Merge pull request #1454 from merlokk/desf_lrp

Desfire lrp
This commit is contained in:
Oleg Moiseenko 2021-08-16 16:56:23 +03:00 committed by GitHub
commit a65ba5a217
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
8 changed files with 716 additions and 2 deletions

View file

@ -228,6 +228,7 @@ set (TARGET_SOURCES
${PM3_ROOT}/client/src/mifare/mifaredefault.c
${PM3_ROOT}/client/src/mifare/mifarehost.c
${PM3_ROOT}/client/src/nfc/ndef.c
${PM3_ROOT}/client/src/mifare/lrpcrypto.c
${PM3_ROOT}/client/src/mifare/desfirecrypto.c
${PM3_ROOT}/client/src/mifare/desfiresecurechan.c
${PM3_ROOT}/client/src/mifare/desfirecore.c

View file

@ -588,6 +588,7 @@ SRCS = mifare/aiddesfire.c \
loclass/cipherutils.c \
loclass/elite_crack.c \
loclass/ikeys.c \
mifare/lrpcrypto.c \
mifare/desfirecrypto.c \
mifare/desfirecore.c \
mifare/desfiresecurechan.c \

View file

@ -4970,7 +4970,7 @@ static int CmdHF14ADesWriteData(const char *Cmd) {
DesfireGenTransSessionKey(trkey, transactionCounter, uid, false, sessionkey);
aes_decode(NULL, sessionkey, resp, resp, CRYPTO_AES_BLOCK_SIZE);
PrintAndLogEx(INFO, "Prev reader id [%d]: %s", resplen, sprint_hex(resp, resplen));
PrintAndLogEx(INFO, "Prev reader id [%zu]: %s", resplen, sprint_hex(resp, resplen));
}
readeridpushed = true;

View file

@ -16,6 +16,9 @@
#include <stddef.h>
#include <mbedtls/pk.h>
#define CRYPTO_AES_BLOCK_SIZE 16
#define CRYPTO_AES128_KEY_SIZE 16
void des_encrypt(void *out, const void *in, const void *key);
void des_decrypt(void *out, const void *in, const void *key);
void des_encrypt_ecb(void *out, const void *in, const int length, const void *key);

View file

@ -24,7 +24,6 @@
#include "common.h"
#include "crypto/libpcrypto.h"
#define CRYPTO_AES_BLOCK_SIZE 16
#define MAX_CRYPTO_BLOCK_SIZE 16
#define DESFIRE_MAX_CRYPTO_BLOCK_SIZE 16
#define DESFIRE_MAX_KEY_SIZE 24

View file

@ -6,6 +6,9 @@
// the license.
//-----------------------------------------------------------------------------
// tests for desfire
//
// tests for LRP here: Leakage Resilient Primitive (LRP) Specification, https://www.nxp.com/docs/en/application-note/AN12304.pdf
//
//-----------------------------------------------------------------------------
#include "desfiretest.h"
@ -16,6 +19,7 @@
#include "crypto/libpcrypto.h"
#include "mifare/desfirecrypto.h"
#include "mifare/lrpcrypto.h"
static uint8_t CMACData[] = {0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A,
@ -474,6 +478,377 @@ static bool TestTransSessionKeys(void) {
return res;
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// page 10
static bool TestLRPPlaintexts(void) {
bool res = true;
uint8_t key[] = {0x56, 0x78, 0x26, 0xB8, 0xDA, 0x8E, 0x76, 0x84, 0x32, 0xA9, 0x54, 0x8D, 0xBE, 0x4A, 0xA3, 0xA0};
LRPContext ctx = {0};
LRPSetKey(&ctx, key, 0, false);
uint8_t pt0[] = {0xAC, 0x20, 0xD3, 0x9F, 0x53, 0x41, 0xFE, 0x98, 0xDF, 0xCA, 0x21, 0xDA, 0x86, 0xBA, 0x79, 0x14};
res = res && (memcmp(ctx.plaintexts[0], pt0, sizeof(pt0)) == 0);
uint8_t pt1[] = {0x90, 0x7D, 0xA0, 0x3D, 0x67, 0x24, 0x49, 0x16, 0x69, 0x15, 0xE4, 0x56, 0x3E, 0x08, 0x9D, 0x6D};
res = res && (memcmp(ctx.plaintexts[1], pt1, sizeof(pt1)) == 0);
uint8_t pt14[] = {0x37, 0xD7, 0x34, 0xA5, 0x1C, 0x07, 0x6E, 0xB8, 0x03, 0xBD, 0x53, 0x0E, 0x17, 0xEB, 0x87, 0xDC};
res = res && (memcmp(ctx.plaintexts[14], pt14, sizeof(pt14)) == 0);
uint8_t pt15[] = {0x71, 0xB4, 0x44, 0xAF, 0x25, 0x7A, 0x93, 0x21, 0x53, 0x11, 0xD7, 0x58, 0xDD, 0x33, 0x32, 0x47};
res = res && (memcmp(ctx.plaintexts[15], pt15, sizeof(pt15)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP plaintexts.... " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP plaintexts.... " _RED_("fail"));
return res;
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// page 12
static bool TestLRPUpdatedKeys(void) {
bool res = true;
uint8_t key[] = {0x56, 0x78, 0x26, 0xB8, 0xDA, 0x8E, 0x76, 0x84, 0x32, 0xA9, 0x54, 0x8D, 0xBE, 0x4A, 0xA3, 0xA0};
LRPContext ctx = {0};
LRPSetKey(&ctx, key, 0, false);
uint8_t key0[] = {0x16, 0x3D, 0x14, 0xED, 0x24, 0xED, 0x93, 0x53, 0x73, 0x56, 0x8E, 0xC5, 0x21, 0xE9, 0x6C, 0xF4};
res = res && (memcmp(ctx.updatedKeys[0], key0, sizeof(key0)) == 0);
uint8_t key1[] = {0x1C, 0x51, 0x9C, 0x00, 0x02, 0x08, 0xB9, 0x5A, 0x39, 0xA6, 0x5D, 0xB0, 0x58, 0x32, 0x71, 0x88};
res = res && (memcmp(ctx.updatedKeys[1], key1, sizeof(key1)) == 0);
uint8_t key2[] = {0xFE, 0x30, 0xAB, 0x50, 0x46, 0x7E, 0x61, 0x78, 0x3B, 0xFE, 0x6B, 0x5E, 0x05, 0x60, 0x16, 0x0E};
res = res && (memcmp(ctx.updatedKeys[2], key2, sizeof(key2)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP updated keys.. " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP updated keys.. " _RED_("fail"));
return res;
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// 3.2 LRP Eval, page 13
static bool TestLRPEval(void) {
bool res = true;
LRPContext ctx = {0};
uint8_t y[CRYPTO_AES128_KEY_SIZE] = {0};
uint8_t key[] = {0x56, 0x78, 0x26, 0xB8, 0xDA, 0x8E, 0x76, 0x84, 0x32, 0xA9, 0x54, 0x8D, 0xBE, 0x4A, 0xA3, 0xA0};
uint8_t iv[] = {0x13, 0x59};
LRPSetKey(&ctx, key, 2, false);
LRPEvalLRP(&ctx, iv, sizeof(iv) * 2, true, y);
uint8_t y1[] = {0x1B, 0xA2, 0xC0, 0xC5, 0x78, 0x99, 0x6B, 0xC4, 0x97, 0xDD, 0x18, 0x1C, 0x68, 0x85, 0xA9, 0xDD};
res = res && (memcmp(y, y1, sizeof(y1)) == 0);
uint8_t key2[] = {0xB6, 0x55, 0x57, 0xCE, 0x0E, 0x9B, 0x4C, 0x58, 0x86, 0xF2, 0x32, 0x20, 0x01, 0x13, 0x56, 0x2B};
uint8_t iv2[] = {0xBB, 0x4F, 0xCF, 0x27, 0xC9, 0x40, 0x76, 0xF7, 0x56, 0xAB, 0x03, 0x0D};
LRPSetKey(&ctx, key2, 1, false);
LRPEvalLRP(&ctx, iv2, sizeof(iv2) * 2, false, y);
uint8_t y2[] = {0x6F, 0xDF, 0xA8, 0xD2, 0xA6, 0xAA, 0x84, 0x76, 0xBF, 0x94, 0xE7, 0x1F, 0x25, 0x63, 0x7F, 0x96};
res = res && (memcmp(y, y2, sizeof(y2)) == 0);
uint8_t key3[] = {0xC4, 0x8A, 0x8E, 0x8B, 0x16, 0x57, 0x16, 0x45, 0xA1, 0x55, 0x78, 0x25, 0xAA, 0x66, 0xAC, 0x91};
uint8_t iv3[] = {0x1F, 0x0B, 0x7C, 0x0D, 0xB1, 0x28, 0x89, 0xCA, 0x43, 0x6C, 0xAB, 0xB7, 0x8B, 0xE4, 0x2F, 0x90};
LRPSetKey(&ctx, key3, 3, false);
LRPEvalLRP(&ctx, iv3, sizeof(iv3) * 2 - 1, true, y);
uint8_t y3[] = {0x51, 0x29, 0x6B, 0x5E, 0x6D, 0x3B, 0x8D, 0xB8, 0xA1, 0xA7, 0x39, 0x97, 0x60, 0xA1, 0x91, 0x89};
res = res && (memcmp(y, y3, sizeof(y3)) == 0);
uint8_t key4[] = {0x54, 0x9C, 0x67, 0xEC, 0xD6, 0x0E, 0x84, 0x8F, 0x77, 0x39, 0x90, 0x99, 0x0C, 0xAC, 0x68, 0x1E};
uint8_t iv4[] = {0x47, 0x5B, 0xB4, 0x18, 0x78, 0xEB, 0x17, 0x46, 0x8F, 0x7A, 0x68, 0x84, 0x7D, 0xDD, 0x3B, 0xAC};
LRPSetKey(&ctx, key4, 3, false);
LRPEvalLRP(&ctx, iv4, sizeof(iv4) * 2, true, y);
uint8_t y4[] = {0xC3, 0xB5, 0xEE, 0x74, 0xA7, 0x22, 0xE7, 0x84, 0x88, 0x7C, 0x4C, 0x9F, 0xDB, 0x49, 0x78, 0x55};
res = res && (memcmp(y, y4, sizeof(y4)) == 0);
uint8_t key5[] = {0x80, 0x6A, 0x50, 0x53, 0x0D, 0x77, 0x35, 0xB4, 0x0A, 0xC4, 0xEF, 0x16, 0x38, 0xE8, 0xAD, 0x6A};
uint8_t iv5[] = {0xD4, 0x13, 0x77, 0x64, 0x71, 0x6D, 0xBC, 0x8C, 0x57, 0x9B, 0xEA, 0xB7, 0xE7, 0x67, 0x54, 0xE0};
LRPSetKey(&ctx, key5, 3, false);
LRPEvalLRP(&ctx, iv5, sizeof(iv5) * 2 - 1, false, y);
uint8_t y5[] = {0xCF, 0x99, 0x13, 0x92, 0xF0, 0x36, 0x93, 0x50, 0xA7, 0xE2, 0x1B, 0xE5, 0x2F, 0x74, 0x88, 0x21};
res = res && (memcmp(y, y5, sizeof(y5)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP eval.......... " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP eval.......... " _RED_("fail"));
return res;
}
static bool TestLRPIncCounter(void) {
bool res = true;
uint8_t ctr1[] = {0x00, 0x01};
LRPIncCounter(ctr1, 4);
uint8_t ctrr1[] = {0x00, 0x02};
res = res && (memcmp(ctr1, ctrr1, sizeof(ctrr1)) == 0);
uint8_t ctr2[] = {0x00, 0xf0};
LRPIncCounter(ctr2, 3);
uint8_t ctrr2[] = {0x01, 0x00};
res = res && (memcmp(ctr2, ctrr2, sizeof(ctrr2)) == 0);
uint8_t ctr3[] = {0xff, 0xf0};
LRPIncCounter(ctr3, 3);
uint8_t ctrr3[] = {0x00, 0x00};
res = res && (memcmp(ctr3, ctrr3, sizeof(ctrr3)) == 0);
uint8_t ctr4[] = {0xf0};
LRPIncCounter(ctr4, 1);
uint8_t ctrr4[] = {0x00};
res = res && (memcmp(ctr4, ctrr4, sizeof(ctrr4)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP inc counter... " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP inc counter... " _RED_("fail"));
return res;
}
static bool TestLRPEncode(void) {
bool res = true;
uint8_t resp[100] = {0};
size_t resplen = 0;
LRPContext ctx = {0};
uint8_t key1[] = {0xE0, 0xC4, 0x93, 0x5F, 0xF0, 0xC2, 0x54, 0xCD, 0x2C, 0xEF, 0x8F, 0xDD, 0xC3, 0x24, 0x60, 0xCF};
uint8_t iv1[] = {0xC3, 0x31, 0x5D, 0xBF};
LRPSetKeyEx(&ctx, key1, iv1, sizeof(iv1) * 2, 0, true);
uint8_t data1[] = {0x01, 0x2D, 0x7F, 0x16, 0x53, 0xCA, 0xF6, 0x50, 0x3C, 0x6A, 0xB0, 0xC1, 0x01, 0x0E, 0x8C, 0xB0};
LRPEncode(&ctx, data1, sizeof (data1), resp, &resplen);
uint8_t res1[] = {0xFC, 0xBB, 0xAC, 0xAA, 0x4F, 0x29, 0x18, 0x24, 0x64, 0xF9, 0x9D, 0xE4, 0x10, 0x85, 0x26, 0x6F,
0x48, 0x0E, 0x86, 0x3E, 0x48, 0x7B, 0xAA, 0xF6, 0x87, 0xB4, 0x3E, 0xD1, 0xEC, 0xE0, 0xD6, 0x23};
res = res && (resplen == sizeof(res1));
res = res && (memcmp(resp, res1, sizeof(res1)) == 0);
uint8_t key2[] = {0xEF, 0xA5, 0xB7, 0x42, 0x9C, 0xD1, 0x53, 0xBF, 0x00, 0x86, 0xDE, 0xF9, 0x00, 0xC0, 0xF2, 0x35};
uint8_t iv2[] = {0x90, 0x36, 0xFF, 0xFF};
LRPSetKeyEx(&ctx, key2, iv2, sizeof(iv2) * 2, 0, false);
uint8_t data2[] = {0xE7, 0xF6, 0x1E, 0x01, 0x2F, 0x4F, 0x32, 0x55, 0x31, 0x2B, 0xA6, 0x8B, 0x1D, 0x2F, 0xDA, 0xBF};
LRPEncode(&ctx, data2, sizeof (data2), resp, &resplen);
uint8_t res2[] = {0xEA, 0x6E, 0x09, 0xAC, 0x2F, 0xB9, 0x7E, 0x10, 0x2D, 0x8C, 0xA6, 0x4C, 0x1C, 0xBC, 0x0C, 0x0C};
res = res && (resplen == sizeof(res2));
res = res && (memcmp(resp, res2, sizeof(res2)) == 0);
uint8_t key3[] = {0x9D, 0x81, 0x31, 0x34, 0xCF, 0xDE, 0xE9, 0xD5, 0x87, 0x55, 0xDE, 0xAC, 0xD4, 0xAF, 0x72, 0xA7};
uint8_t iv3[] = {0xFF, 0xFF, 0xFF, 0xFF};
LRPSetKeyEx(&ctx, key3, iv3, sizeof(iv3) * 2, 0, true);
uint8_t data3[] = {0x27};
LRPEncode(&ctx, data3, sizeof (data3), resp, &resplen);
uint8_t res3[] = {0xF5, 0x83, 0x3F, 0xC3, 0x97, 0x35, 0x6E, 0xA3, 0xD9, 0xEC, 0xAD, 0xBB, 0x9F, 0x6F, 0xE4, 0x40};
res = res && (resplen == sizeof(res3));
res = res && (memcmp(resp, res3, sizeof(res3)) == 0);
uint8_t key4[] = {0xF5, 0xC3, 0xE9, 0x9F, 0xB7, 0x5E, 0x31, 0x6B, 0x76, 0x68, 0x9F, 0xC5, 0x46, 0x42, 0x60, 0xCD};
uint8_t iv4[] = {0x07, 0x97, 0xF6, 0xB7};
LRPSetKeyEx(&ctx, key4, iv4, sizeof(iv4) * 2, 0, true);
LRPEncode(&ctx, NULL, 0, resp, &resplen);
uint8_t res4[] = {0x93, 0xDC, 0x3E, 0xE1, 0x4B, 0x61, 0x2B, 0xE6, 0xA3, 0xE9, 0xE2, 0xE8, 0x04, 0x0C, 0xDF, 0xCB};
res = res && (resplen == sizeof(res4));
res = res && (memcmp(resp, res4, sizeof(res4)) == 0);
uint8_t key5[] = {0x9B, 0x1E, 0x41, 0x8D, 0xF9, 0x75, 0x2F, 0x37, 0xEB, 0xBD, 0x8E, 0xE8, 0x33, 0xBD, 0xF2, 0xD7};
uint8_t iv5[] = {0x24, 0xFF, 0xFF, 0xFF};
LRPSetKeyEx(&ctx, key5, iv5, sizeof(iv5) * 2, 0, true);
uint8_t data5[] = {0x55, 0x53, 0x4E, 0x15, 0x9F, 0x14, 0xDD, 0x77, 0x31, 0x36, 0x89, 0x88, 0xEE, 0x6D, 0xD7, 0xC6,
0x11, 0x4E, 0x74, 0x7F, 0x9C, 0x17, 0xA9, 0x1B, 0xBC, 0x12, 0xD6, 0x8C, 0x26, 0x53, 0x1F, 0x2F,
0xFC, 0xFC};
LRPEncode(&ctx, data5, sizeof (data5), resp, &resplen);
uint8_t res5[] = {0x15, 0x8B, 0x3B, 0x9C, 0x61, 0x36, 0xFB, 0x71, 0x5C, 0xCF, 0x43, 0x5C, 0xA4, 0xCA, 0xDE, 0x80,
0x8D, 0x1F, 0x98, 0x43, 0x13, 0x27, 0x06, 0x1A, 0x9A, 0x64, 0xD5, 0x2A, 0x5F, 0xE7, 0xB2, 0x74,
0x6D, 0x7F, 0x5A, 0x63, 0x3F, 0xC0, 0xCF, 0xE7, 0x85, 0x56, 0x56, 0xAD, 0x3C, 0x6B, 0x94, 0xCF};
res = res && (resplen == sizeof(res5));
res = res && (memcmp(resp, res5, sizeof(res5)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP encode........ " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP encode........ " _RED_("fail"));
return res;
}
static bool TestLRPDecode(void) {
bool res = true;
uint8_t resp[100] = {0};
size_t resplen = 0;
LRPContext ctx = {0};
uint8_t key1[] = {0xE0, 0xC4, 0x93, 0x5F, 0xF0, 0xC2, 0x54, 0xCD, 0x2C, 0xEF, 0x8F, 0xDD, 0xC3, 0x24, 0x60, 0xCF};
uint8_t iv1[] = {0xC3, 0x31, 0x5D, 0xBF};
LRPSetKeyEx(&ctx, key1, iv1, sizeof(iv1) * 2, 0, true);
uint8_t data1[] = {0xFC, 0xBB, 0xAC, 0xAA, 0x4F, 0x29, 0x18, 0x24, 0x64, 0xF9, 0x9D, 0xE4, 0x10, 0x85, 0x26, 0x6F,
0x48, 0x0E, 0x86, 0x3E, 0x48, 0x7B, 0xAA, 0xF6, 0x87, 0xB4, 0x3E, 0xD1, 0xEC, 0xE0, 0xD6, 0x23};
LRPDecode(&ctx, data1, sizeof (data1), resp, &resplen);
uint8_t res1[] = {0x01, 0x2D, 0x7F, 0x16, 0x53, 0xCA, 0xF6, 0x50, 0x3C, 0x6A, 0xB0, 0xC1, 0x01, 0x0E, 0x8C, 0xB0};
res = res && (resplen == sizeof(res1));
res = res && (memcmp(resp, res1, sizeof(res1)) == 0);
uint8_t key2[] = {0xEF, 0xA5, 0xB7, 0x42, 0x9C, 0xD1, 0x53, 0xBF, 0x00, 0x86, 0xDE, 0xF9, 0x00, 0xC0, 0xF2, 0x35};
uint8_t iv2[] = {0x90, 0x36, 0xFF, 0xFF};
LRPSetKeyEx(&ctx, key2, iv2, sizeof(iv2) * 2, 0, false);
uint8_t data2[] = {0xEA, 0x6E, 0x09, 0xAC, 0x2F, 0xB9, 0x7E, 0x10, 0x2D, 0x8C, 0xA6, 0x4C, 0x1C, 0xBC, 0x0C, 0x0C};
LRPDecode(&ctx, data2, sizeof (data2), resp, &resplen);
uint8_t res2[] = {0xE7, 0xF6, 0x1E, 0x01, 0x2F, 0x4F, 0x32, 0x55, 0x31, 0x2B, 0xA6, 0x8B, 0x1D, 0x2F, 0xDA, 0xBF};
res = res && (resplen == sizeof(res2));
res = res && (memcmp(resp, res2, sizeof(res2)) == 0);
uint8_t key3[] = {0x9D, 0x81, 0x31, 0x34, 0xCF, 0xDE, 0xE9, 0xD5, 0x87, 0x55, 0xDE, 0xAC, 0xD4, 0xAF, 0x72, 0xA7};
uint8_t iv3[] = {0xFF, 0xFF, 0xFF, 0xFF};
LRPSetKeyEx(&ctx, key3, iv3, sizeof(iv3) * 2, 0, true);
uint8_t data3[] = {0xF5, 0x83, 0x3F, 0xC3, 0x97, 0x35, 0x6E, 0xA3, 0xD9, 0xEC, 0xAD, 0xBB, 0x9F, 0x6F, 0xE4, 0x40};
LRPDecode(&ctx, data3, sizeof (data3), resp, &resplen);
uint8_t res3[] = {0x27};
res = res && (resplen == sizeof(res3));
res = res && (memcmp(resp, res3, sizeof(res3)) == 0);
uint8_t key4[] = {0xF5, 0xC3, 0xE9, 0x9F, 0xB7, 0x5E, 0x31, 0x6B, 0x76, 0x68, 0x9F, 0xC5, 0x46, 0x42, 0x60, 0xCD};
uint8_t iv4[] = {0x07, 0x97, 0xF6, 0xB7};
LRPSetKeyEx(&ctx, key4, iv4, sizeof(iv4) * 2, 0, true);
uint8_t data4[] = {0x93, 0xDC, 0x3E, 0xE1, 0x4B, 0x61, 0x2B, 0xE6, 0xA3, 0xE9, 0xE2, 0xE8, 0x04, 0x0C, 0xDF, 0xCB};
LRPDecode(&ctx, data4, sizeof(data4), resp, &resplen);
res = res && (resplen == 0);
uint8_t key5[] = {0x9B, 0x1E, 0x41, 0x8D, 0xF9, 0x75, 0x2F, 0x37, 0xEB, 0xBD, 0x8E, 0xE8, 0x33, 0xBD, 0xF2, 0xD7};
uint8_t iv5[] = {0x24, 0xFF, 0xFF, 0xFF};
LRPSetKeyEx(&ctx, key5, iv5, sizeof(iv5) * 2, 0, true);
uint8_t data5[] = {0x15, 0x8B, 0x3B, 0x9C, 0x61, 0x36, 0xFB, 0x71, 0x5C, 0xCF, 0x43, 0x5C, 0xA4, 0xCA, 0xDE, 0x80,
0x8D, 0x1F, 0x98, 0x43, 0x13, 0x27, 0x06, 0x1A, 0x9A, 0x64, 0xD5, 0x2A, 0x5F, 0xE7, 0xB2, 0x74,
0x6D, 0x7F, 0x5A, 0x63, 0x3F, 0xC0, 0xCF, 0xE7, 0x85, 0x56, 0x56, 0xAD, 0x3C, 0x6B, 0x94, 0xCF};
LRPDecode(&ctx, data5, sizeof (data5), resp, &resplen);
uint8_t res5[] = {0x55, 0x53, 0x4E, 0x15, 0x9F, 0x14, 0xDD, 0x77, 0x31, 0x36, 0x89, 0x88, 0xEE, 0x6D, 0xD7, 0xC6,
0x11, 0x4E, 0x74, 0x7F, 0x9C, 0x17, 0xA9, 0x1B, 0xBC, 0x12, 0xD6, 0x8C, 0x26, 0x53, 0x1F, 0x2F,
0xFC, 0xFC};
res = res && (resplen == sizeof(res5));
res = res && (memcmp(resp, res5, sizeof(res5)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP decode........ " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP decode........ " _RED_("fail"));
return res;
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// 3.4 LRP CMAC
static bool TestLRPSubkeys(void) {
bool res = true;
uint8_t sk1[CRYPTO_AES128_KEY_SIZE] = {0};
uint8_t sk2[CRYPTO_AES128_KEY_SIZE] = {0};
uint8_t key1[] = {0x81, 0x95, 0x08, 0x8C, 0xE6, 0xC3, 0x93, 0x70, 0x8E, 0xBB, 0xE6, 0xC7, 0x91, 0x4E, 0xCB, 0x0B};
uint8_t sk1r1[] = {0x16, 0x91, 0x2B, 0x8D, 0x19, 0xD9, 0x4B, 0x2D, 0x4D, 0xA4, 0xFF, 0xA1, 0xCA, 0xD2, 0x18, 0x23};
uint8_t sk2r1[] = {0x2D, 0x22, 0x57, 0x1A, 0x33, 0xB2, 0x96, 0x5A, 0x9B, 0x49, 0xFF, 0x43, 0x95, 0xA4, 0x30, 0x46};
LRPGenSubkeys(key1, sk1, sk2);
res = res && (memcmp(sk1, sk1r1, sizeof(sk1r1)) == 0);
res = res && (memcmp(sk2, sk2r1, sizeof(sk2r1)) == 0);
uint8_t key2[] = {0x11, 0xED, 0x02, 0x02, 0x25, 0x70, 0xCB, 0x10, 0x50, 0x2B, 0xC1, 0xDA, 0xCF, 0x64, 0xB2, 0x1F};
uint8_t sk1r2[] = {0x5B, 0x5D, 0x85, 0x36, 0x61, 0xE5, 0x1B, 0xC9, 0x13, 0x77, 0xED, 0xCE, 0xB6, 0x22, 0xBF, 0x6E};
uint8_t sk2r2[] = {0xB6, 0xBB, 0x0A, 0x6C, 0xC3, 0xCA, 0x37, 0x92, 0x26, 0xEF, 0xDB, 0x9D, 0x6C, 0x45, 0x7E, 0xDC};
LRPGenSubkeys(key2, sk1, sk2);
res = res && (memcmp(sk1, sk1r2, sizeof(sk1r2)) == 0);
res = res && (memcmp(sk2, sk2r2, sizeof(sk2r2)) == 0);
uint8_t key3[] = {0x5A, 0xA9, 0xF6, 0xC6, 0xDE, 0x51, 0x38, 0x11, 0x3D, 0xF5, 0xD6, 0xB6, 0xC7, 0x7D, 0x5D, 0x52};
uint8_t sk1r3[] = {0x2A, 0xE0, 0xEB, 0xD3, 0x76, 0xBC, 0xD4, 0xA2, 0x7B, 0x1C, 0xD4, 0x06, 0xD2, 0x43, 0x1C, 0xF9};
uint8_t sk2r3[] = {0x55, 0xC1, 0xD7, 0xA6, 0xED, 0x79, 0xA9, 0x44, 0xF6, 0x39, 0xA8, 0x0D, 0xA4, 0x86, 0x39, 0xF2};
LRPGenSubkeys(key3, sk1, sk2);
res = res && (memcmp(sk1, sk1r3, sizeof(sk1r3)) == 0);
res = res && (memcmp(sk2, sk2r3, sizeof(sk2r3)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP subkeys....... " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP subkeys....... " _RED_("fail"));
return res;
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// 3.4 LRP CMAC
static bool TestLRPCMAC(void) {
bool res = true;
LRPContext ctx = {0};
uint8_t cmac[CRYPTO_AES128_KEY_SIZE] = {0};
uint8_t key1[] = {0x81, 0x95, 0x08, 0x8C, 0xE6, 0xC3, 0x93, 0x70, 0x8E, 0xBB, 0xE6, 0xC7, 0x91, 0x4E, 0xCB, 0x0B};
LRPSetKey(&ctx, key1, 0, true);
uint8_t data1[] = {0xBB, 0xD5, 0xB8, 0x57, 0x72, 0xC7};
LRPCMAC(&ctx, data1, sizeof(data1), cmac);
uint8_t cmacres1[] = {0xAD, 0x85, 0x95, 0xE0, 0xB4, 0x9C, 0x5C, 0x0D, 0xB1, 0x8E, 0x77, 0x35, 0x5F, 0x5A, 0xAF, 0xF6};
res = res && (memcmp(cmac, cmacres1, sizeof(cmacres1)) == 0);
uint8_t key2[] = {0x5A, 0xA9, 0xF6, 0xC6, 0xDE, 0x51, 0x38, 0x11, 0x3D, 0xF5, 0xD6, 0xB6, 0xC7, 0x7D, 0x5D, 0x52};
LRPSetKey(&ctx, key2, 0, true);
uint8_t data2[] = {0xA4, 0x43, 0x4D, 0x74, 0x0C, 0x2C, 0xB6, 0x65, 0xFE, 0x53, 0x96, 0x95, 0x91, 0x89, 0x38, 0x3F};
LRPCMAC(&ctx, data2, sizeof(data2), cmac);
uint8_t cmacres2[] = {0x8B, 0x43, 0xAD, 0xF7, 0x67, 0xE4, 0x6B, 0x69, 0x2E, 0x8F, 0x24, 0xE8, 0x37, 0xCB, 0x5E, 0xFC};
res = res && (memcmp(cmac, cmacres2, sizeof(cmacres2)) == 0);
uint8_t key3[] = {0x0D, 0x46, 0x55, 0x75, 0x50, 0xCB, 0x31, 0x3F, 0x36, 0xAF, 0xBA, 0x87, 0x62, 0x5D, 0x96, 0x1A};
LRPSetKey(&ctx, key3, 0, true);
uint8_t data3[] = {0x90};
LRPCMAC(&ctx, data3, sizeof(data3), cmac);
uint8_t cmacres3[] = {0xF7, 0xC8, 0x55, 0x3D, 0xED, 0x57, 0x48, 0x29, 0xE6, 0xEE, 0x68, 0x11, 0x2C, 0xB3, 0x81, 0x7B};
res = res && (memcmp(cmac, cmacres3, sizeof(cmacres3)) == 0);
uint8_t key4[] = {0x2A, 0x47, 0x3E, 0x38, 0xBB, 0xF4, 0x53, 0x7C, 0x53, 0x97, 0xF4, 0x5A, 0xE4, 0x98, 0xCD, 0x4D};
LRPSetKey(&ctx, key4, 0, true);
uint8_t data4[] = {0xC2, 0xAC, 0x3D, 0x72, 0x50, 0xEE, 0xF0, 0x23, 0x18, 0xBC, 0x08, 0x4F, 0x29, 0x4B, 0x1A, 0xC7,
0x22, 0x91, 0xEE, 0x1D, 0xC0, 0x2A, 0xF4, 0x24, 0x94, 0x1C, 0xAA, 0xC6, 0x85, 0xFC, 0xA5, 0x9D,
0x90, 0x08, 0x67, 0x9B, 0x00, 0xC5, 0x6A, 0x05, 0x62, 0x58, 0x3B, 0xDA, 0xEC, 0x0B, 0xBA};
LRPCMAC(&ctx, data4, sizeof(data4), cmac);
uint8_t cmacres4[] = {0x66, 0xDC, 0x2B, 0xCE, 0x26, 0x9B, 0x79, 0x3B, 0x4A, 0xCA, 0x1A, 0x4D, 0x04, 0xDD, 0xD6, 0x68};
res = res && (memcmp(cmac, cmacres4, sizeof(cmacres4)) == 0);
uint8_t key5[] = {0x63, 0xA0, 0x16, 0x9B, 0x4D, 0x9F, 0xE4, 0x2C, 0x72, 0xB2, 0x78, 0x4C, 0x80, 0x6E, 0xAC, 0x21};
LRPSetKey(&ctx, key5, 0, true);
LRPCMAC(&ctx, NULL, 0, cmac);
uint8_t cmacres5[] = {0x0E, 0x07, 0xC6, 0x01, 0x97, 0x08, 0x14, 0xA4, 0x17, 0x6F, 0xDA, 0x63, 0x3C, 0x6F, 0xC3, 0xDE};
res = res && (memcmp(cmac, cmacres5, sizeof(cmacres5)) == 0);
uint8_t key6[] = {0x95, 0x2F, 0xDE, 0x83, 0x93, 0xC4, 0x5D, 0x23, 0x0A, 0x5B, 0xE9, 0xB3, 0x86, 0x36, 0xD1, 0x54};
LRPSetKey(&ctx, key6, 0, true);
uint8_t data6[] = {0xD7, 0x80, 0x0E, 0x25, 0x70, 0x01, 0xA7, 0x74, 0xAE, 0x7B, 0xCF, 0xB2, 0xCE, 0x13, 0x07, 0xB5,
0xB0, 0x44};
LRPCMAC(&ctx, data6, sizeof(data6), cmac);
uint8_t cmacres6[] = {0x05, 0xF1, 0xCE, 0x30, 0x45, 0x1A, 0x03, 0xA6, 0xE4, 0x68, 0xB3, 0xA5, 0x90, 0x33, 0xA5, 0x54};
res = res && (memcmp(cmac, cmacres6, sizeof(cmacres6)) == 0);
if (res)
PrintAndLogEx(INFO, "LRP CMAC.......... " _GREEN_("passed"));
else
PrintAndLogEx(ERR, "LRP CMAC.......... " _RED_("fail"));
return res;
}
bool DesfireTest(bool verbose) {
bool res = true;
@ -492,6 +867,14 @@ bool DesfireTest(bool verbose) {
res = res && TestEV2IVEncode();
res = res && TestEV2MAC();
res = res && TestTransSessionKeys();
res = res && TestLRPPlaintexts();
res = res && TestLRPUpdatedKeys();
res = res && TestLRPEval();
res = res && TestLRPIncCounter();
res = res && TestLRPEncode();
res = res && TestLRPDecode();
res = res && TestLRPSubkeys();
res = res && TestLRPCMAC();
PrintAndLogEx(INFO, "---------------------------");
if (res)

View file

@ -0,0 +1,267 @@
/*-
* Copyright (C) 2021 Merlok
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*
* $Id$
*
* description here: Leakage Resilient Primitive (LRP) Specification, https://www.nxp.com/docs/en/application-note/AN12304.pdf
*
*/
#include "lrpcrypto.h"
#include <stdlib.h>
#include <string.h>
#include <util.h>
#include "ui.h"
#include "aes.h"
#include "commonutil.h"
static uint8_t constAA[] = {0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa, 0xaa};
static uint8_t const55[] = {0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55};
static uint8_t const00[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
void LRPClearContext(LRPContext *ctx) {
memset(ctx->key, 0, CRYPTO_AES128_KEY_SIZE);
ctx->useBitPadding = false;
ctx->plaintextsCount = 0;
memset(ctx->plaintexts, 0, LRP_MAX_PLAINTEXTS_SIZE * CRYPTO_AES128_KEY_SIZE);
ctx->updatedKeysCount = 0;
memset(ctx->updatedKeys, 0, LRP_MAX_UPDATED_KEYS_SIZE * CRYPTO_AES128_KEY_SIZE);
ctx->useUpdatedKeyNum = 0;
}
void LRPSetKey(LRPContext *ctx, uint8_t *key, size_t updatedKeyNum, bool useBitPadding) {
LRPClearContext(ctx);
memcpy(ctx->key, key, CRYPTO_AES128_KEY_SIZE);
LRPGeneratePlaintexts(ctx, 16);
LRPGenerateUpdatedKeys(ctx, 4);
ctx->useUpdatedKeyNum = updatedKeyNum;
ctx->useBitPadding = useBitPadding;
memcpy(ctx->counter, const00, CRYPTO_AES128_KEY_SIZE);
ctx->counterLenNibbles = CRYPTO_AES128_KEY_SIZE;
}
void LRPSetCounter(LRPContext *ctx, uint8_t *counter, size_t counterLenNibbles) {
memcpy(ctx->counter, counter, counterLenNibbles / 2);
ctx->counterLenNibbles = counterLenNibbles;
}
void LRPSetKeyEx(LRPContext *ctx, uint8_t *key, uint8_t *counter, size_t counterLenNibbles, size_t updatedKeyNum, bool useBitPadding){
LRPSetKey(ctx, key, updatedKeyNum, useBitPadding);
LRPSetCounter(ctx, counter, counterLenNibbles);
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// Algorithm 1
void LRPGeneratePlaintexts(LRPContext *ctx, size_t plaintextsCount) {
if (plaintextsCount > LRP_MAX_PLAINTEXTS_SIZE)
return;
uint8_t h[CRYPTO_AES128_KEY_SIZE] = {0};
memcpy(h, ctx->key, CRYPTO_AES128_KEY_SIZE);
for (int i = 0; i < plaintextsCount; i++) {
aes_encode(NULL, h, const55, h, CRYPTO_AES128_KEY_SIZE);
aes_encode(NULL, h, constAA, ctx->plaintexts[i], CRYPTO_AES128_KEY_SIZE);
}
ctx->plaintextsCount = plaintextsCount;
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// Algorithm 2
void LRPGenerateUpdatedKeys(LRPContext *ctx, size_t updatedKeysCount) {
if (updatedKeysCount > LRP_MAX_UPDATED_KEYS_SIZE)
return;
uint8_t h[CRYPTO_AES128_KEY_SIZE] = {0};
aes_encode(NULL, ctx->key, constAA, h, CRYPTO_AES128_KEY_SIZE);
for (int i = 0; i < updatedKeysCount; i++) {
aes_encode(NULL, h, constAA, ctx->updatedKeys[i], CRYPTO_AES128_KEY_SIZE);
aes_encode(NULL, h, const55, h, CRYPTO_AES128_KEY_SIZE);
}
ctx->updatedKeysCount = updatedKeysCount;
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// Algorithm 3
void LRPEvalLRP(LRPContext *ctx, uint8_t *iv, size_t ivlen, bool final, uint8_t *y) {
uint8_t ry[CRYPTO_AES128_KEY_SIZE] = {0};
memcpy(ry, ctx->updatedKeys[ctx->useUpdatedKeyNum], CRYPTO_AES128_KEY_SIZE);
for (int i = 0; i < ivlen; i++) {
uint8_t nk = (i % 2) ? iv[i / 2] & 0x0f : (iv[i / 2] >> 4) & 0x0f;
aes_encode(NULL, ry, ctx->plaintexts[nk], ry, CRYPTO_AES128_KEY_SIZE);
}
if (final)
aes_encode(NULL, ry, const00, ry, CRYPTO_AES128_KEY_SIZE);
memcpy(y, ry, CRYPTO_AES128_KEY_SIZE);
}
void LRPIncCounter(uint8_t *ctr, size_t ctrlen) {
bool carry = true;
for (int i = ctrlen - 1; i >= 0; i--) {
uint8_t nk = (i % 2) ? ctr[i / 2] & 0x0f : (ctr[i / 2] >> 4) & 0x0f;
if (carry)
nk++;
carry = (nk > 0xf);
if (i % 2)
ctr[i / 2] = (ctr[i / 2] & 0xf0) | (nk & 0x0f);
else
ctr[i / 2] = (ctr[i / 2] & 0x0f) | ((nk << 4) & 0xf0);
if(!carry)
break;
}
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// Algorithm 4
void LRPEncode(LRPContext *ctx, uint8_t *data, size_t datalen, uint8_t *resp, size_t *resplen) {
*resplen = 0;
uint8_t xdata[1024] = {0};
memcpy(xdata, data, datalen);
if (ctx->useBitPadding) {
xdata[datalen] = 0x80;
datalen++;
}
if (datalen % CRYPTO_AES128_KEY_SIZE)
datalen = datalen + CRYPTO_AES128_KEY_SIZE - (datalen % CRYPTO_AES128_KEY_SIZE);
if (datalen == 0)
return;
uint8_t y[CRYPTO_AES128_KEY_SIZE] = {0};
for (int i = 0; i < datalen / CRYPTO_AES128_KEY_SIZE; i++) {
LRPEvalLRP(ctx, ctx->counter, ctx->counterLenNibbles, true, y);
aes_encode(NULL, y, &xdata[i * CRYPTO_AES128_KEY_SIZE], &resp[i * CRYPTO_AES128_KEY_SIZE], CRYPTO_AES128_KEY_SIZE);
*resplen += CRYPTO_AES128_KEY_SIZE;
LRPIncCounter(ctx->counter, ctx->counterLenNibbles);
}
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// Algorithm 5
void LRPDecode(LRPContext *ctx, uint8_t *data, size_t datalen, uint8_t *resp, size_t *resplen) {
*resplen = 0;
if (datalen % CRYPTO_AES128_KEY_SIZE)
return;
uint8_t y[CRYPTO_AES128_KEY_SIZE] = {0};
for (int i = 0; i < datalen / CRYPTO_AES128_KEY_SIZE; i++) {
LRPEvalLRP(ctx, ctx->counter, ctx->counterLenNibbles, true, y);
aes_decode(NULL, y, &data[i * CRYPTO_AES128_KEY_SIZE], &resp[i * CRYPTO_AES128_KEY_SIZE], CRYPTO_AES128_KEY_SIZE);
*resplen += CRYPTO_AES128_KEY_SIZE;
LRPIncCounter(ctx->counter, ctx->counterLenNibbles);
}
// search padding
if (ctx->useBitPadding) {
for (int i = *resplen - 1; i >= *resplen - CRYPTO_AES128_KEY_SIZE; i--) {
if (resp[i] == 0x80)
*resplen = i;
if (resp[i] != 0x00)
break;
}
}
}
static bool shiftLeftBe(uint8_t *data, size_t length) {
if (length == 0)
return false;
bool carry = false;
for (int i = length - 1; i >= 0; i--) {
uint8_t val = data[i];
val = (val << 1) | ((carry) ? 1 : 0);
carry = ((data[i] & 0x80) != 0);
data[i] = val;
}
return carry;
}
// GF(2 ^ 128)
// poly x^128 + x ^ 7 + x ^ 2 + x + 1
// bit: 1000..0010000111 == 0x1 00 00 .. 00 00 87
static void mulPolyX(uint8_t *data) {
if (shiftLeftBe(data, 16))
data[15] = data[15] ^ 0x87;
}
void LRPGenSubkeys(uint8_t *key, uint8_t *sk1, uint8_t *sk2) {
LRPContext ctx = {0};
LRPSetKey(&ctx, key, 0, true);
uint8_t y[CRYPTO_AES128_KEY_SIZE] = {0};
LRPEvalLRP(&ctx, const00, CRYPTO_AES128_KEY_SIZE * 2, true, y);
mulPolyX(y);
memcpy(sk1, y, CRYPTO_AES128_KEY_SIZE);
mulPolyX(y);
memcpy(sk2, y, CRYPTO_AES128_KEY_SIZE);
}
// https://www.nxp.com/docs/en/application-note/AN12304.pdf
// Algorithm 6
void LRPCMAC(LRPContext *ctx, uint8_t *data, size_t datalen, uint8_t *cmac) {
uint8_t sk1[CRYPTO_AES128_KEY_SIZE] = {0};
uint8_t sk2[CRYPTO_AES128_KEY_SIZE] = {0};
LRPGenSubkeys(ctx->key, sk1, sk2);
uint8_t y[CRYPTO_AES128_KEY_SIZE] = {0};
size_t clen = 0;
for (int i = 0; i < datalen / CRYPTO_AES128_KEY_SIZE; i++) {
if (datalen - clen <= CRYPTO_AES128_KEY_SIZE)
break;
bin_xor(y, &data[i * CRYPTO_AES128_KEY_SIZE], CRYPTO_AES128_KEY_SIZE);
LRPEvalLRP(ctx, y, CRYPTO_AES128_KEY_SIZE * 2, true, y);
clen += CRYPTO_AES128_KEY_SIZE;
}
size_t bllen = datalen - clen;
uint8_t bl[CRYPTO_AES128_KEY_SIZE] = {0};
memcpy(bl, &data[clen], bllen);
// last block
if (bllen == 16) {
bin_xor(y, bl, CRYPTO_AES128_KEY_SIZE);
bin_xor(y, sk1, CRYPTO_AES128_KEY_SIZE);
} else {
// padding
bl[bllen] = 0x80;
bin_xor(y, bl, CRYPTO_AES128_KEY_SIZE);
bin_xor(y, sk2, CRYPTO_AES128_KEY_SIZE);
}
LRPEvalLRP(ctx, y, CRYPTO_AES128_KEY_SIZE * 2, true, cmac);
}

View file

@ -0,0 +1,60 @@
/*-
* Copyright (C) 2021 Merlok
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation, either version 3 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>
*
* $Id$
*
* description here: Leakage Resilient Primitive (LRP) Specification, https://www.nxp.com/docs/en/application-note/AN12304.pdf
*
*/
#ifndef __LRPCRYPTO_H
#define __LRPCRYPTO_H
#include "common.h"
#include "crypto/libpcrypto.h"
#define LRP_MAX_PLAINTEXTS_SIZE 16
#define LRP_MAX_UPDATED_KEYS_SIZE 4
#define LRP_MAX_COUNTER_SIZE (CRYPTO_AES128_KEY_SIZE * 4)
typedef struct {
uint8_t key[CRYPTO_AES128_KEY_SIZE];
bool useBitPadding;
size_t plaintextsCount;
uint8_t plaintexts[LRP_MAX_PLAINTEXTS_SIZE][CRYPTO_AES128_KEY_SIZE];
size_t updatedKeysCount;
uint8_t updatedKeys[LRP_MAX_UPDATED_KEYS_SIZE][CRYPTO_AES128_KEY_SIZE];
size_t useUpdatedKeyNum;
uint8_t counter[LRP_MAX_COUNTER_SIZE];
size_t counterLenNibbles; // len in bytes * 2 (or * 2 - 1)
} LRPContext;
void LRPClearContext(LRPContext *ctx);
void LRPSetKey(LRPContext *ctx, uint8_t *key, size_t updatedKeyNum, bool useBitPadding);
void LRPSetKeyEx(LRPContext *ctx, uint8_t *key, uint8_t *counter, size_t counterLenNibbles, size_t updatedKeyNum, bool useBitPadding);
void LRPSetCounter(LRPContext *ctx, uint8_t *counter, size_t counterLenNibbles);
void LRPGeneratePlaintexts(LRPContext *ctx, size_t plaintextsCount);
void LRPGenerateUpdatedKeys(LRPContext *ctx, size_t updatedKeysCount);
void LRPEvalLRP(LRPContext *ctx, uint8_t *iv, size_t ivlen, bool final, uint8_t *y);
void LRPIncCounter(uint8_t *ctr, size_t ctrlen);
void LRPEncode(LRPContext *ctx, uint8_t *data, size_t datalen, uint8_t *resp, size_t *resplen);
void LRPDecode(LRPContext *ctx, uint8_t *data, size_t datalen, uint8_t *resp, size_t *resplen);
void LRPGenSubkeys(uint8_t *key, uint8_t *sk1, uint8_t *sk2);
void LRPCMAC(LRPContext *ctx, uint8_t *data, size_t datalen, uint8_t *cmac);
#endif // __LRPCRYPTO_H