptr();
// command MIFARE_CLASSIC_READBLOCK
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer);
len = mifare_sendcmd_short(pcs, 1, 0x30, blockNo, receivedAnswer, NULL);
if (len == 1) {
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
return 1;
@ -268,7 +268,7 @@ int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t bl
uint8_t* receivedAnswer = mifare_get_bigbufptr();
// command MIFARE_CLASSIC_WRITEBLOCK
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer);
len = mifare_sendcmd_short(pcs, 1, 0xA0, blockNo, receivedAnswer, NULL);
if ((len != 1) || (receivedAnswer[0] != 0x0A)) { // 0x0a - ACK
if (MF_DBGLEVEL >= 1) Dbprintf("Cmd Error: %02x", receivedAnswer[0]);
@ -286,7 +286,7 @@ int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t bl
par = (par >> 1) | ( ((filter(pcs->odd) ^ oddparity(d_block[pos])) & 0x01) * 0x20000 );
}
ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par);
ReaderTransmitPar(d_block_enc, sizeof(d_block_enc), par, NULL);
// Receive the response
len = ReaderReceive(receivedAnswer);
@ -311,7 +311,7 @@ int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid)
// Mifare HALT
uint8_t* receivedAnswer = mifare_get_bigbufptr();
len = mifare_sendcmd_short(pcs, pcs == NULL ? 0:1, 0x50, 0x00, receivedAnswer);
len = mifare_sendcmd_short(pcs, pcs == NULL ? 0:1, 0x50, 0x00, receivedAnswer, NULL);
if (len != 0) {
if (MF_DBGLEVEL >= 1) Dbprintf("halt error. response len: %x", len);
return 1;

View file

@ -36,13 +36,6 @@
extern int MF_DBGLEVEL;
//mifare nested
#define MEM_CHUNK 10000
#define TRY_KEYS 50
#define NS_TOLERANCE 10 // [distance avg-value, distance avg+value]
#define NS_RETRIES_GETNONCE 15
#define NES_MAX_INFO 5
//mifare emulator states
#define MFEMUL_NOFIELD 0
#define MFEMUL_IDLE 1
@ -61,13 +54,13 @@ extern int MF_DBGLEVEL;
//functions
uint8_t* mifare_get_bigbufptr(void);
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer);
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr);
int mifare_sendcmd_short(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t *timing);
int mifare_sendcmd_shortex(struct Crypto1State *pcs, uint8_t crypted, uint8_t cmd, uint8_t data, uint8_t* answer, uint32_t * parptr, uint32_t *timing);
int mifare_classic_auth(struct Crypto1State *pcs, uint32_t uid, \
uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested);
int mifare_classic_authex(struct Crypto1State *pcs, uint32_t uid, \
uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr);
uint8_t blockNo, uint8_t keyType, uint64_t ui64Key, uint64_t isNested, uint32_t * ntptr, uint32_t *timing);
int mifare_classic_readblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
int mifare_classic_writeblock(struct Crypto1State *pcs, uint32_t uid, uint8_t blockNo, uint8_t *blockData);
int mifare_classic_halt(struct Crypto1State *pcs, uint32_t uid);

View file

@ -11,6 +11,7 @@
#include "proxmark3.h"
#include "util.h"
#include "string.h"
#include "apps.h"
size_t nbytes(size_t nbits) {
return (nbits/8)+((nbits%8)>0);
@ -357,6 +358,14 @@ void StartCountMifare()
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2
// activate the ISO14443 part of the FPGA. We need the clock and frame signals.
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN);
// synchronize the counter with the ssp_frame signal.
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // sync on rising edge of ssp_frame (= start of transfer)
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
}

View file

@ -147,6 +147,7 @@ int CmdHF14BList(const char *Cmd)
{
uint8_t got[960];
GetFromBigBuf(got,sizeof(got),0);
WaitForResponse(CMD_ACK,NULL);
PrintAndLog("recorded activity:");
PrintAndLog(" time :rssi: who bytes");

View file

@ -500,7 +500,7 @@ int CmdHF14AMfNested(const char *Cmd)
uint8_t blDiff = 0;
int SectorsCnt = 0;
uint8_t key[6] = {0, 0, 0, 0, 0, 0};
uint8_t keyBlock[16 * 6];
uint8_t keyBlock[6*6];
uint64_t key64 = 0;
int transferToEml = 0;
@ -572,20 +572,12 @@ int CmdHF14AMfNested(const char *Cmd)
PrintAndLog("--target block no:%02x target key type:%02x ", trgBlockNo, trgKeyType);
if (cmdp == 'o') {
if (mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock)) {
if (mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true)) {
PrintAndLog("Nested error.");
return 2;
}
for (i = 0; i < 16; i++) {
PrintAndLog("count=%d key= %s", i, sprint_hex(keyBlock + i * 6, 6));
}
// test keys
res = mfCheckKeys(trgBlockNo, trgKeyType, 8, keyBlock, &key64);
if (res)
res = mfCheckKeys(trgBlockNo, trgKeyType, 8, &keyBlock[6 * 8], &key64);
if (!res) {
key64 = bytes_to_num(keyBlock, 6);
if (key64) {
PrintAndLog("Found valid key:%012"llx, key64);
// transfer key to the emulator
@ -603,6 +595,9 @@ int CmdHF14AMfNested(const char *Cmd)
}
}
else { // ------------------------------------ multiple sectors working
clock_t time1;
time1 = clock();
blDiff = blockNo % 4;
PrintAndLog("Block shift=%d", blDiff);
e_sector = calloc(SectorsCnt, sizeof(sector));
@ -610,10 +605,10 @@ int CmdHF14AMfNested(const char *Cmd)
//test current key 4 sectors
memcpy(keyBlock, key, 6);
num_to_bytes(0xa0a1a2a3a4a5, 6, (uint8_t*)(keyBlock + 1 * 6));
num_to_bytes(0xb0b1b2b3b4b5, 6, (uint8_t*)(keyBlock + 2 * 6));
num_to_bytes(0xffffffffffff, 6, (uint8_t*)(keyBlock + 3 * 6));
num_to_bytes(0x000000000000, 6, (uint8_t*)(keyBlock + 4 * 6));
num_to_bytes(0xffffffffffff, 6, (uint8_t*)(keyBlock + 1 * 6));
num_to_bytes(0x000000000000, 6, (uint8_t*)(keyBlock + 2 * 6));
num_to_bytes(0xa0a1a2a3a4a5, 6, (uint8_t*)(keyBlock + 3 * 6));
num_to_bytes(0xb0b1b2b3b4b5, 6, (uint8_t*)(keyBlock + 4 * 6));
num_to_bytes(0xaabbccddeeff, 6, (uint8_t*)(keyBlock + 5 * 6));
PrintAndLog("Testing known keys. Sector count=%d", SectorsCnt);
@ -628,32 +623,41 @@ int CmdHF14AMfNested(const char *Cmd)
e_sector[i].foundKey[j] = 1;
}
}
}
}
// nested sectors
iterations = 0;
PrintAndLog("nested...");
bool calibrate = true;
for (i = 0; i < NESTED_SECTOR_RETRY; i++) {
for (trgBlockNo = blDiff; trgBlockNo < SectorsCnt * 4; trgBlockNo = trgBlockNo + 4)
for (trgBlockNo = blDiff; trgBlockNo < SectorsCnt * 4; trgBlockNo = trgBlockNo + 4) {
for (trgKeyType = 0; trgKeyType < 2; trgKeyType++) {
if (e_sector[trgBlockNo / 4].foundKey[trgKeyType]) continue;
if (mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock)) continue;
PrintAndLog("-----------------------------------------------");
if(mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, calibrate)) {
PrintAndLog("Nested error.\n");
return 2;
}
else {
calibrate = false;
}
iterations++;
//try keys from nested
res = mfCheckKeys(trgBlockNo, trgKeyType, 8, keyBlock, &key64);
if (res)
res = mfCheckKeys(trgBlockNo, trgKeyType, 8, &keyBlock[6 * 8], &key64);
if (!res) {
key64 = bytes_to_num(keyBlock, 6);
if (key64) {
PrintAndLog("Found valid key:%012"llx, key64);
e_sector[trgBlockNo / 4].foundKey[trgKeyType] = 1;
e_sector[trgBlockNo / 4].Key[trgKeyType] = key64;
}
}
}
}
PrintAndLog("Iterations count: %d", iterations);
printf("Time in nested: %1.3f (%1.3f sec per key)\n\n", ((float)clock() - time1)/1000.0, ((float)clock() - time1)/iterations/1000.0);
PrintAndLog("-----------------------------------------------\nIterations count: %d\n\n", iterations);
//print them
PrintAndLog("|---|----------------|---|----------------|---|");
PrintAndLog("|sec|key A |res|key B |res|");
@ -830,16 +834,16 @@ int CmdHF14AMfChk(const char *Cmd)
while( !feof(f) ){
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
PrintAndLog("File reading error.");
return 2;
}
PrintAndLog("File reading error.");
return 2;
}
if (strlen(buf) < 12 || buf[11] == '\n')
continue;
while (fgetc(f) != '\n' && !feof(f)) ; //goto next line
if( buf[0]=='#' ) continue; //The line start with # is remcommnet,skip
if( buf[0]=='#' ) continue; //The line start with # is comment, skip
if (!isxdigit(buf[0])){
PrintAndLog("File content error. '%s' must include 12 HEX symbols",buf);
@ -883,10 +887,10 @@ int CmdHF14AMfChk(const char *Cmd)
int b=blockNo;
for (int i=0; i<SectorsCnt; ++i) {
PrintAndLog("--SectorsCnt:%d block no:0x%02x key type:%C key count:%d ", i, b, t?'B':'A', keycnt);
int size = keycnt>8?8:keycnt;
for (int c = 0; c < keycnt; c+=size) {
size=keycnt-c>8?8:keycnt-c;
res = mfCheckKeys(b, t, size, keyBlock +6*c, &key64);
uint32_t max_keys = keycnt>USB_CMD_DATA_SIZE/6?USB_CMD_DATA_SIZE/6:keycnt;
for (uint32_t c = 0; c < keycnt; c+=max_keys) {
uint32_t size = keycnt-c>max_keys?max_keys:keycnt-c;
res = mfCheckKeys(b, t, size, &keyBlock[6*c], &key64);
if (res !=1) {
if (!res) {
PrintAndLog("Found valid key:[%012"llx"]",key64);
@ -896,11 +900,6 @@ int CmdHF14AMfChk(const char *Cmd)
num_to_bytes(key64, 6, block + t*10);
mfEmlSetMem(block, get_trailer_block(b), 1);
}
break;
}
else {
printf("Not found yet, keycnt:%d\r", c+size);
fflush(stdout);
}
} else {
PrintAndLog("Command execute timeout");

View file

@ -11,181 +11,204 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include "mifarehost.h"
#include "proxmark3.h"
// MIFARE
int compar_int(const void * a, const void * b) {
return (*(uint64_t*)b - *(uint64_t*)a);
// didn't work: (the result is truncated to 32 bits)
//return (*(uint64_t*)b - *(uint64_t*)a);
// better:
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
else if (*(uint64_t*)b > *(uint64_t*)a) return 1;
else return -1;
}
// Compare countKeys structure
int compar_special_int(const void * a, const void * b) {
return (((countKeys *)b)->count - ((countKeys *)a)->count);
// Compare 16 Bits out of cryptostate
int Compare16Bits(const void * a, const void * b) {
if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
else if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
else return -1;
}
countKeys * uniqsort(uint64_t * possibleKeys, uint32_t size) {
int i, j = 0;
int count = 0;
countKeys *our_counts;
qsort(possibleKeys, size, sizeof (uint64_t), compar_int);
our_counts = calloc(size, sizeof(countKeys));
if (our_counts == NULL) {
PrintAndLog("Memory allocation error for our_counts");
return NULL;
}
for (i = 0; i < size; i++) {
if (possibleKeys[i+1] == possibleKeys[i]) {
count++;
} else {
our_counts[j].key = possibleKeys[i];
our_counts[j].count = count;
j++;
count=0;
}
}
qsort(our_counts, j, sizeof(countKeys), compar_special_int);
return (our_counts);
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKeys)
typedef
struct {
union {
struct Crypto1State *slhead;
uint64_t *keyhead;
};
union {
struct Crypto1State *sltail;
uint64_t *keytail;
};
uint32_t len;
uint32_t uid;
uint32_t blockNo;
uint32_t keyType;
uint32_t nt;
uint32_t ks1;
} StateList_t;
// wrapper function for multi-threaded lfsr_recovery32
void* nested_worker_thread(void *arg)
{
int i, m, len;
uint8_t isEOF;
uint32_t uid;
fnVector * vector = NULL;
countKeys *ck;
int lenVector = 0;
UsbCommand resp;
memset(resultKeys, 0x00, 16 * 6);
struct Crypto1State *p1;
StateList_t *statelist = arg;
statelist->slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->slhead; *(uint64_t *)p1 != 0; p1++);
statelist->len = p1 - statelist->slhead;
statelist->sltail = --p1;
qsort(statelist->slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
return statelist->slhead;
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate)
{
uint16_t i, len;
uint32_t uid;
UsbCommand resp;
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
// flush queue
WaitForResponseTimeout(CMD_ACK,NULL,100);
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo, keyType, trgBlockNo + trgKeyType * 0x100}};
UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}};
memcpy(c.d.asBytes, key, 6);
SendCommand(&c);
SendCommand(&c);
PrintAndLog("\n");
// wait cycle
while (true) {
printf(".");
if (ukbhit()) {
getchar();
printf("\naborted via keyboard!\n");
break;
}
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
isEOF = resp.arg[0] & 0xff;
if (isEOF) break;
len = resp.arg[1] & 0xff;
if (len == 0) continue;
if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) {
len = resp.arg[1];
if (len == 2) {
memcpy(&uid, resp.d.asBytes, 4);
PrintAndLog("uid:%08x len=%d trgbl=%d trgkey=%x", uid, len, resp.arg[2] & 0xff, (resp.arg[2] >> 8) & 0xff);
vector = (fnVector *) realloc((void *)vector, (lenVector + len) * sizeof(fnVector) + 200);
if (vector == NULL) {
PrintAndLog("Memory allocation error for fnVector. len: %d bytes: %d", lenVector + len, (lenVector + len) * sizeof(fnVector));
break;
}
PrintAndLog("uid:%08x len=%d trgbl=%d trgkey=%x", uid, len, (uint16_t)resp.arg[2] & 0xff, (uint16_t)resp.arg[2] >> 8);
for (i = 0; i < len; i++) {
vector[lenVector + i].blockNo = resp.arg[2] & 0xff;
vector[lenVector + i].keyType = (resp.arg[2] >> 8) & 0xff;
vector[lenVector + i].uid = uid;
for (i = 0; i < 2; i++) {
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
memcpy(&vector[lenVector + i].nt, (void *)(resp.d.asBytes + 8 + i * 8 + 0), 4);
memcpy(&vector[lenVector + i].ks1, (void *)(resp.d.asBytes + 8 + i * 8 + 4), 4);
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
lenVector += len;
}
else {
PrintAndLog("Got 0 keys from proxmark.");
return 1;
}
}
if (!lenVector) {
PrintAndLog("Got 0 keys from proxmark.");
return 1;
}
printf("------------------------------------------------------------------\n");
// calc keys
struct Crypto1State* revstate = NULL;
struct Crypto1State* revstate_start = NULL;
uint64_t lfsr;
int kcount = 0;
pKeys *pk;
if ((pk = (void *) malloc(sizeof(pKeys))) == NULL) return 1;
memset(pk, 0x00, sizeof(pKeys));
pthread_t thread_id[2];
// create and run worker threads
for (i = 0; i < 2; i++) {
pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]);
}
for (m = 0; m < lenVector; m++) {
// And finally recover the first 32 bits of the key
revstate = lfsr_recovery32(vector[m].ks1, vector[m].nt ^ vector[m].uid);
if (revstate_start == NULL) revstate_start = revstate;
while ((revstate->odd != 0x0) || (revstate->even != 0x0)) {
lfsr_rollback_word(revstate, vector[m].nt ^ vector[m].uid, 0);
crypto1_get_lfsr(revstate, &lfsr);
// wait for threads to terminate:
for (i = 0; i < 2; i++) {
pthread_join(thread_id[i], (void*)&statelists[i].slhead);
}
// Allocate a new space for keys
if (((kcount % MEM_CHUNK) == 0) || (kcount >= pk->size)) {
pk->size += MEM_CHUNK;
//fprintf(stdout, "New chunk by %d, sizeof %d\n", kcount, pk->size * sizeof(uint64_t));
pk->possibleKeys = (uint64_t *) realloc((void *)pk->possibleKeys, pk->size * sizeof(uint64_t));
if (pk->possibleKeys == NULL) {
PrintAndLog("Memory allocation error for pk->possibleKeys");
return 1;
}
// the first 16 Bits of the cryptostate already contain part of our key.
// Create the intersection of the two lists based on these 16 Bits and
// roll back the cryptostate
p1 = p3 = statelists[0].slhead;
p2 = p4 = statelists[1].slhead;
while (p1 <= statelists[0].sltail && p2 <= statelists[1].sltail) {
if (Compare16Bits(p1, p2) == 0) {
struct Crypto1State savestate, *savep = &savestate;
savestate = *p1;
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].sltail) {
*p3 = *p1;
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
p3++;
p1++;
}
savestate = *p2;
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].sltail) {
*p4 = *p2;
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
p4++;
p2++;
}
pk->possibleKeys[kcount] = lfsr;
kcount++;
revstate++;
}
free(revstate_start);
revstate_start = NULL;
else {
while (Compare16Bits(p1, p2) == -1) p1++;
while (Compare16Bits(p1, p2) == 1) p2++;
}
}
p3->even = 0; p3->odd = 0;
p4->even = 0; p4->odd = 0;
statelists[0].len = p3 - statelists[0].slhead;
statelists[1].len = p4 - statelists[1].slhead;
statelists[0].sltail=--p3;
statelists[1].sltail=--p4;
// the statelists now contain possible keys. The key we are searching for must be in the
// intersection of both lists. Create the intersection:
qsort(statelists[0].keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
qsort(statelists[1].keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
uint64_t *p5, *p6, *p7;
p5 = p7 = statelists[0].keyhead;
p6 = statelists[1].keyhead;
while (p5 <= statelists[0].keytail && p6 <= statelists[1].keytail) {
if (compar_int(p5, p6) == 0) {
*p7++ = *p5++;
p6++;
}
else {
while (compar_int(p5, p6) == -1) p5++;
while (compar_int(p5, p6) == 1) p6++;
}
}
statelists[0].len = p7 - statelists[0].keyhead;
statelists[0].keytail=--p7;
memset(resultKey, 0, 6);
// The list may still contain several key candidates. Test each of them with mfCheckKeys
for (i = 0; i < statelists[0].len; i++) {
uint8_t keyBlock[6];
uint64_t key64;
crypto1_get_lfsr(statelists[0].slhead + i, &key64);
num_to_bytes(key64, 6, keyBlock);
key64 = 0;
if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, 1, keyBlock, &key64)) {
num_to_bytes(key64, 6, resultKey);
break;
}
}
// Truncate
if (kcount != 0) {
pk->size = --kcount;
if ((pk->possibleKeys = (uint64_t *) realloc((void *)pk->possibleKeys, pk->size * sizeof(uint64_t))) == NULL) {
PrintAndLog("Memory allocation error for pk->possibleKeys");
return 1;
}
}
PrintAndLog("Total keys count:%d", kcount);
ck = uniqsort(pk->possibleKeys, pk->size);
// fill key array
for (i = 0; i < 16 ; i++) {
num_to_bytes(ck[i].key, 6, (uint8_t*)(resultKeys + i * 6));
}
// finalize
free(pk->possibleKeys);
free(pk);
free(ck);
free(vector);
free(statelists[0].slhead);
free(statelists[1].slhead);
return 0;
}
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = 0;
UsbCommand c = {CMD_MIFARE_CHKKEYS, {blockNo, keyType, keycnt}};
UsbCommand c = {CMD_MIFARE_CHKKEYS, {blockNo, keyType, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
SendCommand(&c);
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK,&resp,3000)) return 1;

View file

@ -43,26 +43,14 @@
#define TRACE_ERROR 0xFF
typedef struct fnVector { uint8_t blockNo, keyType; uint32_t uid, nt, ks1; } fnVector;
typedef struct {
uint64_t Key[2];
int foundKey[2];
} sector;
typedef struct {
uint64_t *possibleKeys;
uint32_t size;
} pKeys;
typedef struct {
uint64_t key;
int count;
} countKeys;
extern char logHexFileName[200];
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * ResultKeys);
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * ResultKeys, bool calibrate);
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key);
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount);

View file

@ -31,6 +31,71 @@ static void __attribute__((constructor)) fill_lut()
#define filter(x) (filterlut[(x) & 0xfffff])
#endif
typedef struct bucket {
uint32_t *head;
uint32_t *bp;
} bucket_t;
typedef bucket_t bucket_array_t[2][0x100];
typedef struct bucket_info {
struct {
uint32_t *head, *tail;
} bucket_info[2][0x100];
uint32_t numbuckets;
} bucket_info_t;
static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
uint32_t* const ostart, uint32_t* const ostop,
bucket_info_t *bucket_info, bucket_array_t bucket)
{
uint32_t *p1, *p2;
uint32_t *start[2];
uint32_t *stop[2];
start[0] = estart;
stop[0] = estop;
start[1] = ostart;
stop[1] = ostop;
// init buckets to be empty
for (uint32_t i = 0; i < 2; i++) {
for (uint32_t j = 0x00; j <= 0xff; j++) {
bucket[i][j].bp = bucket[i][j].head;
}
}
// sort the lists into the buckets based on the MSB (contribution bits)
for (uint32_t i = 0; i < 2; i++) {
for (p1 = start[i]; p1 <= stop[i]; p1++) {
uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
*(bucket[i][bucket_index].bp++) = *p1;
}
}
// write back intersecting buckets as sorted list.
// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
uint32_t nonempty_bucket;
for (uint32_t i = 0; i < 2; i++) {
p1 = start[i];
nonempty_bucket = 0;
for (uint32_t j = 0x00; j <= 0xff; j++) {
if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
bucket_info->bucket_info[i][nonempty_bucket].head = p1;
for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
nonempty_bucket++;
}
}
bucket_info->numbuckets = nonempty_bucket;
}
}
static void quicksort(uint32_t* const start, uint32_t* const stop)
{
uint32_t *it = start + 1, *rit = stop;
@ -54,6 +119,8 @@ static void quicksort(uint32_t* const start, uint32_t* const stop)
quicksort(start, rit - 1);
quicksort(rit + 1, stop);
}
/** binsearch
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
*/
@ -90,45 +157,55 @@ static inline void
extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
{
in <<= 24;
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
*tbl |= filter(*tbl) ^ bit;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else if(filter(*tbl) == bit) {
*++*end = tbl[1];
tbl[1] = tbl[0] | 1;
update_contribution(tbl, m1, m2);
*tbl++ ^= in;
update_contribution(tbl, m1, m2);
*tbl ^= in;
} else
*tbl-- = *(*end)--;
for(uint32_t *p = tbl; p <= *end; p++) {
*p <<= 1;
if(filter(*p) != filter(*p | 1)) { // replace
*p |= filter(*p) ^ bit;
update_contribution(p, m1, m2);
*p ^= in;
} else if(filter(*p) == bit) { // insert
*++*end = p[1];
p[1] = p[0] | 1;
update_contribution(p, m1, m2);
*p++ ^= in;
update_contribution(p, m1, m2);
*p ^= in;
} else { // drop
*p-- = *(*end)--;
}
}
}
/** extend_table_simple
* using a bit of the keystream extend the table of possible lfsr states
*/
static inline void
extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
{
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) {
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
*tbl |= filter(*tbl) ^ bit;
} else if(filter(*tbl) == bit) {
} else if(filter(*tbl) == bit) { // insert
*++*end = *++tbl;
*tbl = tbl[-1] | 1;
} else
} else // drop
*tbl-- = *(*end)--;
}
/** recover
* recursively narrow down the search space, 4 bits of keystream at a time
*/
static struct Crypto1State*
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
struct Crypto1State *sl, uint32_t in)
struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
{
uint32_t *o, *e, i;
uint32_t *o, *e;
bucket_info_t bucket_info;
if(rem == -1) {
for(e = e_head; e <= e_tail; ++e) {
@ -136,13 +213,13 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
for(o = o_head; o <= o_tail; ++o, ++sl) {
sl->even = *o;
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
sl[1].odd = sl[1].even = 0;
}
}
sl->odd = sl->even = 0;
return sl;
}
for(i = 0; i < 4 && rem--; i++) {
for(uint32_t i = 0; i < 4 && rem--; i++) {
extend_table(o_head, &o_tail, (oks >>= 1) & 1,
LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
if(o_head > o_tail)
@ -154,21 +231,14 @@ recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
return sl;
}
quicksort(o_head, o_tail);
quicksort(e_head, e_tail);
while(o_tail >= o_head && e_tail >= e_head)
if(((*o_tail ^ *e_tail) >> 24) == 0) {
o_tail = binsearch(o_head, o = o_tail);
e_tail = binsearch(e_head, e = e_tail);
sl = recover(o_tail--, o, oks,
e_tail--, e, eks, rem, sl, in);
}
else if(*o_tail > *e_tail)
o_tail = binsearch(o_head, o_tail) - 1;
else
e_tail = binsearch(e_head, e_tail) - 1;
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
rem, sl, in, bucket);
}
return sl;
}
/** lfsr_recovery
@ -183,6 +253,7 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
int i;
// split the keystream into an odd and even part
for(i = 31; i >= 0; i -= 2)
oks = oks << 1 | BEBIT(ks2, i);
for(i = 30; i >= 0; i -= 2)
@ -191,11 +262,23 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
statelist = malloc(sizeof(struct Crypto1State) << 18);
if(!odd_tail-- || !even_tail-- || !statelist)
if(!odd_tail-- || !even_tail-- || !statelist) {
goto out;
}
statelist->odd = statelist->even = 0;
// allocate memory for out of place bucket_sort
bucket_array_t bucket;
for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++) {
bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
if (!bucket[i][j].head) {
goto out;
}
}
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
for(i = 1 << 20; i >= 0; --i) {
if(filter(i) == (oks & 1))
*++odd_tail = i;
@ -203,18 +286,29 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
*++even_tail = i;
}
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
for(i = 0; i < 4; i++) {
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
}
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
// parameter into account.
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
recover(odd_head, odd_tail, oks,
even_head, even_tail, eks, 11, statelist, in << 1);
even_head, even_tail, eks, 11, statelist, in << 1, bucket);
out:
free(odd_head);
free(even_head);
for (uint32_t i = 0; i < 2; i++)
for (uint32_t j = 0; j <= 0xff; j++)
free(bucket[i][j].head);
return statelist;
}

View file

@ -24,10 +24,14 @@
#include "ui.h"
#include "sleep.h"
// a global mutex to prevent interlaced printing from different threads
pthread_mutex_t print_lock;
static serial_port sp;
static UsbCommand txcmd;
volatile static bool txcmd_pending = false;
void SendCommand(UsbCommand *c) {
#if 0
printf("Sending %d bytes\n", sizeof(UsbCommand));
@ -196,20 +200,20 @@ static void *main_loop(void *targ) {
}
int main(int argc, char* argv[]) {
srand(time(0));
srand(time(0));
if (argc < 2) {
printf("syntax: %s <port>\n\n",argv[0]);
printf("\tLinux example:'%s /dev/ttyACM0'\n\n", argv[0]);
return 1;
}
if (argc < 2) {
printf("syntax: %s <port>\n\n",argv[0]);
printf("\tLinux example:'%s /dev/ttyACM0'\n\n", argv[0]);
return 1;
}
// Make sure to initialize
struct main_loop_arg marg = {
.usb_present = 0,
.script_cmds_file = NULL
};
pthread_t main_loop_t;
// Make sure to initialize
struct main_loop_arg marg = {
.usb_present = 0,
.script_cmds_file = NULL
};
pthread_t main_loop_t;
/*
usb_init();
@ -223,38 +227,44 @@ int main(int argc, char* argv[]) {
}
*/
sp = uart_open(argv[1]);
if (sp == INVALID_SERIAL_PORT) {
printf("ERROR: invalid serial port\n");
marg.usb_present = 0;
offline = 1;
} else if (sp == CLAIMED_SERIAL_PORT) {
printf("ERROR: serial port is claimed by another process\n");
marg.usb_present = 0;
offline = 1;
} else {
marg.usb_present = 1;
offline = 0;
}
sp = uart_open(argv[1]);
if (sp == INVALID_SERIAL_PORT) {
printf("ERROR: invalid serial port\n");
marg.usb_present = 0;
offline = 1;
} else if (sp == CLAIMED_SERIAL_PORT) {
printf("ERROR: serial port is claimed by another process\n");
marg.usb_present = 0;
offline = 1;
} else {
marg.usb_present = 1;
offline = 0;
}
// If the user passed the filename of the 'script' to execute, get it
if (argc > 2 && argv[2]) {
marg.script_cmds_file = argv[2];
}
// If the user passed the filename of the 'script' to execute, get it
if (argc > 2 && argv[2]) {
marg.script_cmds_file = argv[2];
}
pthread_create(&main_loop_t, NULL, &main_loop, &marg);
InitGraphics(argc, argv);
// create a mutex to avoid interlacing print commands from our different threads
pthread_mutex_init(&print_lock, NULL);
MainGraphics();
pthread_create(&main_loop_t, NULL, &main_loop, &marg);
InitGraphics(argc, argv);
pthread_join(main_loop_t, NULL);
MainGraphics();
pthread_join(main_loop_t, NULL);
// if (marg.usb_present == 1) {
// CloseProxmark();
// }
// Clean up the port
uart_close(sp);
// Clean up the port
uart_close(sp);
// clean up mutex
pthread_mutex_destroy(&print_lock);
return 0;
}

View file

@ -14,6 +14,7 @@
#include <stdio.h>
#include <time.h>
#include <readline/readline.h>
#include <pthread.h>
#include "ui.h"
@ -21,23 +22,28 @@ double CursorScaleFactor;
int PlotGridX, PlotGridY, PlotGridXdefault= 64, PlotGridYdefault= 64;
int offline;
extern pthread_mutex_t print_lock;
static char *logfilename = "proxmark3.log";
void PrintAndLog(char *fmt, ...)
{
char *saved_line;
int saved_point;
va_list argptr, argptr2;
static FILE *logfile = NULL;
static int logging=1;
va_list argptr, argptr2;
static FILE *logfile = NULL;
static int logging=1;
if (logging && !logfile) {
logfile=fopen(logfilename, "a");
if (!logfile) {
fprintf(stderr, "Can't open logfile, logging disabled!\n");
logging=0;
}
}
// lock this section to avoid interlacing prints from different threats
pthread_mutex_lock(&print_lock);
if (logging && !logfile) {
logfile=fopen(logfilename, "a");
if (!logfile) {
fprintf(stderr, "Can't open logfile, logging disabled!\n");
logging=0;
}
}
int need_hack = (rl_readline_state & RL_STATE_READCMD) > 0;
@ -49,12 +55,12 @@ void PrintAndLog(char *fmt, ...)
rl_redisplay();
}
va_start(argptr, fmt);
va_copy(argptr2, argptr);
vprintf(fmt, argptr);
printf(" "); // cleaning prompt
va_end(argptr);
printf("\n");
va_start(argptr, fmt);
va_copy(argptr2, argptr);
vprintf(fmt, argptr);
printf(" "); // cleaning prompt
va_end(argptr);
printf("\n");
if (need_hack) {
rl_restore_prompt();
@ -64,14 +70,18 @@ void PrintAndLog(char *fmt, ...)
free(saved_line);
}
if (logging && logfile) {
vfprintf(logfile, fmt, argptr2);
fprintf(logfile,"\n");
fflush(logfile);
}
va_end(argptr2);
if (logging && logfile) {
vfprintf(logfile, fmt, argptr2);
fprintf(logfile,"\n");
fflush(logfile);
}
va_end(argptr2);
//release lock
pthread_mutex_unlock(&print_lock);
}
void SetLogFilename(char *fn)
{
logfilename = fn;