ADD: @marshmellow's fixes to awid, viking and T55x7

ADD: 'lf t55xx detect' now can be called with a password.
ADD: trying to add the read counter and increase counter commands for ntag sim.
This commit is contained in:
iceman1001 2015-11-22 17:33:41 +01:00
commit a126332a7b
14 changed files with 406 additions and 336 deletions

View file

@ -1007,10 +1007,8 @@ void UsbPacketReceived(uint8_t *packet, int len)
CmdAWIDdemodFSK(c->arg[0], 0, 0, 1);
break;
case CMD_VIKING_CLONE_TAG:
CopyViKingtoT55x7(c->arg[0],c->arg[1]);
CopyVikingtoT55xx(c->arg[0], c->arg[1], c->arg[2]);
break;
#endif
#ifdef WITH_HITAG

View file

@ -74,6 +74,7 @@ void WriteTItag(uint32_t idhi, uint32_t idlo, uint16_t crc);
void AcquireTiType(void);
void AcquireRawBitsTI(void);
void SimulateTagLowFrequency(int period, int gap, int ledcontrol);
void SimulateTagLowFrequencyBidir(int divisor, int max_bitlen);
void CmdHIDsimTAG(int hi, int lo, int ledcontrol);
void CmdFSKsimTAG(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream);
void CmdASKsimTag(uint16_t arg1, uint16_t arg2, size_t size, uint8_t *BitStream);
@ -83,21 +84,19 @@ void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol); // Realt
void CmdEM410xdemod(int findone, int *high, int *low, int ledcontrol);
void CmdIOdemodFSK(int findone, int *high, int *low, int ledcontrol);
void CopyIOtoT55x7(uint32_t hi, uint32_t lo); // Clone an ioProx card to T5557/T5567
void SimulateTagLowFrequencyBidir(int divisor, int max_bitlen);
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT); // Clone an HID card to T5557/T5567
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5);
void WriteEM410x(uint32_t card, uint32_t id_hi, uint32_t id_lo);
void CopyIndala64toT55x7(uint32_t hi, uint32_t lo); // Clone Indala 64-bit tag by UID to T55x7
void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t uid4, uint32_t uid5, uint32_t uid6, uint32_t uid7); // Clone Indala 224-bit tag by UID to T55x7
void T55xxResetRead(void);
void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg);
void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t arg);
void T55xxWriteBlock(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t PwdMode);
void T55xxWriteBlockExt(uint32_t Data, uint8_t Block, uint32_t Pwd, uint8_t PwdMode);
void T55xxReadBlock(uint16_t arg0, uint8_t Block, uint32_t Pwd);
void T55xxWakeUp(uint32_t Pwd);
void TurnReadLFOn();
void EM4xReadWord(uint8_t Address, uint32_t Pwd, uint8_t PwdMode);
void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode);
void CopyViKingtoT55x7(uint32_t block1,uint32_t block2);
/// iso14443.h
void SimulateIso14443bTag(void);

View file

@ -939,6 +939,7 @@ bool prepare_allocated_tag_modulation(tag_response_info_t* response_info) {
//-----------------------------------------------------------------------------
void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
{
uint32_t counters[] = {0,0,0};
//Here, we collect UID,NT,AR,NR,UID2,NT2,AR2,NR2
// This can be used in a reader-only attack.
// (it can also be retrieved via 'hf 14a list', but hey...
@ -1182,7 +1183,7 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
// We already responded, do not send anything with the EmSendCmd14443aRaw() that is called below
p_response = NULL;
}
} else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read) -- just returns all zeros.
} else if(receivedCmd[0] == 0x3A) { // Received a FAST READ (ranged read)
uint8_t emdata[MAX_FRAME_SIZE];
int start = receivedCmd[1] * 4;
@ -1203,13 +1204,17 @@ void SimulateIso14443aTag(int tagType, int flags, byte_t* data)
EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
} else if (receivedCmd[0] == 0x39 && tagType == 7) { // Received a READ COUNTER --
uint8_t counter = receivedCmd[1];
uint32_t value = counters[counter];
uint8_t data[] = {0x00,0x00,0x00,0x14,0xa5};
AppendCrc14443a(data, sizeof(data)-2);
EmSendCmdEx(data,sizeof(data),false);
p_response = NULL;
} else if (receivedCmd[0] == 0xA5 && tagType == 7) { // Received a INC COUNTER --
// number of counter
//uint8_t counter = receivedCmd[1];
//uint32_t val = bytes_to_num(receivedCmd+2,4);
uint8_t counter = receivedCmd[1];
uint32_t val = bytes_to_num(receivedCmd+2,4);
counters[counter] = val;
// send ACK
uint8_t ack[] = {0x0a};

View file

@ -839,7 +839,7 @@ void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
size = 50*128*2; //big enough to catch 2 sequences of largest format
idx = AWIDdemodFSK(dest, &size);
if (idx>0 && size==96){
if (idx<=0 || size!=96) continue;
// Index map
// 0 10 20 30 40 50 60
// | | | | | | |
@ -859,6 +859,7 @@ void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
uint32_t rawHi2 = bytebits_to_byte(dest+idx,32);
size = removeParity(dest, idx+8, 4, 1, 88);
if (size != 66) continue;
// ok valid card found!
// Index map
@ -900,7 +901,6 @@ void CmdAWIDdemodFSK(int findone, int *high, int *low, int ledcontrol)
return;
}
// reset
}
idx = 0;
WDT_HIT();
}
@ -1267,7 +1267,6 @@ void WriteT55xx(uint32_t *blockdata, uint8_t startblock, uint8_t numblocks) {
// Copy HID id to card and setup block 0 config
void CopyHIDtoT55x7(uint32_t hi2, uint32_t hi, uint32_t lo, uint8_t longFMT) {
uint32_t data[] = {0,0,0,0,0,0,0};
//int data1=0, data2=0, data3=0, data4=0, data5=0, data6=0; //up to six blocks for long format
uint8_t last_block = 0;
if (longFMT){
@ -1357,6 +1356,15 @@ void CopyIndala224toT55x7(uint32_t uid1, uint32_t uid2, uint32_t uid3, uint32_t
// T5567WriteBlock(0x603E10E2,0);
DbpString("DONE!");
}
// clone viking tag to T55xx
void CopyVikingtoT55xx(uint32_t block1, uint32_t block2, uint8_t Q5) {
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
if (Q5) data[0] = (32 << T5555_BITRATE_SHIFT) | T5555_MODULATION_MANCHESTER | 2 << T5555_MAXBLOCK_SHIFT;
// Program the data blocks for supplied ID and the block 0 config
WriteT55xx(data, 0, 3);
LED_D_OFF();
cmd_send(CMD_ACK,0,0,0,0,0);
}
// Define 9bit header for EM410x tags
#define EM410X_HEADER 0x1FF
@ -1657,12 +1665,3 @@ void EM4xWriteWord(uint32_t Data, uint8_t Address, uint32_t Pwd, uint8_t PwdMode
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // field off
LED_D_OFF();
}
void CopyViKingtoT55x7(uint32_t block1, uint32_t block2) {
uint32_t data[] = {T55x7_BITRATE_RF_32 | T55x7_MODULATION_MANCHESTER | (2 << T55x7_MAXBLOCK_SHIFT), block1, block2};
// Program the data blocks for supplied ID and the block 0 config
WriteT55xx(data, 0, 3);
LED_D_OFF();
}

View file

@ -635,6 +635,32 @@ int CmdG_Prox_II_Demod(const char *Cmd)
return 1;
}
//by marshmellow
//see ASKDemod for what args are accepted
int CmdVikingDemod(const char *Cmd)
{
if (!ASKDemod(Cmd, false, false, 1)) {
if (g_debugMode) PrintAndLog("ASKDemod failed");
return 0;
}
size_t size = DemodBufferLen;
//call lfdemod.c demod for Viking
int ans = VikingDemod_AM(DemodBuffer, &size);
if (ans < 0) {
if (g_debugMode) PrintAndLog("Error Viking_Demod %d", ans);
return 0;
}
//got a good demod
uint32_t raw1 = bytebits_to_byte(DemodBuffer+ans, 32);
uint32_t raw2 = bytebits_to_byte(DemodBuffer+ans+32, 32);
uint32_t cardid = bytebits_to_byte(DemodBuffer+ans+24, 32);
uint8_t checksum = bytebits_to_byte(DemodBuffer+ans+32+24, 8);
PrintAndLog("Viking Tag Found: Card ID %08X, Checksum: %02X", cardid, checksum);
PrintAndLog("Raw: %08X%08X", raw1,raw2);
setDemodBuf(DemodBuffer+ans, 64, 0);
return 1;
}
//by marshmellow - see ASKDemod
int Cmdaskrawdemod(const char *Cmd)
{
@ -1128,8 +1154,6 @@ int CmdFSKdemodParadox(const char *Cmd)
//print ioprox ID and some format details
int CmdFSKdemodIO(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
//set defaults
int idx=0;
//something in graphbuffer?
if (GraphTraceLen < 65) {
@ -1218,7 +1242,6 @@ int CmdFSKdemodIO(const char *Cmd)
//print full AWID Prox ID and some bit format details if found
int CmdFSKdemodAWID(const char *Cmd)
{
//raw fsk demod no manchester decoding no start bit finding just get binary from wave
uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0};
size_t size = getFromGraphBuf(BitStream);
if (size==0) return 0;
@ -2373,7 +2396,7 @@ static command_t CommandTable[] =
{"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"},
{"save", CmdSave, 1, "<filename> -- Save trace (from graph window)"},
{"scale", CmdScale, 1, "<int> -- Set cursor display scale"},
{"setdebugmode", CmdSetDebugMode, 1, "<0|1> -- Turn on or off Debugging Mode for demods"},
{"setdebugmode", CmdSetDebugMode, 1, "<0|1|2> -- Turn on or off Debugging Level for lf demods"},
{"shiftgraphzero", CmdGraphShiftZero, 1, "<shift> -- Shift 0 for Graphed wave + or - shift value"},
{"dirthreshold", CmdDirectionalThreshold, 1, "<thres up> <thres down> -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."},
{"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"},

View file

@ -192,7 +192,6 @@ int CmdLFCommandRead(const char *Cmd)
if (errors) return usage_lf_cmdread();
// in case they specified 'H'
// added to the end..
strcpy((char *)&c.d.asBytes + strLength, dummy);
clearCommandBuffer();
@ -505,6 +504,7 @@ int CmdIndalaClone(const char *Cmd)
c.arg[1] = uid2;
}
clearCommandBuffer();
SendCommand(&c);
return 0;
}
@ -582,6 +582,7 @@ int CmdLFSetConfig(const char *Cmd)
//Averaging is a flag on high-bit of arg[1]
UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG};
memcpy(c.d.asBytes,&config,sizeof(sample_config));
clearCommandBuffer();
SendCommand(&c);
return 0;
}
@ -760,6 +761,7 @@ int CmdLFfskSim(const char *Cmd)
UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}};
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
@ -853,6 +855,7 @@ int CmdLFaskSim(const char *Cmd)
UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}};
PrintAndLog("preparing to sim ask data: %d bits", size);
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
@ -960,6 +963,7 @@ int CmdLFpskSim(const char *Cmd)
UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}};
PrintAndLog("DEBUG: Sending DemodBuffer Length: %d", size);
memcpy(c.d.asBytes, DemodBuffer, size);
clearCommandBuffer();
SendCommand(&c);
return 0;

View file

@ -16,7 +16,10 @@
#include "cmdparser.h" // CmdsParse, CmdsHelp
#include "cmdlfawid.h" // AWID function declarations
#include "lfdemod.h" // parityTest
#include "util.h" // weigandparity
#include "protocols.h" // for T55xx config register definitions
#include "cmdmain.h"
static int CmdHelp(const char *Cmd);
int usage_lf_awid_fskdemod(void) {
@ -28,7 +31,7 @@ int usage_lf_awid_fskdemod(void) {
PrintAndLog("Options :");
PrintAndLog(" 1 : (optional) stop after reading a single card");
PrintAndLog("");
PrintAndLog(" sample : lf awid fskdemod");
PrintAndLog("Samples : lf awid fskdemod");
PrintAndLog(" : lf awid fskdemod 1");
return 0;
}
@ -43,7 +46,7 @@ int usage_lf_awid_sim(void) {
PrintAndLog(" <Facility-Code> : 8-bit value AWID facility code");
PrintAndLog(" <Card Number> : 16-bit value AWID card number");
PrintAndLog("");
PrintAndLog("sample : lf awid sim 224 1337");
PrintAndLog("Sample : lf awid sim 224 1337");
return 0;
}
@ -56,15 +59,15 @@ int usage_lf_awid_clone(void) {
PrintAndLog("Options :");
PrintAndLog(" <Facility-Code> : 8-bit value AWID facility code");
PrintAndLog(" <Card Number> : 16-bit value AWID card number");
PrintAndLog(" Q5 : optional - clone to Q5 (T5555) instead of T55x7 chip");
PrintAndLog("");
PrintAndLog("sample : lf awid clone 224 1337");
PrintAndLog("Sample : lf awid clone 224 1337");
return 0;
}
int CmdAWIDDemodFSK(const char *Cmd) {
int findone = 0;
if (Cmd[0] == 'h' || Cmd[0] == 'H') return usage_lf_awid_fskdemod();
if (Cmd[0] == '1') findone = 1;
UsbCommand c = {CMD_AWID_DEMOD_FSK, {findone, 0, 0}};
@ -73,92 +76,33 @@ int CmdAWIDDemodFSK(const char *Cmd) {
return 0;
}
int getAWIDBits(unsigned int fc, unsigned int cn, uint8_t *AWIDBits)
{
//int i;
uint32_t fcode = (fc & 0x000000FF);
uint32_t cnum = (cn & 0x0000FFFF);
uint32_t uBits = 0;
//refactored by marshmellow
int getAWIDBits(uint32_t fc, uint32_t cn, uint8_t *AWIDBits) {
uint8_t pre[66];
memset(pre, 0, sizeof(pre));
AWIDBits[7]=1;
num_to_bytebits(26, 8, pre);
if (fcode != fc)
PrintAndLog("NOTE: Facility code truncated for AWID26 format (8-bit facility code)");
if (cnum!=cn)
PrintAndLog("NOTE: Card number was truncated for AWID26 format (16-bit card number)");
uint8_t wiegand[24];
num_to_bytebits(fc, 8, wiegand);
num_to_bytebits(cn, 16, wiegand+8);
uint8_t pre[] = {0x01, 0x1D, 0x80, 0x00,0x00,0x00,0x00, 0x11, 0x11, 0x11, 0x11, 0x11};
memcpy(AWIDBits, pre , sizeof(pre));
// AWIDBits[0] = 0x01; // 6-bit Preamble with 2 parity bits
// AWIDBits[1] = 0x1D; // First byte from card format (26-bit) plus parity bits
// AWIDBits[2] = 0x80; // Set the next two bits as 0b10 to finish card format
// for (i = 7; i<12; i++)
// AWIDBits[i]=0x11;
uBits = (fcode<<4) + (cnum>>12);
if (!parityTest(uBits,12,0)) AWIDBits[2] |= (1<<5); // If not already even parity, set bit to make even
uBits = AWIDBits[2]>>5;
if (!parityTest(uBits, 3, 1)) AWIDBits[2] |= (1<<4);
uBits = fcode>>5; // first 3 bits of facility-code
AWIDBits[2] += (uBits<<1);
if (!parityTest(uBits, 3, 1)) AWIDBits[2]++; // Set parity bit to make odd parity
uBits = (fcode & 0x1C)>>2;
AWIDBits[3] = 0;
if (!parityTest(uBits,3,1)) AWIDBits[3] |= (1<<4);
AWIDBits[3] += (uBits<<5);
uBits = ((fcode & 0x3)<<1) + ((cnum & 0x8000)>>15); // Grab/shift 2 LSBs from facility code and add shifted MSB from cardnum
if (!parityTest(uBits,3,1)) AWIDBits[3]++; // Set LSB for parity
AWIDBits[3]+= (uBits<<1);
uBits = (cnum & 0x7000)>>12;
AWIDBits[4] = uBits<<5;
if (!parityTest(uBits,3,1)) AWIDBits[4] |= (1<<4);
uBits = (cnum & 0x0E00)>>9;
AWIDBits[4] += (uBits<<1);
if (!parityTest(uBits,3,1)) AWIDBits[4]++; // Set LSB for parity
uBits = (cnum & 0x1C0)>>6; // Next bits from card number
AWIDBits[5]=(uBits<<5);
if (!parityTest(uBits,3,1)) AWIDBits[5] |= (1<<4); // Set odd parity bit as needed
uBits = (cnum & 0x38)>>3;
AWIDBits[5]+= (uBits<<1);
if (!parityTest(uBits,3,1)) AWIDBits[5]++; // Set odd parity bit as needed
uBits = (cnum & 0x7); // Last three bits from card number!
AWIDBits[6] = (uBits<<5);
if (!parityTest(uBits,3,1)) AWIDBits[6] |= (1<<4);
uBits = (cnum & 0x0FFF);
if (!parityTest(uBits,12,1))
AWIDBits[6] |= (1<<3);
else
AWIDBits[6]++;
wiegand_add_parity(pre+8, wiegand, 24);
size_t bitLen = addParity(pre, AWIDBits+8, 66, 4, 1);
if (bitLen != 88) return 0;
//for (uint8_t i = 0; i<3; i++){
// PrintAndLog("DEBUG: %08X", bytebits_to_byte(AWIDBits+(32*i),32));
//}
return 1;
}
int CmdAWIDSim(const char *Cmd)
{
uint32_t fcode = 0, cnum = 0, fc=0, cn=0, i=0;
uint8_t bits[12];
int CmdAWIDSim(const char *Cmd) {
uint32_t fcode = 0, cnum = 0, fc=0, cn=0;
uint8_t bits[96];
uint8_t *bs = bits;
size_t size = sizeof(bits);
memset(bs, 0, size);
uint64_t arg1 = (10<<8) + 8; // fcHigh = 10, fcLow = 8
uint64_t arg2 = 50; // clk RF/50 invert=0
@ -179,30 +123,28 @@ int CmdAWIDSim(const char *Cmd)
return 1;
}
// AWID uses: fcHigh: 10, fcLow: 8, clk: 50, invert: 0
PrintAndLog("Running 'lf simfsk c 50 H 10 L 8 d %s'", sprint_hex(bs, sizeof(bs)));
// arg1 --- fcHigh<<8 + fcLow
// arg2 --- Inversion and clk setting
// 96 --- Bitstream length: 96-bits == 12 bytes
UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, 96}};
for (i=0; i < 96; i++)
c.d.asBytes[i] = (bs[i/8] & (1<<(7-(i%8)))) ? 1 : 0;
UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}};
memcpy(c.d.asBytes, bs, size);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
int CmdAWIDClone(const char *Cmd)
{
uint32_t blocks[4] = {0x00107060, 0, 0, 0x11111111};
uint32_t fc=0, cn=0, i=0;
uint8_t bits[12];
int CmdAWIDClone(const char *Cmd) {
uint32_t blocks[4] = {T55x7_MODULATION_FSK2a | T55x7_BITRATE_RF_50 | 3<<T55x7_MAXBLOCK_SHIFT, 0, 0, 0};
uint32_t fc=0,cn=0;
uint8_t bits[96];
uint8_t *bs=bits;
memset(bs,0,sizeof(bits));
if (sscanf(Cmd, "%u %u", &fc, &cn ) != 2) return usage_lf_awid_clone();
if (param_getchar(Cmd, 3) == 'Q' || param_getchar(Cmd, 3) == 'q')
blocks[0] = T5555_MODULATION_FSK2 | T5555_INVERT_OUTPUT | 50<<T5555_BITRATE_SHIFT | 3<<T5555_MAXBLOCK_SHIFT;
if ((fc & 0xFF) != fc) {
fc &= 0xFF;
PrintAndLog("Facility-Code Truncated to 8-bits (AWID26): %u", fc);
@ -218,12 +160,12 @@ int CmdAWIDClone(const char *Cmd)
return 1;
}
PrintAndLog("Preparing to clone AWID26 to T55x7 with FC: %u, CN: %u ", fc, cn);
PrintAndLog("Raw: %s", sprint_hex(bs, sizeof(bs)));
blocks[1] = (bs[0]<<24) + (bs[1]<<16) + (bs[2]<<8) + (bs[3]);
blocks[2] = (bs[4]<<24) + (bs[5]<<16) + (bs[6]<<8) + (bs[7]);
blocks[1] = bytebits_to_byte(bs,32);
blocks[2] = bytebits_to_byte(bs+32,32);
blocks[3] = bytebits_to_byte(bs+64,32);
PrintAndLog("Preparing to clone AWID26 to T55x7 with FC: %u, CN: %u",
fc, cn);
PrintAndLog("Blk | Data ");
PrintAndLog("----+------------");
PrintAndLog(" 00 | 0x%08x", blocks[0]);
@ -234,7 +176,7 @@ int CmdAWIDClone(const char *Cmd)
UsbCommand resp;
UsbCommand c = {CMD_T55XX_WRITE_BLOCK, {0,0,0}};
for (i=0; i<4; i++) {
for (uint8_t i=0; i<4; i++) {
c.arg[0] = blocks[i];
c.arg[1] = i;
clearCommandBuffer();
@ -247,23 +189,20 @@ int CmdAWIDClone(const char *Cmd)
return 0;
}
static command_t CommandTable[] =
{
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"fskdemod", CmdAWIDDemodFSK, 0, "['1'] Realtime AWID FSK demodulator (option '1' for one tag only)"},
{"sim", CmdAWIDSim, 0, "<Facility-Code> <Card Number> -- AWID tag simulator"},
{"clone", CmdAWIDClone, 0, "<Facility-Code> <Card Number> -- Clone AWID to T55x7 (tag must be in range of antenna)"},
{"clone", CmdAWIDClone, 0, "<Facility-Code> <Card Number> <Q5> -- Clone AWID to T55x7"},
{NULL, NULL, 0, NULL}
};
int CmdLFAWID(const char *Cmd)
{
int CmdLFAWID(const char *Cmd) {
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}

View file

@ -126,13 +126,15 @@ int usage_t55xx_dump(){
return 0;
}
int usage_t55xx_detect(){
PrintAndLog("Usage: lf t55xx detect [1]");
PrintAndLog("Usage: lf t55xx detect [1] [p <password>]");
PrintAndLog("Options:");
PrintAndLog(" [graph buffer data] - if set, use Graphbuffer otherwise read data from tag.");
PrintAndLog(" 1 - if set, use Graphbuffer otherwise read data from tag.");
PrintAndLog(" p <password> - OPTIONAL password (8 hex characters)");
PrintAndLog("");
PrintAndLog("Examples:");
PrintAndLog(" lf t55xx detect");
PrintAndLog(" lf t55xx detect 1");
PrintAndLog(" lf t55xx detect 11223344");
PrintAndLog("");
return 0;
}
@ -397,27 +399,40 @@ bool DecodeT55xxBlock(){
int CmdT55xxDetect(const char *Cmd){
//bool override = false;
//bool pwdmode = false;
bool errors = FALSE;
bool useGB = FALSE;
bool usepwd = FALSE;
uint32_t password = 0;
uint8_t cmdp = 0;
uint32_t password = 0; //default to blank Block 7
bool usepwd = ( strlen(Cmd) > 0);
if ( usepwd ){
password = param_get32ex(Cmd, 0, 0, 16);
// if (param_getchar(Cmd, 1) =='o' )
// override = true;
while(param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch(param_getchar(Cmd, cmdp)) {
case 'h':
case 'H':
return usage_t55xx_detect();
case 'p':
case 'P':
password = param_get32ex(Cmd, cmdp+1, 0, 16);
usepwd = TRUE;
cmdp += 2;
break;
case '1':
// use Graphbuffer data
useGB = TRUE;
cmdp++;
break;
default:
PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true;
break;
}
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') return usage_t55xx_detect();
if (strlen(Cmd)==0) {
password = param_get32ex(Cmd, 0, 0, 16);
//if (param_getchar(Cmd, 1) =='o' ) override = true;
}
if (errors) return usage_t55xx_detect();
if ( !useGB) {
if ( !AquireData(T55x7_PAGE0, T55x7_CONFIGURATION_BLOCK, usepwd, password) )
return 0;
}
if ( !tryDetectModulation() )
PrintAndLog("Could not detect modulation automatically. Try setting it manually with \'lf t55xx config\'");
@ -1242,7 +1257,7 @@ void t55x7_create_config_block( int tagtype ){
static char buf[60];
char *retStr = buf;
switch (id){
switch (tagtype){
case 0: snprintf(retStr, sizeof(buf),"%08X - T55X7 Default", T55X7_DEFAULT_CONFIG_BLOCK); break;
case 1: snprintf(retStr, sizeof(buf),"%08X - T55X7 Raw", T55X7_RAW_CONFIG_BLOCK); break;
default:
@ -1292,16 +1307,15 @@ int CmdT55xxWipe(const char *Cmd) {
return 0;
}
static command_t CommandTable[] =
{
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"config", CmdT55xxSetConfig, 1, "Set/Get T55XX configuration (modulation, inverted, offset, rate)"},
{"detect", CmdT55xxDetect, 0, "[1] Try detecting the tag modulation from reading the configuration block."},
{"detect", CmdT55xxDetect, 1, "[1] Try detecting the tag modulation from reading the configuration block."},
{"read", CmdT55xxReadBlock, 0, "b <block> p [password] [o] [1] -- Read T55xx block data. Optional [p password], [override], [page1]"},
{"resetread",CmdResetRead, 0, "Send Reset Cmd then lf read the stream to attempt to identify the start of it (needs a demod and/or plot after)"},
{"write", CmdT55xxWriteBlock,0, "b <block> d <data> p [password] [1] -- Write T55xx block data. Optional [p password], [page1]"},
{"trace", CmdT55xxReadTrace, 0, "[1] Show T55x7 traceability data (page 1/ blk 0-1)"},
{"info", CmdT55xxInfo, 0, "[1] Show T55x7 configuration data (page 0/ blk 0)"},
{"trace", CmdT55xxReadTrace, 1, "[1] Show T55x7 traceability data (page 1/ blk 0-1)"},
{"info", CmdT55xxInfo, 1, "[1] Show T55x7 configuration data (page 0/ blk 0)"},
{"dump", CmdT55xxDump, 0, "[password] [o] Dump T55xx card block 0-7. Optional [password], [override]"},
{"special", special, 0, "Show block changes with 64 different offsets"},
{"wakeup", CmdT55xxWakeUp, 0, "Send AOR wakeup command"},
@ -1309,14 +1323,12 @@ static command_t CommandTable[] =
{NULL, NULL, 0, NULL}
};
int CmdLFT55XX(const char *Cmd)
{
int CmdLFT55XX(const char *Cmd) {
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}

View file

@ -1,3 +1,11 @@
//-----------------------------------------------------------------------------
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency Viking tag commands
//-----------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
@ -15,76 +23,111 @@ static int CmdHelp(const char *Cmd);
int usage_lf_viking_clone(void){
PrintAndLog("clone a Viking AM tag to a T55x7 tag.");
PrintAndLog("Usage: lf viking clone <Card ID 16 bytes of hex number>");
PrintAndLog("Usage: lf viking clone <Card ID - 8 hex digits> <Q5>");
PrintAndLog("Options :");
PrintAndLog(" <Card Number> : 8 digit hex viking card number");
PrintAndLog(" <Q5> : specify write to Q5 (t5555 instead of t55x7)");
PrintAndLog("");
PrintAndLog("Sample : lf viking clone 1A337 Q5");
return 0;
}
int usage_lf_viking_sim(void) {
PrintAndLog("Enables simulation of viking card with specified card number.");
PrintAndLog("Simulation runs until the button is pressed or another USB command is issued.");
PrintAndLog("Per viking format, the card number is 8 digit hex number. Larger values are truncated.");
PrintAndLog("");
PrintAndLog("Usage: lf viking sim <Card-Number>");
PrintAndLog("Options :");
PrintAndLog(" <Card Number> : 8 digit hex viking card number");
PrintAndLog("");
PrintAndLog("Sample : lf viking sim 1A337");
return 0;
}
// calc checksum
uint64_t getVikingBits(uint32_t id) {
uint8_t checksum = (id>>24) ^ ((id>>16) & 0xFF) ^ ((id>>8) & 0xFF) ^ (id & 0xFF) ^ 0xF2 ^ 0xA8;
uint64_t ret = (uint64_t)0xF2 << 56;
ret |= (id << 8);
ret |= checksum;
return ret;
}
//by marshmellow
//see ASKDemod for what args are accepted
int CmdVikingDemod(const char *Cmd)
{
//CmdLFRead("s");
//getSamples("30000",false);
if (!ASKDemod(Cmd, false, false, 1)) {
if (g_debugMode) PrintAndLog("ASKDemod failed");
return 0;
}
size_t size = DemodBufferLen;
int ans = VikingDemod_AM(DemodBuffer, &size);
if (ans < 0) {
if (g_debugMode) PrintAndLog("Error Viking_Demod %d", ans);
return 0;
}
//got a good demod
uint32_t raw1 = bytebits_to_byte(DemodBuffer+ans, 32);
uint32_t raw2 = bytebits_to_byte(DemodBuffer+ans+32, 32);
uint32_t cardid = bytebits_to_byte(DemodBuffer+ans+24, 32);
uint8_t checksum = bytebits_to_byte(DemodBuffer+ans+32+24, 8);
PrintAndLog("Viking Tag Found: Card ID %08X, Checksum: %02X", cardid, checksum);
PrintAndLog("Raw: %08X%08X", raw1,raw2);
setDemodBuf(DemodBuffer+ans, 64, 0);
return 1;
int CmdVikingRead(const char *Cmd) {
// read lf silently
CmdLFRead("s");
// get samples silently
getSamples("30000",false);
// demod and output viking ID
return CmdVikingDemod(Cmd);
}
int CmdVikingClone(const char *Cmd)
{
uint32_t b1,b2;
// get the tag number 64 bits (8 bytes) in hex
uint8_t id[8];
int CmdVikingClone(const char *Cmd) {
uint32_t id = 0;
uint64_t rawID = 0;
bool Q5 = false;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) < 0 || cmdp == 'h' || cmdp == 'H') return usage_lf_viking_clone();
if (param_gethex(Cmd, 0, id, 16) == 1)
return usage_lf_viking_clone();
id = param_get32ex(Cmd, 0, 0, 16);
if (id == 0) return usage_lf_viking_clone();
b1 = bytes_to_num(id, sizeof(uint32_t));
b2 = bytes_to_num(id + sizeof(uint32_t), sizeof(uint32_t));
UsbCommand c = {CMD_VIKING_CLONE_TAG,{b1,b2}};
cmdp = param_getchar(Cmd, 1);
if ( cmdp == 'Q' || cmdp == 'q')
Q5 = true;
rawID = getVikingBits(id);
UsbCommand c = {CMD_VIKING_CLONE_TAG,{rawID >> 32, rawID & 0xFFFF, Q5}};
clearCommandBuffer();
SendCommand(&c);
//check for ACK?
//check for ACK
WaitForResponse(CMD_ACK,NULL);
return 0;
}
static command_t CommandTable[] =
{
int CmdVikingSim(const char *Cmd) {
uint32_t id = 0;
uint64_t rawID = 0;
uint8_t clk = 32, encoding = 1, separator = 0, invert = 0;
char cmdp = param_getchar(Cmd, 0);
if (strlen(Cmd) < 0 || cmdp == 'h' || cmdp == 'H') return usage_lf_viking_sim();
id = param_get32ex(Cmd, 0, 0, 16);
if (id == 0) return usage_lf_viking_sim();
rawID = getVikingBits(id);
uint16_t arg1, arg2;
size_t size = 64;
arg1 = clk << 8 | encoding;
arg2 = invert << 8 | separator;
UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}};
PrintAndLog("preparing to sim ask data: %d bits", size);
num_to_bytebits(rawID, 64, c.d.asBytes);
clearCommandBuffer();
SendCommand(&c);
return 0;
}
static command_t CommandTable[] = {
{"help", CmdHelp, 1, "This help"},
{"demod", CmdVikingDemod, 1, "Extract tag data"},
{"clone", CmdVikingClone, 1, "<16 digits card data> clone viking tag"},
{"read", CmdVikingRead, 0, "Attempt to read and Extract tag data"},
{"clone", CmdVikingClone, 0, "<8 digit ID number> clone viking tag"},
{"sim", CmdVikingSim, 0, "<8 digit ID number> simulate viking tag"},
{NULL, NULL, 0, NULL}
};
int CmdLFViking(const char *Cmd)
{
int CmdLFViking(const char *Cmd) {
CmdsParse(CommandTable, Cmd);
return 0;
}
int CmdHelp(const char *Cmd)
{
int CmdHelp(const char *Cmd) {
CmdsHelp(CommandTable);
return 0;
}

View file

@ -1,7 +1,16 @@
//-----------------------------------------------------------------------------
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Low frequency T55xx commands
//-----------------------------------------------------------------------------
#ifndef CMDLFVIKING_H__
#define CMDLFVIKING_H__
int CmdLFViking(const char *Cmd);
int CmdVikingDemod(const char *Cmd);
int CmdVikingRead(const char *Cmd);
int CmdVikingClone(const char *Cmd);
int CmdVikingSim(const char *Cmd);
#endif

View file

@ -159,6 +159,13 @@ uint64_t bytes_to_num(uint8_t* src, size_t len)
return num;
}
void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) {
while (len--) {
dest[len] = n & 1;
n >>= 1;
}
}
// aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp
// to
// hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii
@ -445,7 +452,7 @@ void binarraytobinstring(char *target, char *source, int length)
}
// return parity bit required to match type
uint8_t GetParity( char *bits, uint8_t type, int length)
uint8_t GetParity( uint8_t *bits, uint8_t type, int length)
{
int x;
@ -457,7 +464,7 @@ uint8_t GetParity( char *bits, uint8_t type, int length)
}
// add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half
void wiegand_add_parity(char *target, char *source, char length)
void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length)
{
*(target++)= GetParity(source, EVEN, length / 2);
memcpy(target, source, length);

View file

@ -43,6 +43,7 @@ char * sprint_bin_break(const uint8_t *data, const size_t len, const uint8_t bre
void num_to_bytes(uint64_t n, size_t len, uint8_t* dest);
uint64_t bytes_to_num(uint8_t* src, size_t len);
void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest);
char * printBits(size_t const size, void const * const ptr);
uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize);
@ -62,8 +63,8 @@ int param_getstr(const char *line, int paramnum, char * str);
int hextobinstring( char *target, char *source);
int binarraytohex( char *target, char *source, int length);
void binarraytobinstring(char *target, char *source, int length);
uint8_t GetParity( char *string, uint8_t type, int length);
void wiegand_add_parity(char *target, char *source, char length);
uint8_t GetParity( uint8_t *string, uint8_t type, int length);
void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length);
void xor(unsigned char * dst, unsigned char * src, size_t len);
int32_t le24toh (uint8_t data[3]);

View file

@ -13,17 +13,18 @@
#include "lfdemod.h"
#include "common.h"
/* //un_comment to allow debug print calls when used not on device
//un_comment to allow debug print calls when used not on device
void dummy(char *fmt, ...){}
#ifndef ON_DEVICE
#include "ui.h"
#include "cmdparser.h"
#include "cmddata.h"
#define prnt PrintAndLog
#else
uint8_t g_debugMode=0;
#define prnt dummy
#endif
*/
uint8_t justNoise(uint8_t *BitStream, size_t size)
{
@ -66,6 +67,81 @@ uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType)
return (ans == pType);
}
//by marshmellow
// takes a array of binary values, start position, length of bits per parity (includes parity bit),
// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
{
uint32_t parityWd = 0;
size_t j = 0, bitCnt = 0;
for (int word = 0; word < (bLen); word+=pLen){
for (int bit=0; bit < pLen; bit++){
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
j--; // overwrite parity with next data
// if parity fails then return 0
if (pType == 2) { // then marker bit which should be a 1
if (!BitStream[j]) return 0;
} else {
if (parityTest(parityWd, pLen, pType) == 0) return 0;
}
bitCnt+=(pLen-1);
parityWd = 0;
}
// if we got here then all the parities passed
//return ID start index and size
return bitCnt;
}
// by marshmellow
// takes a array of binary values, length of bits per parity (includes parity bit),
// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType)
{
uint32_t parityWd = 0;
size_t j = 0, bitCnt = 0;
for (int word = 0; word < sourceLen; word+=pLen-1) {
for (int bit=0; bit < pLen-1; bit++){
parityWd = (parityWd << 1) | BitSource[word+bit];
dest[j++] = (BitSource[word+bit]);
}
// if parity fails then return 0
if (pType == 2) { // then marker bit which should be a 1
dest[j++]=1;
} else {
dest[j++] = parityTest(parityWd, pLen-1, pType) ^ 1;
}
bitCnt += pLen;
parityWd = 0;
}
// if we got here then all the parities passed
//return ID start index and size
return bitCnt;
}
uint32_t bytebits_to_byte(uint8_t *src, size_t numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
//least significant bit first
uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | *(src + (numbits-(i+1)));
}
return num;
}
//by marshmellow
//search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length
uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx)
@ -198,6 +274,7 @@ int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr
if (*clk==0 || start < 0) return -3;
if (*invert != 1) *invert = 0;
if (amp==1) askAmp(BinStream, *size);
if (g_debugMode==2) prnt("DEBUG: clk %d, beststart %d", *clk, start);
uint8_t initLoopMax = 255;
if (initLoopMax > *size) initLoopMax = *size;
@ -210,6 +287,7 @@ int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr
size_t errCnt = 0;
// if clean clipped waves detected run alternate demod
if (DetectCleanAskWave(BinStream, *size, high, low)) {
if (g_debugMode==2) prnt("DEBUG: Clean Wave Detected");
errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low);
if (askType) //askman
return manrawdecode(BinStream, size, 0);
@ -551,28 +629,6 @@ int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, ui
return (int)startIdx;
}
uint32_t bytebits_to_byte(uint8_t* src, size_t numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | (*src);
src++;
}
return num;
}
//least significant bit first
uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits)
{
uint32_t num = 0;
for(int i = 0 ; i < numbits ; i++)
{
num = (num << 1) | *(src + (numbits-(i+1)));
}
return num;
}
int IOdemodFSK(uint8_t *dest, size_t size)
{
if (justNoise(dest, size)) return -1;
@ -622,33 +678,6 @@ int VikingDemod_AM(uint8_t *dest, size_t *size) {
return (int) startIdx;
}
// by marshmellow
// takes a array of binary values, start position, length of bits per parity (includes parity bit),
// Parity Type (1 for odd; 0 for even; 2 Always 1's), and binary Length (length to run)
size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen)
{
uint32_t parityWd = 0;
size_t j = 0, bitCnt = 0;
for (int word = 0; word < (bLen); word+=pLen){
for (int bit=0; bit < pLen; bit++){
parityWd = (parityWd << 1) | BitStream[startIdx+word+bit];
BitStream[j++] = (BitStream[startIdx+word+bit]);
}
j--; // overwrite parity with next data
// if parity fails then return 0
if (pType == 2) { // then marker bit which should be a 1
if (!BitStream[j]) return 0;
} else {
if (parityTest(parityWd, pLen, pType) == 0) return 0;
}
bitCnt+=(pLen-1);
parityWd = 0;
}
// if we got here then all the parities passed
//return ID start index and size
return bitCnt;
}
// Ask/Biphase Demod then try to locate an ISO 11784/85 ID
// BitStream must contain previously askrawdemod and biphasedemoded data
int FDXBdemodBI(uint8_t *dest, size_t *size)
@ -756,7 +785,7 @@ int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low)
minClk = i - startwave;
}
// set clock
//prnt("minClk: %d",minClk);
if (g_debugMode==2) prnt("DEBUG ASK: detectstrongASKclk smallest wave: %d",minClk);
for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) {
if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1)
return fndClk[clkCnt];
@ -790,6 +819,7 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
if (!clockFnd){
if (DetectCleanAskWave(dest, size, peak, low)==1){
int ans = DetectStrongAskClock(dest, size, peak, low);
if (g_debugMode==2) prnt("DEBUG ASK: detectaskclk Clean Ask Wave Detected: clk %d",ans);
for (i=clkEnd-1; i>0; i--){
if (clk[i] == ans) {
*clock = ans;
@ -800,7 +830,6 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
}
}
}
uint8_t ii;
uint8_t clkCnt, tol = 0;
uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000};
@ -842,7 +871,7 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
}
//if we found no errors then we can stop here and a low clock (common clocks)
// this is correct one - return this clock
//prnt("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i);
if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, err %d, startpos %d, endpos %d",clk[clkCnt],errCnt,ii,i);
if(errCnt==0 && clkCnt<7) {
if (!clockFnd) *clock = clk[clkCnt];
return ii;
@ -864,8 +893,8 @@ int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr)
best = iii;
}
}
if (g_debugMode == 2) prnt("DEBUG ASK: clk %d, # Errors %d, Current Best Clk %d, bestStart %d",clk[iii],bestErr[iii],clk[best],bestStart[best]);
}
//if (bestErr[best] > maxErr) return -1;
if (!clockFnd) *clock = clk[best];
return bestStart[best];
}
@ -892,7 +921,7 @@ int DetectPSKClock(uint8_t dest[], size_t size, int clock)
uint16_t peaksdet[]={0,0,0,0,0,0,0,0,0};
fc = countFC(dest, size, 0);
if (fc!=2 && fc!=4 && fc!=8) return -1;
//prnt("DEBUG: FC: %d",fc);
if (g_debugMode==2) prnt("DEBUG PSK: FC: %d",fc);
//find first full wave
for (i=160; i<loopCnt; i++){
@ -913,7 +942,7 @@ int DetectPSKClock(uint8_t dest[], size_t size, int clock)
}
}
}
//prnt("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
if (g_debugMode ==2) prnt("DEBUG PSK: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen);
//test each valid clock from greatest to smallest to see which lines up
for(clkCnt=7; clkCnt >= 1 ; clkCnt--){
@ -921,7 +950,7 @@ int DetectPSKClock(uint8_t dest[], size_t size, int clock)
waveStart = 0;
errCnt=0;
peakcnt=0;
//prnt("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
if (g_debugMode == 2) prnt("DEBUG PSK: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit);
for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){
//top edge of wave = start of new wave
@ -934,7 +963,7 @@ int DetectPSKClock(uint8_t dest[], size_t size, int clock)
waveLenCnt = waveEnd-waveStart;
if (waveLenCnt > fc){
//if this wave is a phase shift
//prnt("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc);
if (g_debugMode == 2) prnt("DEBUG PSK: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,i+1,fc);
if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit
peakcnt++;
lastClkBit+=clk[clkCnt];
@ -963,7 +992,7 @@ int DetectPSKClock(uint8_t dest[], size_t size, int clock)
if (peaksdet[i] > peaksdet[best]) {
best = i;
}
//prnt("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]);
if (g_debugMode == 2) prnt("DEBUG PSK: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[i],peaksdet[i],bestErr[i],clk[best]);
}
return clk[best];
}
@ -992,8 +1021,8 @@ int DetectStrongNRZClk(uint8_t *dest, size_t size, int peak, int low){
transition1 = i;
}
}
//prnt("DEBUG: LowestTrs: %d",lowestTransition);
if (lowestTransition == 255) lowestTransition = 0;
if (g_debugMode==2) prnt("DEBUG NRZ: detectstrongNRZclk smallest wave: %d",lowestTransition);
return lowestTransition;
}
@ -1108,7 +1137,7 @@ int DetectNRZClock(uint8_t dest[], size_t size, int clock)
} else if (peaksdet[iii] > peaksdet[best]){
best = iii;
}
//prnt("DEBUG: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
if (g_debugMode==2) prnt("DEBUG NRZ: Clk: %d, peaks: %d, maxPeak: %d, bestClk: %d, lowestTrs: %d",clk[iii],peaksdet[iii],maxPeak, clk[best], lowestTransition);
}
return clk[best];
@ -1269,7 +1298,6 @@ uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fc
uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15;
for (i=0; i<15; i++){
//prnt("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]);
//get highest 2 RF values (might need to get more values to compare or compare all?)
if (rfCnts[i]>rfCnts[rfHighest]){
rfHighest3=rfHighest2;
@ -1281,12 +1309,13 @@ uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fc
} else if(rfCnts[i]>rfCnts[rfHighest3]){
rfHighest3=i;
}
if (g_debugMode==2) prnt("DEBUG FSK: RF %d, cnts %d",rfLens[i], rfCnts[i]);
}
// set allowed clock remainder tolerance to be 1 large field clock length+1
// we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off
uint8_t tol1 = fcHigh+1;
//prnt("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
if (g_debugMode==2) prnt("DEBUG FSK: most counted rf values: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]);
// loop to find the highest clock that has a remainder less than the tolerance
// compare samples counted divided by
@ -1296,6 +1325,7 @@ uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fc
if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){
if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){
if (g_debugMode==2) prnt("DEBUG FSK: clk %d divides into the 3 most rf values within tolerance",clk[ii]);
break;
}
}
@ -1362,7 +1392,6 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
uint16_t maxCnt1=0;
// go through fclens and find which ones are bigest 2
for (i=0; i<15; i++){
//prnt("DEBUG: FC %d, Cnt %d",fcLens[i],fcCnts[i]);
// get the 3 best FC values
if (fcCnts[i]>maxCnt1) {
best3=best2;
@ -1375,6 +1404,7 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
} else if(fcCnts[i]>fcCnts[best3]){
best3=i;
}
if (g_debugMode==2) prnt("DEBUG countfc: FC %u, Cnt %u, best fc: %u, best2 fc: %u",fcLens[i],fcCnts[i],fcLens[best1],fcLens[best2]);
}
if (fcLens[best1]==0) return 0;
uint8_t fcH=0, fcL=0;
@ -1385,13 +1415,13 @@ uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj)
fcH=fcLens[best2];
fcL=fcLens[best1];
}
//prnt("DEBUG: dd %d > %d",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) return 0; //lots of waves not psk or fsk
if ((size-180)/fcH/3 > fcCnts[best1]+fcCnts[best2]) {
if (g_debugMode==2) prnt("DEBUG countfc: fc is too large: %u > %u. Not psk or fsk",(size-180)/fcH/3,fcCnts[best1]+fcCnts[best2]);
return 0; //lots of waves not psk or fsk
}
// TODO: take top 3 answers and compare to known Field clocks to get top 2
uint16_t fcs = (((uint16_t)fcH)<<8) | fcL;
//prnt("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]);
if (fskAdj) return fcs;
return fcLens[best1];
}

View file

@ -16,6 +16,7 @@
#include <stdint.h>
//generic
size_t addParity(uint8_t *BitSource, uint8_t *dest, uint8_t sourceLen, uint8_t pLen, uint8_t pType);
int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType);
int BiphaseRawDecode(uint8_t * BitStream, size_t *size, int offset, int invert);
uint32_t bytebits_to_byte(uint8_t* src, size_t numbits);