part of monstermerge..

This commit is contained in:
iceman1001 2017-07-27 20:58:59 +02:00
commit a8569849d6
14 changed files with 2705 additions and 1773 deletions

View file

@ -7,34 +7,257 @@
//-----------------------------------------------------------------------------
// mifare commands
//-----------------------------------------------------------------------------
#include "mifarehost.h"
// MIFARE
extern int compar_int(const void * a, const void * b) {
static int compare_uint64(const void *a, const void *b) {
// didn't work: (the result is truncated to 32 bits)
//return (*(uint64_t*)b - *(uint64_t*)a);
//return (*(int64_t*)b - *(int64_t*)a);
// better:
if (*(uint64_t*)b > *(uint64_t*)a) return 1;
if (*(uint64_t*)b < *(uint64_t*)a) return -1;
return 0;
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
if (*(uint64_t*)b < *(uint64_t*)a) return 1;
return -1;
}
//return (*(uint64_t*)b > *(uint64_t*)a) - (*(uint64_t*)b < *(uint64_t*)a);
// create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
static uint32_t intersection(uint64_t *list1, uint64_t *list2) {
if (list1 == NULL || list2 == NULL)
return 0;
uint64_t *p1, *p2, *p3;
p1 = p3 = list1;
p2 = list2;
while ( *p1 != -1 && *p2 != -1 ) {
if (compare_uint64(p1, p2) == 0) {
*p3++ = *p1++;
p2++;
}
else {
while (compare_uint64(p1, p2) < 0) ++p1;
while (compare_uint64(p1, p2) > 0) ++p2;
}
}
*p3 = -1;
return p3 - list1;
}
// Darkside attack (hf mf mifare)
// if successful it will return a list of keys, not just one.
static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
struct Crypto1State *states;
uint32_t i, pos, rr;
uint8_t bt, ks3x[8], par[8][8];
uint64_t key_recovered;
static uint64_t *keylist;
rr = 0;
// Reset the last three significant bits of the reader nonce
nr &= 0xffffff1f;
for ( pos = 0; pos < 8; pos++ ) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
bt = (par_info >> (pos*8)) & 0xff;
for ( i = 0; i < 8; i++) {
par[7-pos][i] = (bt >> i) & 0x01;
}
}
states = lfsr_common_prefix(nr, rr, ks3x, par, (par_info == 0));
if (!states) {
PrintAndLog("Failed getting states");
*keys = NULL;
return 0;
}
keylist = (uint64_t*)states;
for (i = 0; keylist[i]; i++) {
lfsr_rollback_word(states+i, uid^nt, 0);
crypto1_get_lfsr(states+i, &key_recovered);
keylist[i] = key_recovered;
}
keylist[i] = -1;
*keys = keylist;
return i;
}
int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key)
{
uint32_t uid = 0;
uint32_t nt = 0, nr = 0;
uint64_t par_list = 0, ks_list = 0;
uint64_t *keylist = NULL, *last_keylist = NULL;
uint32_t keycount = 0;
int16_t isOK = 0;
UsbCommand c = {CMD_READER_MIFARE, {true, blockno, key_type}};
// message
printf("-------------------------------------------------------------------------\n");
printf("Executing command. Expected execution time: 25sec on average\n");
printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n");
printf("-------------------------------------------------------------------------\n");
while (true) {
clearCommandBuffer();
SendCommand(&c);
//flush queue
while (ukbhit()) {
int gc = getchar(); (void) gc;
}
// wait cycle
while (true) {
printf(".");
fflush(stdout);
if (ukbhit()) {
int gc = getchar(); (void) gc;
return -5;
break;
}
UsbCommand resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
isOK = resp.arg[0];
if (isOK < 0)
return isOK;
uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4);
nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4);
par_list = bytes_to_num(resp.d.asBytes + 8, 8);
ks_list = bytes_to_num(resp.d.asBytes + 16, 8);
nr = bytes_to_num(resp.d.asBytes + 24, 4);
break;
}
}
if (par_list == 0 && c.arg[0] == true) {
PrintAndLog("Parity is all zero. Most likely this card sends NACK on every failed authentication.");
PrintAndLog("Attack will take a few seconds longer because we need two consecutive successful runs.");
}
c.arg[0] = false;
keycount = nonce2key(uid, nt, nr, par_list, ks_list, &keylist);
if (keycount == 0) {
PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt);
PrintAndLog("This is expected to happen in 25%% of all cases. Trying again with a different reader nonce...");
continue;
}
qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
keycount = intersection(last_keylist, keylist);
if (keycount == 0) {
free(last_keylist);
last_keylist = keylist;
continue;
}
if (keycount > 1) {
PrintAndLog("Found %u candidate keys. Trying to verify with authentication...\n", keycount);
} else {
PrintAndLog("Found a candidate key. Trying to verify it with authentication...\n");
}
*key = -1;
uint8_t keyBlock[USB_CMD_DATA_SIZE];
int max_keys = USB_CMD_DATA_SIZE/6;
for (int i = 0; i < keycount; i += max_keys) {
int size = keycount - i > max_keys ? max_keys : keycount - i;
for (int j = 0; j < size; j++) {
if (last_keylist == NULL) {
num_to_bytes(keylist[i*max_keys + j], 6, keyBlock);
} else {
num_to_bytes(last_keylist[i*max_keys + j], 6, keyBlock);
}
}
if (!mfCheckKeys(blockno, key_type - 0x60, false, size, keyBlock, key)) {
break;
}
}
if (*key != -1) {
free(last_keylist);
free(keylist);
break;
} else {
PrintAndLog("Test authentication failed. Restarting darkside attack");
free(last_keylist);
last_keylist = keylist;
}
}
return 0;
}
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = 0;
UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType << 8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
}
// PM3 imp of J-Run mf_key_brute (part 2)
// ref: https://github.com/J-Run/mf_key_brute
int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey){
#define KEYS_IN_BLOCK 85
#define KEYBLOCK_SIZE 510
#define CANDIDATE_SIZE 0xFFFF * 6
uint8_t found = false;
uint64_t key64 = 0;
uint8_t candidates[CANDIDATE_SIZE] = {0x00};
uint8_t keyBlock[KEYBLOCK_SIZE] = {0x00};
memset(candidates, 0, sizeof(candidates));
memset(keyBlock, 0, sizeof(keyBlock));
// Generate all possible keys for the first two unknown bytes.
for (uint16_t i = 0; i < 0xFFFF; ++i) {
uint32_t j = i * 6;
candidates[0 + j] = i >> 8;
candidates[1 + j] = i;
candidates[2 + j] = key[2];
candidates[3 + j] = key[3];
candidates[4 + j] = key[4];
candidates[5 + j] = key[5];
}
uint32_t counter, i;
for ( i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter){
key64 = 0;
// copy candidatekeys to test key block
memcpy(keyBlock, candidates + i, KEYBLOCK_SIZE);
// check a block of generated candidate keys.
if (!mfCheckKeys(blockNo, keyType, true, KEYS_IN_BLOCK, keyBlock, &key64)) {
*resultkey = key64;
found = true;
break;
}
// progress
if ( counter % 20 == 0 )
PrintAndLog("tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK );
}
return found;
}
// Compare 16 Bits out of cryptostate
int Compare16Bits(const void * a, const void * b) {
if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return -1;
return 0;
/* return
((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000))
-
((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000))
;
*/
if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
if ((*(uint64_t*)b & 0x00ff000000ff0000) < (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
return -1;
}
// wrapper function for multi-threaded lfsr_recovery32
@ -44,11 +267,12 @@ void* nested_worker_thread(void *arg)
StateList_t *statelist = arg;
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++) {};
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits);
return statelist->head.slhead;
}
@ -129,27 +353,13 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
statelists[1].tail.sltail = --p4;
// the statelists now contain possible keys. The key we are searching for must be in the
// intersection of both lists. Create the intersection:
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compar_int);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compar_int);
uint64_t *p5, *p6, *p7;
p5 = p7 = statelists[0].head.keyhead;
p6 = statelists[1].head.keyhead;
while (p5 <= statelists[0].tail.keytail && p6 <= statelists[1].tail.keytail) {
if (compar_int(p5, p6) == 0) {
*p7++ = *p5++;
p6++;
}
else {
while (compar_int(p5, p6) == -1) p5++;
while (compar_int(p5, p6) == 1) p6++;
}
}
statelists[0].len = p7 - statelists[0].head.keyhead;
statelists[0].tail.keytail = --p7;
// intersection of both lists
qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64);
qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64);
// Create the intersection
statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead);
//statelists[0].tail.keytail = --p7;
uint32_t numOfCandidates = statelists[0].len;
if ( numOfCandidates == 0 ) goto out;
@ -160,6 +370,7 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
// uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
uint8_t keyBlock[USB_CMD_DATA_SIZE] = {0x00};
// ugly assumption that we have less than 85 candidate keys.
for (i = 0; i < numOfCandidates; ++i){
crypto1_get_lfsr(statelists[0].head.slhead + i, &key64);
num_to_bytes(key64, 6, keyBlock + i * 6);
@ -191,65 +402,6 @@ out:
return -4;
}
int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
*key = 0;
UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType << 8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) return 1;
if ((resp.arg[0] & 0xff) != 0x01) return 2;
*key = bytes_to_num(resp.d.asBytes, 6);
return 0;
}
// PM3 imp of J-Run mf_key_brute (part 2)
// ref: https://github.com/J-Run/mf_key_brute
int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey){
#define KEYS_IN_BLOCK 85
#define KEYBLOCK_SIZE 510
#define CANDIDATE_SIZE 0xFFFF * 6
uint8_t found = false;
uint64_t key64 = 0;
uint8_t candidates[CANDIDATE_SIZE] = {0x00};
uint8_t keyBlock[KEYBLOCK_SIZE] = {0x00};
memset(candidates, 0, sizeof(candidates));
memset(keyBlock, 0, sizeof(keyBlock));
// Generate all possible keys for the first two unknown bytes.
for (uint16_t i = 0; i < 0xFFFF; ++i) {
uint32_t j = i * 6;
candidates[0 + j] = i >> 8;
candidates[1 + j] = i;
candidates[2 + j] = key[2];
candidates[3 + j] = key[3];
candidates[4 + j] = key[4];
candidates[5 + j] = key[5];
}
uint32_t counter, i;
for ( i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter){
key64 = 0;
// copy candidatekeys to test key block
memcpy(keyBlock, candidates + i, KEYBLOCK_SIZE);
// check a block of generated candidate keys.
if (!mfCheckKeys(blockNo, keyType, true, KEYS_IN_BLOCK, keyBlock, &key64)) {
*resultkey = key64;
found = true;
break;
}
// progress
if ( counter % 20 == 0 )
PrintAndLog("tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK );
}
return found;
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};