changing {} style to match majority of previous style

This commit is contained in:
Philippe Teuwen 2019-03-10 11:20:22 +01:00
commit 961d929f4d
320 changed files with 5502 additions and 10485 deletions

View file

@ -145,8 +145,7 @@ bitslice_test_nonces_t bitslice_test_nonces_dispatch;
#define malloc_bitslice(x) __builtin_assume_aligned(_aligned_malloc((x), MAX_BITSLICES/8), MAX_BITSLICES/8)
#define free_bitslice(x) _aligned_free(x)
#elif defined (__APPLE__)
static void *malloc_bitslice(size_t x)
{
static void *malloc_bitslice(size_t x) {
char *allocated_memory;
if (posix_memalign((void **)&allocated_memory, MAX_BITSLICES / 8, x)) {
return NULL;
@ -174,8 +173,7 @@ static bitslice_t bs_ones;
static bitslice_t bs_zeroes;
void BITSLICE_TEST_NONCES(uint32_t nonces_to_bruteforce, uint32_t *bf_test_nonce, uint8_t *bf_test_nonce_par)
{
void BITSLICE_TEST_NONCES(uint32_t nonces_to_bruteforce, uint32_t *bf_test_nonce, uint8_t *bf_test_nonce_par) {
// initialize 1 and 0 vectors
memset(bs_ones.bytes, 0xff, VECTOR_SIZE);
@ -207,8 +205,7 @@ void BITSLICE_TEST_NONCES(uint32_t nonces_to_bruteforce, uint32_t *bf_test_nonce
}
const uint64_t CRACK_STATES_BITSLICED(uint32_t cuid, uint8_t *best_first_bytes, statelist_t *p, uint32_t *keys_found, uint64_t *num_keys_tested, uint32_t nonces_to_bruteforce, uint8_t *bf_test_nonce_2nd_byte, noncelist_t *nonces)
{
const uint64_t CRACK_STATES_BITSLICED(uint32_t cuid, uint8_t *best_first_bytes, statelist_t *p, uint32_t *keys_found, uint64_t *num_keys_tested, uint32_t nonces_to_bruteforce, uint8_t *bf_test_nonce_2nd_byte, noncelist_t *nonces) {
// Unlike aczid's implementation this doesn't roll back at all when performing bitsliced bruteforce.
// We know that the best first byte is already shifted in. Testing with the remaining three bytes of
@ -432,11 +429,11 @@ const uint64_t CRACK_STATES_BITSLICED(uint32_t cuid, uint8_t *best_first_bytes,
// the short-circuiting also helps
if (results.bytes64[0] == 0
#if MAX_BITSLICES > 64
&& results.bytes64[1] == 0
&& results.bytes64[1] == 0
#endif
#if MAX_BITSLICES > 128
&& results.bytes64[2] == 0
&& results.bytes64[3] == 0
&& results.bytes64[2] == 0
&& results.bytes64[3] == 0
#endif
) {
#if defined (DEBUG_BRUTE_FORCE)
@ -551,16 +548,14 @@ bitslice_test_nonces_t *bitslice_test_nonces_function_p = &bitslice_test_nonces_
static SIMDExecInstr intSIMDInstr = SIMD_AUTO;
void SetSIMDInstr(SIMDExecInstr instr)
{
void SetSIMDInstr(SIMDExecInstr instr) {
intSIMDInstr = instr;
crack_states_bitsliced_function_p = &crack_states_bitsliced_dispatch;
bitslice_test_nonces_function_p = &bitslice_test_nonces_dispatch;
}
SIMDExecInstr GetSIMDInstr()
{
SIMDExecInstr GetSIMDInstr() {
SIMDExecInstr instr = SIMD_NONE;
#if defined (__i386__) || defined (__x86_64__)
@ -582,8 +577,7 @@ SIMDExecInstr GetSIMDInstr()
return instr;
}
SIMDExecInstr GetSIMDInstrAuto()
{
SIMDExecInstr GetSIMDInstrAuto() {
SIMDExecInstr instr = intSIMDInstr;
if (instr == SIMD_AUTO)
return GetSIMDInstr();
@ -592,8 +586,7 @@ SIMDExecInstr GetSIMDInstrAuto()
}
// determine the available instruction set at runtime and call the correct function
const uint64_t crack_states_bitsliced_dispatch(uint32_t cuid, uint8_t *best_first_bytes, statelist_t *p, uint32_t *keys_found, uint64_t *num_keys_tested, uint32_t nonces_to_bruteforce, uint8_t *bf_test_nonce_2nd_byte, noncelist_t *nonces)
{
const uint64_t crack_states_bitsliced_dispatch(uint32_t cuid, uint8_t *best_first_bytes, statelist_t *p, uint32_t *keys_found, uint64_t *num_keys_tested, uint32_t nonces_to_bruteforce, uint8_t *bf_test_nonce_2nd_byte, noncelist_t *nonces) {
switch (GetSIMDInstrAuto()) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
@ -625,8 +618,7 @@ const uint64_t crack_states_bitsliced_dispatch(uint32_t cuid, uint8_t *best_firs
return (*crack_states_bitsliced_function_p)(cuid, best_first_bytes, p, keys_found, num_keys_tested, nonces_to_bruteforce, bf_test_nonce_2nd_byte, nonces);
}
void bitslice_test_nonces_dispatch(uint32_t nonces_to_bruteforce, uint32_t *bf_test_nonce, uint8_t *bf_test_nonce_par)
{
void bitslice_test_nonces_dispatch(uint32_t nonces_to_bruteforce, uint32_t *bf_test_nonce, uint8_t *bf_test_nonce_par) {
switch (GetSIMDInstrAuto()) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
@ -659,13 +651,11 @@ void bitslice_test_nonces_dispatch(uint32_t nonces_to_bruteforce, uint32_t *bf_t
}
// Entries to dispatched function calls
const uint64_t crack_states_bitsliced(uint32_t cuid, uint8_t *best_first_bytes, statelist_t *p, uint32_t *keys_found, uint64_t *num_keys_tested, uint32_t nonces_to_bruteforce, uint8_t *bf_test_nonce_2nd_byte, noncelist_t *nonces)
{
const uint64_t crack_states_bitsliced(uint32_t cuid, uint8_t *best_first_bytes, statelist_t *p, uint32_t *keys_found, uint64_t *num_keys_tested, uint32_t nonces_to_bruteforce, uint8_t *bf_test_nonce_2nd_byte, noncelist_t *nonces) {
return (*crack_states_bitsliced_function_p)(cuid, best_first_bytes, p, keys_found, num_keys_tested, nonces_to_bruteforce, bf_test_nonce_2nd_byte, nonces);
}
void bitslice_test_nonces(uint32_t nonces_to_bruteforce, uint32_t *bf_test_nonce, uint8_t *bf_test_nonce_par)
{
void bitslice_test_nonces(uint32_t nonces_to_bruteforce, uint32_t *bf_test_nonce, uint8_t *bf_test_nonce_par) {
(*bitslice_test_nonces_function_p)(nonces_to_bruteforce, bf_test_nonce, bf_test_nonce_par);
}

View file

@ -143,8 +143,7 @@ typedef uint32_t count_bitarray_AND4_t(uint32_t *, uint32_t *, uint32_t *, uint3
count_bitarray_AND4_t count_bitarray_AND4_AVX512, count_bitarray_AND4_AVX2, count_bitarray_AND4_AVX, count_bitarray_AND4_SSE2, count_bitarray_AND4_MMX, count_bitarray_AND4_NOSIMD, count_bitarray_AND4_dispatch;
inline uint32_t *MALLOC_BITARRAY(uint32_t x)
{
inline uint32_t *MALLOC_BITARRAY(uint32_t x) {
#if defined (_WIN32)
return __builtin_assume_aligned(_aligned_malloc((x), __BIGGEST_ALIGNMENT__), __BIGGEST_ALIGNMENT__);
#elif defined (__APPLE__)
@ -160,8 +159,7 @@ inline uint32_t *MALLOC_BITARRAY(uint32_t x)
}
inline void FREE_BITARRAY(uint32_t *x)
{
inline void FREE_BITARRAY(uint32_t *x) {
#ifdef _WIN32
_aligned_free(x);
#else
@ -170,14 +168,12 @@ inline void FREE_BITARRAY(uint32_t *x)
}
inline uint32_t BITCOUNT(uint32_t a)
{
inline uint32_t BITCOUNT(uint32_t a) {
return __builtin_popcountl(a);
}
inline uint32_t COUNT_STATES(uint32_t *A)
{
inline uint32_t COUNT_STATES(uint32_t *A) {
uint32_t count = 0;
for (uint32_t i = 0; i < (1 << 19); i++) {
count += BITCOUNT(A[i]);
@ -186,8 +182,7 @@ inline uint32_t COUNT_STATES(uint32_t *A)
}
inline void BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B)
{
inline void BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B) {
A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
for (uint32_t i = 0; i < (1 << 19); i++) {
@ -196,8 +191,7 @@ inline void BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B)
}
inline void BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B)
{
inline void BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B) {
uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
@ -209,8 +203,7 @@ inline void BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B)
}
inline uint32_t COUNT_BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B)
{
inline uint32_t COUNT_BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B) {
A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
uint32_t count = 0;
@ -222,8 +215,7 @@ inline uint32_t COUNT_BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B)
}
inline uint32_t COUNT_BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B)
{
inline uint32_t COUNT_BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B) {
uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
uint32_t count = 0;
@ -238,8 +230,7 @@ inline uint32_t COUNT_BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restric
}
inline void BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D)
{
inline void BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D) {
A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__);
@ -250,8 +241,7 @@ inline void BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *
}
inline void BITARRAY_OR(uint32_t *restrict A, uint32_t *restrict B)
{
inline void BITARRAY_OR(uint32_t *restrict A, uint32_t *restrict B) {
A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
for (uint32_t i = 0; i < (1 << 19); i++) {
@ -260,8 +250,7 @@ inline void BITARRAY_OR(uint32_t *restrict A, uint32_t *restrict B)
}
inline uint32_t COUNT_BITARRAY_AND2(uint32_t *restrict A, uint32_t *restrict B)
{
inline uint32_t COUNT_BITARRAY_AND2(uint32_t *restrict A, uint32_t *restrict B) {
A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
uint32_t count = 0;
@ -272,8 +261,7 @@ inline uint32_t COUNT_BITARRAY_AND2(uint32_t *restrict A, uint32_t *restrict B)
}
inline uint32_t COUNT_BITARRAY_AND3(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C)
{
inline uint32_t COUNT_BITARRAY_AND3(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C) {
A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__);
@ -285,8 +273,7 @@ inline uint32_t COUNT_BITARRAY_AND3(uint32_t *restrict A, uint32_t *restrict B,
}
inline uint32_t COUNT_BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D)
{
inline uint32_t COUNT_BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D) {
A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__);
B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__);
C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__);
@ -317,8 +304,7 @@ count_bitarray_AND3_t *count_bitarray_AND3_function_p = &count_bitarray_AND3_dis
count_bitarray_AND4_t *count_bitarray_AND4_function_p = &count_bitarray_AND4_dispatch;
// determine the available instruction set at runtime and call the correct function
uint32_t *malloc_bitarray_dispatch(uint32_t x)
{
uint32_t *malloc_bitarray_dispatch(uint32_t x) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -339,8 +325,7 @@ uint32_t *malloc_bitarray_dispatch(uint32_t x)
return (*malloc_bitarray_function_p)(x);
}
void free_bitarray_dispatch(uint32_t *x)
{
void free_bitarray_dispatch(uint32_t *x) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -361,8 +346,7 @@ void free_bitarray_dispatch(uint32_t *x)
(*free_bitarray_function_p)(x);
}
uint32_t bitcount_dispatch(uint32_t a)
{
uint32_t bitcount_dispatch(uint32_t a) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -383,8 +367,7 @@ uint32_t bitcount_dispatch(uint32_t a)
return (*bitcount_function_p)(a);
}
uint32_t count_states_dispatch(uint32_t *bitarray)
{
uint32_t count_states_dispatch(uint32_t *bitarray) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -405,8 +388,7 @@ uint32_t count_states_dispatch(uint32_t *bitarray)
return (*count_states_function_p)(bitarray);
}
void bitarray_AND_dispatch(uint32_t *A, uint32_t *B)
{
void bitarray_AND_dispatch(uint32_t *A, uint32_t *B) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -427,8 +409,7 @@ void bitarray_AND_dispatch(uint32_t *A, uint32_t *B)
(*bitarray_AND_function_p)(A, B);
}
void bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B)
{
void bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -449,8 +430,7 @@ void bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B)
(*bitarray_low20_AND_function_p)(A, B);
}
uint32_t count_bitarray_AND_dispatch(uint32_t *A, uint32_t *B)
{
uint32_t count_bitarray_AND_dispatch(uint32_t *A, uint32_t *B) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -471,8 +451,7 @@ uint32_t count_bitarray_AND_dispatch(uint32_t *A, uint32_t *B)
return (*count_bitarray_AND_function_p)(A, B);
}
uint32_t count_bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B)
{
uint32_t count_bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -493,8 +472,7 @@ uint32_t count_bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B)
return (*count_bitarray_low20_AND_function_p)(A, B);
}
void bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D)
{
void bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -515,8 +493,7 @@ void bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D)
(*bitarray_AND4_function_p)(A, B, C, D);
}
void bitarray_OR_dispatch(uint32_t *A, uint32_t *B)
{
void bitarray_OR_dispatch(uint32_t *A, uint32_t *B) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -537,8 +514,7 @@ void bitarray_OR_dispatch(uint32_t *A, uint32_t *B)
(*bitarray_OR_function_p)(A, B);
}
uint32_t count_bitarray_AND2_dispatch(uint32_t *A, uint32_t *B)
{
uint32_t count_bitarray_AND2_dispatch(uint32_t *A, uint32_t *B) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -559,8 +535,7 @@ uint32_t count_bitarray_AND2_dispatch(uint32_t *A, uint32_t *B)
return (*count_bitarray_AND2_function_p)(A, B);
}
uint32_t count_bitarray_AND3_dispatch(uint32_t *A, uint32_t *B, uint32_t *C)
{
uint32_t count_bitarray_AND3_dispatch(uint32_t *A, uint32_t *B, uint32_t *C) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -581,8 +556,7 @@ uint32_t count_bitarray_AND3_dispatch(uint32_t *A, uint32_t *B, uint32_t *C)
return (*count_bitarray_AND3_function_p)(A, B, C);
}
uint32_t count_bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D)
{
uint32_t count_bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
#if defined (__i386__) || defined (__x86_64__)
#if !defined(__APPLE__) || (defined(__APPLE__) && (__clang_major__ > 8 || __clang_major__ == 8 && __clang_minor__ >= 1))
#if (__GNUC__ >= 5) && (__GNUC__ > 5 || __GNUC_MINOR__ > 2)
@ -607,68 +581,55 @@ uint32_t count_bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uin
///////////////////////////////////////////////77
// Entries to dispatched function calls
uint32_t *malloc_bitarray(uint32_t x)
{
uint32_t *malloc_bitarray(uint32_t x) {
return (*malloc_bitarray_function_p)(x);
}
void free_bitarray(uint32_t *x)
{
void free_bitarray(uint32_t *x) {
(*free_bitarray_function_p)(x);
}
uint32_t bitcount(uint32_t a)
{
uint32_t bitcount(uint32_t a) {
return (*bitcount_function_p)(a);
}
uint32_t count_states(uint32_t *bitarray)
{
uint32_t count_states(uint32_t *bitarray) {
return (*count_states_function_p)(bitarray);
}
void bitarray_AND(uint32_t *A, uint32_t *B)
{
void bitarray_AND(uint32_t *A, uint32_t *B) {
(*bitarray_AND_function_p)(A, B);
}
void bitarray_low20_AND(uint32_t *A, uint32_t *B)
{
void bitarray_low20_AND(uint32_t *A, uint32_t *B) {
(*bitarray_low20_AND_function_p)(A, B);
}
uint32_t count_bitarray_AND(uint32_t *A, uint32_t *B)
{
uint32_t count_bitarray_AND(uint32_t *A, uint32_t *B) {
return (*count_bitarray_AND_function_p)(A, B);
}
uint32_t count_bitarray_low20_AND(uint32_t *A, uint32_t *B)
{
uint32_t count_bitarray_low20_AND(uint32_t *A, uint32_t *B) {
return (*count_bitarray_low20_AND_function_p)(A, B);
}
void bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D)
{
void bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
(*bitarray_AND4_function_p)(A, B, C, D);
}
void bitarray_OR(uint32_t *A, uint32_t *B)
{
void bitarray_OR(uint32_t *A, uint32_t *B) {
(*bitarray_OR_function_p)(A, B);
}
uint32_t count_bitarray_AND2(uint32_t *A, uint32_t *B)
{
uint32_t count_bitarray_AND2(uint32_t *A, uint32_t *B) {
return (*count_bitarray_AND2_function_p)(A, B);
}
uint32_t count_bitarray_AND3(uint32_t *A, uint32_t *B, uint32_t *C)
{
uint32_t count_bitarray_AND3(uint32_t *A, uint32_t *B, uint32_t *C) {
return (*count_bitarray_AND3_function_p)(A, B, C);
}
uint32_t count_bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D)
{
uint32_t count_bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) {
return (*count_bitarray_AND4_function_p)(A, B, C, D);
}

View file

@ -89,8 +89,7 @@ static uint32_t keys_found = 0;
static uint64_t num_keys_tested;
static uint64_t found_bs_key = 0;
inline uint8_t trailing_zeros(uint8_t byte)
{
inline uint8_t trailing_zeros(uint8_t byte) {
static const uint8_t trailing_zeros_LUT[256] = {
8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
@ -114,8 +113,7 @@ inline uint8_t trailing_zeros(uint8_t byte)
}
bool verify_key(uint32_t cuid, noncelist_t *nonces, uint8_t *best_first_bytes, uint32_t odd, uint32_t even)
{
bool verify_key(uint32_t cuid, noncelist_t *nonces, uint8_t *best_first_bytes, uint32_t odd, uint32_t even) {
struct Crypto1State pcs;
for (uint16_t test_first_byte = 1; test_first_byte < 256; test_first_byte++) {
noncelistentry_t *test_nonce = nonces[best_first_bytes[test_first_byte]].first;
@ -144,8 +142,7 @@ static void *
__attribute__((force_align_arg_pointer))
#endif
#endif
crack_states_thread(void *x)
{
crack_states_thread(void *x) {
struct arg {
bool silent;
int thread_ID;
@ -193,8 +190,7 @@ crack_states_thread(void *x)
}
void prepare_bf_test_nonces(noncelist_t *nonces, uint8_t best_first_byte)
{
void prepare_bf_test_nonces(noncelist_t *nonces, uint8_t best_first_byte) {
// we do bitsliced brute forcing with best_first_bytes[0] only.
// Extract the corresponding 2nd bytes
noncelistentry_t *test_nonce = nonces[best_first_byte].first;
@ -221,13 +217,13 @@ void prepare_bf_test_nonces(noncelist_t *nonces, uint8_t best_first_byte)
if (n2 != n1) {
for (uint16_t n3 = 0; n3 < nonces_to_bruteforce; n3++) {
if ((n3 != n2 && n3 != n1) || nonces_to_bruteforce < 3
// && trailing_zeros(bf_test_nonce_2nd_byte[n1] ^ bf_test_nonce_2nd_byte[n2])
// > trailing_zeros(bf_test_nonce_2nd_byte[n2] ^ bf_test_nonce_2nd_byte[n3])
// && trailing_zeros(bf_test_nonce_2nd_byte[n1] ^ bf_test_nonce_2nd_byte[n2])
// > trailing_zeros(bf_test_nonce_2nd_byte[n2] ^ bf_test_nonce_2nd_byte[n3])
) {
for (uint16_t n4 = 0; n4 < nonces_to_bruteforce; n4++) {
if ((n4 != n3 && n4 != n2 && n4 != n1) || nonces_to_bruteforce < 4
// && trailing_zeros(bf_test_nonce_2nd_byte[n2] ^ bf_test_nonce_2nd_byte[n3])
// > trailing_zeros(bf_test_nonce_2nd_byte[n3] ^ bf_test_nonce_2nd_byte[n4])
// && trailing_zeros(bf_test_nonce_2nd_byte[n2] ^ bf_test_nonce_2nd_byte[n3])
// > trailing_zeros(bf_test_nonce_2nd_byte[n3] ^ bf_test_nonce_2nd_byte[n4])
) {
int sum = nonces_to_bruteforce > 1 ? trailing_zeros(bf_test_nonce_2nd_byte[n1] ^ bf_test_nonce_2nd_byte[n2]) : 0.0
+ nonces_to_bruteforce > 2 ? trailing_zeros(bf_test_nonce_2nd_byte[n2] ^ bf_test_nonce_2nd_byte[n3]) : 0.0
@ -265,8 +261,7 @@ void prepare_bf_test_nonces(noncelist_t *nonces, uint8_t best_first_byte)
#if defined (WRITE_BENCH_FILE)
static void write_benchfile(statelist_t *candidates)
{
static void write_benchfile(statelist_t *candidates) {
printf("Writing brute force benchmark data...");
FILE *benchfile = fopen(TEST_BENCH_FILENAME, "wb");
@ -291,8 +286,7 @@ static void write_benchfile(statelist_t *candidates)
#endif
bool brute_force_bs(float *bf_rate, statelist_t *candidates, uint32_t cuid, uint32_t num_acquired_nonces, uint64_t maximum_states, noncelist_t *nonces, uint8_t *best_first_bytes, uint64_t *foundkey)
{
bool brute_force_bs(float *bf_rate, statelist_t *candidates, uint32_t cuid, uint32_t num_acquired_nonces, uint64_t maximum_states, noncelist_t *nonces, uint8_t *best_first_bytes, uint64_t *foundkey) {
#if defined (WRITE_BENCH_FILE)
write_benchfile(candidates);
#endif
@ -357,8 +351,7 @@ bool brute_force_bs(float *bf_rate, statelist_t *candidates, uint32_t cuid, uint
}
static bool read_bench_data(statelist_t *test_candidates)
{
static bool read_bench_data(statelist_t *test_candidates) {
size_t bytes_read = 0;
uint32_t temp = 0;
@ -429,8 +422,7 @@ static bool read_bench_data(statelist_t *test_candidates)
}
float brute_force_benchmark()
{
float brute_force_benchmark() {
statelist_t test_candidates[NUM_BRUTE_FORCE_THREADS];
test_candidates[0].states[ODD_STATE] = malloc((TEST_BENCH_SIZE + 1) * sizeof(uint32_t));

View file

@ -38,8 +38,7 @@ typedef enum {
} odd_even_t;
static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
{
static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) {
uint16_t sum = 0;
for (uint16_t j = 0; j < 16; j++) {
uint32_t st = state;
@ -68,26 +67,22 @@ static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even)
#define malloc_bitarray(x) __builtin_assume_aligned(_aligned_malloc(x, __BIGGEST_ALIGNMENT__), __BIGGEST_ALIGNMENT__)
#define free_bitarray(x) _aligned_free(x)
static inline void clear_bitarray24(uint32_t *bitarray)
{
static inline void clear_bitarray24(uint32_t *bitarray) {
memset(bitarray, 0x00, sizeof(uint32_t) * (1 << 19));
}
static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index)
{
static inline uint32_t test_bit24(uint32_t *bitarray, uint32_t index) {
return bitarray[index >> 5] & (0x80000000 >> (index & 0x0000001f));
}
static inline void set_bit24(uint32_t *bitarray, uint32_t index)
{
static inline void set_bit24(uint32_t *bitarray, uint32_t index) {
bitarray[index >> 5] |= 0x80000000 >> (index & 0x0000001f);
}
static inline uint32_t next_state(uint32_t *bitset, uint32_t state)
{
static inline uint32_t next_state(uint32_t *bitset, uint32_t state) {
if (++state == 1 << 24) return 1 << 24;
uint32_t index = state >> 5;
uint_fast8_t bit = state & 0x1f;
@ -120,8 +115,7 @@ static inline uint32_t next_state(uint32_t *bitset, uint32_t state)
}
static inline uint32_t next_not_state(uint32_t *bitset, uint32_t state)
{
static inline uint32_t next_not_state(uint32_t *bitset, uint32_t state) {
if (++state == 1 << 24) return 1 << 24;
uint32_t index = state >> 5;
uint_fast8_t bit = state & 0x1f;
@ -154,8 +148,7 @@ static inline uint32_t next_not_state(uint32_t *bitset, uint32_t state)
}
static inline uint32_t bitcount(uint32_t a)
{
static inline uint32_t bitcount(uint32_t a) {
#if defined __GNUC__
return __builtin_popcountl(a);
#else
@ -166,8 +159,7 @@ static inline uint32_t bitcount(uint32_t a)
}
static inline uint32_t count_states(uint32_t *bitset)
{
static inline uint32_t count_states(uint32_t *bitset) {
uint32_t count = 0;
for (uint32_t i = 0; i < (1 << 19); i++) {
count += bitcount(bitset[i]);
@ -176,8 +168,7 @@ static inline uint32_t count_states(uint32_t *bitset)
}
static void write_bitflips_file(odd_even_t odd_even, uint16_t bitflip, int sum_a0, uint32_t *bitset, uint32_t count)
{
static void write_bitflips_file(odd_even_t odd_even, uint16_t bitflip, int sum_a0, uint32_t *bitset, uint32_t count) {
char filename[80];
sprintf(filename, "bitflip_%d_%03" PRIx16 "_sum%d_states.bin", odd_even, bitflip, sum_a0);
FILE *outfile = fopen(filename, "wb");
@ -189,8 +180,7 @@ static void write_bitflips_file(odd_even_t odd_even, uint16_t bitflip, int sum_a
uint32_t *restrict part_sum_a0_bitarrays[2][NUM_PART_SUMS];
static void init_part_sum_bitarrays(void)
{
static void init_part_sum_bitarrays(void) {
printf("init_part_sum_bitarrays()...");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
for (uint16_t part_sum_a0 = 0; part_sum_a0 < NUM_PART_SUMS; part_sum_a0++) {
@ -215,8 +205,7 @@ static void init_part_sum_bitarrays(void)
}
static void free_part_sum_bitarrays(void)
{
static void free_part_sum_bitarrays(void) {
printf("free_part_sum_bitarrays()...");
for (int16_t part_sum_a0 = (NUM_PART_SUMS - 1); part_sum_a0 >= 0; part_sum_a0--) {
free_bitarray(part_sum_a0_bitarrays[ODD_STATE][part_sum_a0]);
@ -229,8 +218,7 @@ static void free_part_sum_bitarrays(void)
uint32_t *restrict sum_a0_bitarray[2];
void init_sum_bitarray(uint16_t sum_a0)
{
void init_sum_bitarray(uint16_t sum_a0) {
printf("init_sum_bitarray()...\n");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
sum_a0_bitarray[odd_even] = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * (1 << 19));
@ -258,8 +246,7 @@ void init_sum_bitarray(uint16_t sum_a0)
}
static void free_sum_bitarray(void)
{
static void free_sum_bitarray(void) {
printf("free_sum_bitarray()...");
free_bitarray(sum_a0_bitarray[ODD_STATE]);
free_bitarray(sum_a0_bitarray[EVEN_STATE]);
@ -267,8 +254,7 @@ static void free_sum_bitarray(void)
}
static void precalculate_bit0_bitflip_bitarrays(uint8_t const bitflip, uint16_t const sum_a0)
{
static void precalculate_bit0_bitflip_bitarrays(uint8_t const bitflip, uint16_t const sum_a0) {
// #define TEST_RUN
#ifdef TEST_RUN
#define NUM_TEST_STATES (1<<10)
@ -529,8 +515,7 @@ static void precalculate_bit0_bitflip_bitarrays(uint8_t const bitflip, uint16_t
}
int main(int argc, char *argv[])
{
int main(int argc, char *argv[]) {
unsigned int bitflip_in;
int sum_a0;