mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-08-14 18:48:13 -07:00
CHG: Crapto1 v3.3 now with comments, and I've tried to unnest some loops.
This commit is contained in:
parent
bb0fc401cc
commit
a1afa550ea
6 changed files with 245 additions and 18 deletions
|
@ -184,6 +184,7 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
|||
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
|
||||
int i;
|
||||
|
||||
// split the keystream into an odd and even part
|
||||
for(i = 31; i >= 0; i -= 2)
|
||||
oks = oks << 1 | BEBIT(ks2, i);
|
||||
for(i = 30; i >= 0; i -= 2)
|
||||
|
@ -200,6 +201,7 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
|||
|
||||
statelist->odd = statelist->even = 0;
|
||||
|
||||
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
|
||||
for(i = 1 << 20; i >= 0; --i) {
|
||||
if(filter(i) == (oks & 1))
|
||||
*++odd_tail = i;
|
||||
|
@ -207,11 +209,15 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
|||
*++even_tail = i;
|
||||
}
|
||||
|
||||
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
|
||||
for(i = 0; i < 4; i++) {
|
||||
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
|
||||
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
|
||||
}
|
||||
|
||||
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
|
||||
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
|
||||
// parameter into account.
|
||||
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00);
|
||||
recover(odd_head, odd_tail, oks,
|
||||
even_head, even_tail, eks, 11, statelist, in << 1);
|
||||
|
@ -338,9 +344,21 @@ uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
|
|||
*/
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/*
|
||||
int i, ret = 0;
|
||||
for (i = 7; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
|
||||
*/
|
||||
|
||||
uint8_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_word
|
||||
|
@ -348,10 +366,50 @@ uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
|||
*/
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/*
|
||||
int i;
|
||||
uint32_t ret = 0;
|
||||
for (i = 31; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
|
||||
*/
|
||||
|
||||
uint32_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -391,8 +449,9 @@ static uint32_t fastfwd[2][8] = {
|
|||
*/
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
|
||||
{
|
||||
uint32_t c, entry, *candidates = malloc(4 << 10);
|
||||
int i, size = 0, good;
|
||||
uint32_t *candidates = malloc(4 << 10);
|
||||
uint32_t c, entry;
|
||||
int size = 0, i, good;
|
||||
|
||||
if(!candidates)
|
||||
return 0;
|
||||
|
@ -479,5 +538,8 @@ struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8]
|
|||
|
||||
s->odd = s->even = 0;
|
||||
|
||||
free(odd);
|
||||
free(even);
|
||||
|
||||
return statelist;
|
||||
}
|
||||
|
|
|
@ -36,13 +36,17 @@ uint32_t prng_successor(uint32_t x, uint32_t n);
|
|||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
|
||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
|
||||
struct Crypto1State*
|
||||
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
|
||||
struct Crypto1State* lfsr_common_prefix_ex(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
|
||||
|
||||
|
||||
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
|
||||
int nonce_distance(uint32_t from, uint32_t to);
|
||||
#define SWAPENDIAN(x)\
|
||||
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
||||
|
||||
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
|
||||
uint32_t __n = 0,__M = 0, N = 0;\
|
||||
int __i;\
|
||||
|
@ -66,7 +70,7 @@ static inline int parity(uint32_t x)
|
|||
x ^= x >> 4;
|
||||
return BIT(0x6996, x & 0xf);
|
||||
#else
|
||||
asm( "movl %1, %%eax\n"
|
||||
__asm__( "movl %1, %%eax\n"
|
||||
"mov %%ax, %%cx\n"
|
||||
"shrl $0x10, %%eax\n"
|
||||
"xor %%ax, %%cx\n"
|
||||
|
|
|
@ -20,9 +20,6 @@
|
|||
#include "crapto1.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
#define SWAPENDIAN(x)\
|
||||
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
||||
|
||||
struct Crypto1State * crypto1_create(uint64_t key)
|
||||
{
|
||||
struct Crypto1State *s = malloc(sizeof(*s));
|
||||
|
@ -49,6 +46,7 @@ void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
|
|||
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
uint32_t feedin;
|
||||
uint32_t tmp;
|
||||
uint8_t ret = filter(s->odd);
|
||||
|
||||
feedin = ret & !!is_encrypted;
|
||||
|
@ -57,26 +55,76 @@ uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
|||
feedin ^= LF_POLY_EVEN & s->even;
|
||||
s->even = s->even << 1 | parity(feedin);
|
||||
|
||||
s->odd ^= (s->odd ^= s->even, s->even ^= s->odd);
|
||||
tmp = s->odd;
|
||||
s->odd = s->even;
|
||||
s->even = tmp;
|
||||
|
||||
return ret;
|
||||
}
|
||||
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
uint8_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 8; ++i)
|
||||
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
|
||||
|
||||
*/
|
||||
// unfold loop
|
||||
uint8_t ret = 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
|
||||
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
|
||||
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
|
||||
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
|
||||
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
|
||||
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
|
||||
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
|
||||
return ret;
|
||||
}
|
||||
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
uint32_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 32; ++i)
|
||||
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
|
||||
*/
|
||||
uint32_t ret = 0;
|
||||
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue