mergehell, piwi's legic changes

This commit is contained in:
iceman1001 2020-09-06 20:06:24 +02:00
commit ae7fc5006e

View file

@ -64,11 +64,11 @@ static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// I/O interface abstraction (FPGA -> ARM) // I/O interface abstraction (FPGA -> ARM)
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
static uint8_t rx_byte_from_fpga(void) { static uint16_t rx_frame_from_fpga(void) {
for (;;) { for (;;) {
WDT_HIT(); WDT_HIT();
// wait for byte be become available in rx holding register // wait for frame be become available in rx holding register
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
return AT91C_BASE_SSC->SSC_RHR; return AT91C_BASE_SSC->SSC_RHR;
} }
@ -76,48 +76,53 @@ static uint8_t rx_byte_from_fpga(void) {
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Demodulation // Demodulation (Reader)
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Returns am aproximated power measurement // Returns a demedulated bit
// //
// The FPGA running on the xcorrelation kernel samples the subcarrier at ~3 MHz. // The FPGA running xcorrelation samples the subcarrier at ~13.56 MHz. The mode
// The kernel was initialy designed to receive BSPK/2-PSK. Hance, it reports an // was initialy designed to receive BSPK/2-PSK. Hance, it reports an I/Q pair
// I/Q pair every 18.9us (8 bits i and 8 bits q). // every 4.7us (8 bits i and 8 bits q).
// //
// The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2). // The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2).
// To reduce CPU time the amplitude is approximated by using linear functions: // To reduce CPU time the amplitude is approximated by using linear functions:
// am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq)) // am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq))
// //
// Note: The SSC receiver is never synchronized the calculation may be performed // The bit time is 99.1us (21 I/Q pairs). The receiver skips the first 5 samples
// on a i/q pair from two subsequent correlations, but does not matter. // and averages the next (most stable) 8 samples. The final 8 samples are dropped
// Note: inlining this function would fail with -Os // also.
static int32_t sample_power(void) {
int32_t q = (int8_t)rx_byte_from_fpga();
q = ABS(q);
int32_t i = (int8_t)rx_byte_from_fpga();
i = ABS(i);
return MAX(i, q) + (MIN(i, q) >> 1);
}
// Returns a demedulated bit
// //
// An aproximated power measurement is available every 18.9us. The bit time // The demodulated should be alligned to the bit period by the caller. This is
// is 100us. The code samples 5 times and uses the last (most stable) sample. // done in rx_bit and rx_ack.
// //
// Note: The demodulator would be drifting (18.9us * 5 != 100us), rx_frame // Note: The demodulator would be drifting (18.9us * 5 != 100us), rx_frame
// has a delay loop that aligns rx_bit calls to the TAG tx timeslots. // has a delay loop that aligns rx_bit calls to the TAG tx timeslots.
//
// Note: inlining this function would fail with -Os // Note: inlining this function would fail with -Os
static bool rx_bit(void) { static bool rx_bit(void) {
int32_t power; int32_t sum_cq = 0;
int32_t sum_ci = 0;
for (size_t i = 0; i < 5; ++i) { // skip first 5 I/Q pairs
power = sample_power(); for(size_t i = 0; i<5; ++i) {
} (void)rx_frame_from_fpga();
}
return (power > INPUT_THRESHOLD); // sample next 8 I/Q pairs
for (uint8_t i = 0; i < 8; ++i) {
uint16_t iq = rx_frame_from_fpga();
int8_t ci = (int8_t)(iq >> 8);
int8_t cq = (int8_t)(iq & 0xff);
sum_ci += ci;
sum_cq += cq;
}
// calculate power
int32_t power = (MAX(ABS(sum_ci), ABS(sum_cq)) + (MIN(ABS(sum_ci), ABS(sum_cq)) >> 1));
// compare average (power / 8) to threshold
return ((power >> 3) > INPUT_THRESHOLD);
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -131,18 +136,18 @@ static bool rx_bit(void) {
static void tx_bit(bool bit) { static void tx_bit(bool bit) {
// insert pause // insert pause
LOW(GPIO_SSC_DOUT); HIGH(GPIO_SSC_DOUT);
last_frame_end += RWD_TIME_PAUSE; last_frame_end += RWD_TIME_PAUSE;
while (GET_TICKS < last_frame_end) { }; while (GET_TICKS < last_frame_end) { };
HIGH(GPIO_SSC_DOUT);
// return to high, wait for bit periode to end // return to carrier on, wait for bit periode to end
LOW(GPIO_SSC_DOUT);
last_frame_end += (bit ? RWD_TIME_1 : RWD_TIME_0) - RWD_TIME_PAUSE; last_frame_end += (bit ? RWD_TIME_1 : RWD_TIME_0) - RWD_TIME_PAUSE;
while (GET_TICKS < last_frame_end) { }; while (GET_TICKS < last_frame_end) { };
} }
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Frame Handling // Frame Handling (Reader)
// //
// The LEGIC RF protocol from card to reader does not include explicit frame // The LEGIC RF protocol from card to reader does not include explicit frame
// start/stop information or length information. The reader must know beforehand // start/stop information or length information. The reader must know beforehand
@ -169,10 +174,10 @@ static void tx_frame(uint32_t frame, uint8_t len) {
}; };
// add pause to mark end of the frame // add pause to mark end of the frame
LOW(GPIO_SSC_DOUT); HIGH(GPIO_SSC_DOUT);
last_frame_end += RWD_TIME_PAUSE; last_frame_end += RWD_TIME_PAUSE;
while (GET_TICKS < last_frame_end) { }; while (GET_TICKS < last_frame_end) { };
HIGH(GPIO_SSC_DOUT); LOW(GPIO_SSC_DOUT);
// log // log
uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)}; uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)};
@ -267,12 +272,12 @@ static int init_card(uint8_t cardtype, legic_card_select_t *p_card) {
p_card->cmdsize = 0; p_card->cmdsize = 0;
p_card->addrsize = 0; p_card->addrsize = 0;
p_card->cardsize = 0; p_card->cardsize = 0;
return 2; return PM3_ESOFT;
} }
return 0; return PM3_SUCCESS;
} }
static void init_reader(bool clear_mem) { static void init_reader(void) {
// configure FPGA // configure FPGA
FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_212_KHZ | FPGA_HF_READER_MODE_RECEIVE_IQ); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_212_KHZ | FPGA_HF_READER_MODE_RECEIVE_IQ);
@ -285,7 +290,7 @@ static void init_reader(bool clear_mem) {
// re-claim GPIO_SSC_DOUT as GPIO and enable output // re-claim GPIO_SSC_DOUT as GPIO and enable output
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
HIGH(GPIO_SSC_DOUT); LOW(GPIO_SSC_DOUT);
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
legic_mem = BigBuf_get_EM_addr(); legic_mem = BigBuf_get_EM_addr();
@ -406,11 +411,11 @@ legic_card_select_t *getLegicCardInfo(void) {
void LegicRfInfo(void) { void LegicRfInfo(void) {
// configure ARM and FPGA // configure ARM and FPGA
init_reader(false); init_reader();
// establish shared secret and detect card type // establish shared secret and detect card type
uint8_t card_type = setup_phase(0x01); uint8_t card_type = setup_phase(0x01);
if (init_card(card_type, &card) != 0) { if (init_card(card_type, &card) != PM3_SUCCESS) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0); reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT; goto OUT;
} }
@ -446,11 +451,11 @@ int LegicRfReaderEx(uint16_t offset, uint16_t len, uint8_t iv) {
int res = PM3_SUCCESS; int res = PM3_SUCCESS;
// configure ARM and FPGA // configure ARM and FPGA
init_reader(false); init_reader();
// establish shared secret and detect card type // establish shared secret and detect card type
uint8_t card_type = setup_phase(iv); uint8_t card_type = setup_phase(iv);
if (init_card(card_type, &card) != 0) { if (init_card(card_type, &card) != PM3_SUCCESS) {
res = PM3_ESOFT; res = PM3_ESOFT;
goto OUT; goto OUT;
} }
@ -481,11 +486,11 @@ OUT:
void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) { void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) {
// configure ARM and FPGA // configure ARM and FPGA
init_reader(false); init_reader();
// establish shared secret and detect card type // establish shared secret and detect card type
uint8_t card_type = setup_phase(iv); uint8_t card_type = setup_phase(iv);
if (init_card(card_type, &card) != 0) { if (init_card(card_type, &card) != PM3_SUCCESS) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0); reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT; goto OUT;
} }
@ -518,7 +523,7 @@ OUT:
void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) { void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
// configure ARM and FPGA // configure ARM and FPGA
init_reader(false); init_reader();
// uid is not writeable // uid is not writeable
if (offset <= WRITE_LOWERLIMIT) { if (offset <= WRITE_LOWERLIMIT) {
@ -528,7 +533,7 @@ void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
// establish shared secret and detect card type // establish shared secret and detect card type
uint8_t card_type = setup_phase(iv); uint8_t card_type = setup_phase(iv);
if (init_card(card_type, &card) != 0) { if (init_card(card_type, &card) != PM3_SUCCESS) {
reply_mix(CMD_ACK, 0, 0, 0, 0, 0); reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT; goto OUT;
} }
@ -539,8 +544,8 @@ void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
} }
// write in reverse order, only then is DCF (decremental field) writable // write in reverse order, only then is DCF (decremental field) writable
while (len-- > 0 && !BUTTON_PRESS()) { while (len-- > 0 && BUTTON_PRESS() == false) {
if (!write_byte(len + offset, data[len], card.addrsize)) { if (write_byte(len + offset, data[len], card.addrsize) == false) {
Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len]); Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len]);
reply_mix(CMD_ACK, 0, 0, 0, 0, 0); reply_mix(CMD_ACK, 0, 0, 0, 0, 0);
goto OUT; goto OUT;