hitag signal refactoring

This commit is contained in:
iceman1001 2020-01-14 22:08:43 +01:00
commit 89bae75c55
7 changed files with 523 additions and 340 deletions

View file

@ -23,7 +23,7 @@ APP_CFLAGS = $(PLATFORM_DEFS) \
-DON_DEVICE \ -DON_DEVICE \
-fno-strict-aliasing -ffunction-sections -fdata-sections -fno-strict-aliasing -ffunction-sections -fdata-sections
SRC_LF = lfops.c lfsampling.c pcf7931.c lfdemod.c SRC_LF = lfops.c lfsampling.c pcf7931.c lfdemod.c lfadc.c
SRC_ISO15693 = iso15693.c iso15693tools.c SRC_ISO15693 = iso15693.c iso15693tools.c
SRC_ISO14443a = iso14443a.c mifareutil.c mifarecmd.c epa.c mifaresim.c SRC_ISO14443a = iso14443a.c mifareutil.c mifarecmd.c epa.c mifaresim.c
#UNUSED: mifaresniff.c desfire_crypto.c #UNUSED: mifaresniff.c desfire_crypto.c

View file

@ -17,6 +17,7 @@
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Piwi, 2019 // Piwi, 2019
// Iceman, 2019 // Iceman, 2019
// Anon, 2019
#include "hitag2.h" #include "hitag2.h"
#include "hitag2_crypto.h" #include "hitag2_crypto.h"
@ -28,12 +29,18 @@
#include "ticks.h" #include "ticks.h"
#include "dbprint.h" #include "dbprint.h"
#include "util.h" #include "util.h"
#include "lfadc.h"
#include "lfsampling.h"
#include "lfdemod.h"
#include "commonutil.h"
// Successful crypto auth // Successful crypto auth
static bool bCrypto; static bool bCrypto;
// Is in auth stage // Is in auth stage
static bool bAuthenticating; static bool bAuthenticating;
// Successful password auth // Successful password auth
bool bSelecting;
bool bCollision;
static bool bPwd; static bool bPwd;
static bool bSuccessful; static bool bSuccessful;
@ -52,6 +59,7 @@ static struct hitag2_tag tag = {
[9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High [9] = { 0x00, 0x00, 0x00, 0x00}, // RSK High
[10] = { 0x00, 0x00, 0x00, 0x00}, // RCF [10] = { 0x00, 0x00, 0x00, 0x00}, // RCF
[11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC [11] = { 0x00, 0x00, 0x00, 0x00}, // SYNC
// up to index 15 reserved for HITAG1/HITAGS public data
}, },
}; };
@ -73,6 +81,9 @@ static uint8_t password[4];
static uint8_t NrAr[8]; static uint8_t NrAr[8];
static uint8_t key[8]; static uint8_t key[8];
static uint8_t writedata[4]; static uint8_t writedata[4];
uint8_t logdata_0[4], logdata_1[4];
uint8_t nonce[4];
bool key_no;
static uint64_t cipher_state; static uint64_t cipher_state;
static int hitag2_reset(void) { static int hitag2_reset(void) {
@ -288,29 +299,26 @@ static void hitag2_handle_reader_command(uint8_t *rx, const size_t rxlen, uint8_
// sim // sim
static void hitag_reader_send_bit(int bit) { static void hitag_reader_send_bit(int bit) {
LED_A_ON(); LED_A_ON();
// Reset clock for the next bit // Binary pulse length modulation (BPLM) is used to encode the data stream
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
// Binary puls length modulation (BPLM) is used to encode the data stream
// This means that a transmission of a one takes longer than that of a zero // This means that a transmission of a one takes longer than that of a zero
// Enable modulation, which means, drop the field // Enable modulation, which means, drop the field
HIGH(GPIO_SSC_DOUT); lf_modulation(true);
// Wait for 4-10 times the carrier period // Wait for 4-10 times the carrier period
while (AT91C_BASE_TC0->TC_CV < T0 * 6) {}; lf_wait_periods(8); // wait for 4-10 times the carrier period
// Disable modulation, just activates the field again // Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT); lf_modulation(false);
if (bit == 0) { if (bit == 0) {
// Zero bit: |_-| // Zero bit: |_-|
while (AT91C_BASE_TC0->TC_CV < T0 * 22) {}; lf_wait_periods(12); // wait for 18-22 times the carrier period
} else { } else {
// One bit: |_--| // One bit: |_--|
while (AT91C_BASE_TC0->TC_CV < T0 * 28) {}; lf_wait_periods(22); // wait for 26-32 times the carrier period
} }
/*lf_wait_periods(10);*/
LED_A_OFF(); LED_A_OFF();
} }
@ -320,18 +328,243 @@ static void hitag_reader_send_frame(const uint8_t *frame, size_t frame_len) {
for (size_t i = 0; i < frame_len; i++) { for (size_t i = 0; i < frame_len; i++) {
hitag_reader_send_bit((frame[i / 8] >> (7 - (i % 8))) & 1); hitag_reader_send_bit((frame[i / 8] >> (7 - (i % 8))) & 1);
} }
// Send EOF // Enable modulation, which means, drop the field
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; lf_modulation(true);
// Enable modulation, which means, drop the field
HIGH(GPIO_SSC_DOUT);
// Wait for 4-10 times the carrier period // Wait for 4-10 times the carrier period
while (AT91C_BASE_TC0->TC_CV < T0 * 6) {}; lf_wait_periods(8);
// Disable modulation, just activates the field again // Disable modulation, just activates the field again
LOW(GPIO_SSC_DOUT); lf_modulation(false);
// t_stop, high field for stop condition (> 36)
lf_wait_periods(28);
} }
size_t blocknr; size_t blocknr;
uint8_t hitag_crc(uint8_t *data, size_t length){
uint8_t crc = 0xff;
unsigned int byte, bit;
for(byte=0; byte<((length+7)/8); byte++){
crc ^= *(data + byte);
bit = length < (8*(byte+1)) ? (length % 8) : 8;
while(bit--){
if(crc & 0x80){
crc<<=1;
crc ^= 0x1d;
} else {
crc<<=1;
}
}
}
return crc;
}
#define test_bit(data, i) (*(data+(i/8)) >> (7-(i%8))) & 1
#define set_bit(data, i) *(data+(i/8)) |= (1 << (7-(i%8)))
#define clear_bit(data, i) *(data+(i/8)) &= ~(1 << (7-(i%8)))
#define flip_bit(data, i) *(data+(i/8)) ^= (1 << (7-(i%8)))
void fix_ac_decoding(uint8_t *input, size_t len){
// Reader routine tries to decode AC data after Manchester decoding
// AC has double the bitrate, extract data from bit-pairs
uint8_t temp[len / 16];
memset(temp, 0, sizeof(temp));
for (size_t i = 1; i < len; i += 2) {
if (test_bit(input, i) && test_bit(input, (i + 1))){
set_bit(temp, (i / 2));
}
}
memcpy(input, temp, sizeof(temp));
}
bool hitag_plain(uint8_t* rx, const size_t rxlen, uint8_t* tx, size_t* txlen, bool hitag_s) {
uint8_t crc;
*txlen = 0;
switch (rxlen) {
case 0: {
// retry waking up card
/*tx[0] = 0xb0; // Rev 3.0*/
tx[0] = 0x30; // Rev 2.0
*txlen = 5;
if(!bCollision) blocknr--;
if(blocknr < 0) {
blocknr = 0;
}
if(!hitag_s){
if (blocknr > 1 && blocknr < 31) {
blocknr=31;
}
}
bCollision = true;
return true;
}
case 32: {
if(bCollision){
// Select card by serial from response
tx[0] = 0x00 | rx[0] >> 5;
tx[1] = rx[0] << 3 | rx[1] >> 5;
tx[2] = rx[1] << 3 | rx[2] >> 5;
tx[3] = rx[2] << 3 | rx[3] >> 5;
tx[4] = rx[3] << 3;
crc = hitag_crc(tx,37);
tx[4] |= crc >> 5;
tx[5] = crc << 3;
*txlen = 45;
bCollision = false;
} else {
memcpy(tag.sectors[blocknr], rx, 4);
blocknr++;
if(!hitag_s){
if (blocknr > 1 && blocknr < 31) {
blocknr=31;
}
}
if (blocknr > 63) {
DbpString("Read succesful!");
*txlen = 0;
bSuccessful = true;
return false;
}
// read next page of card until done
Dbprintf("Reading page %02u", blocknr);
tx[0] = 0xc0 | blocknr >> 4; // RDPPAGE
tx[1] = blocknr << 4;
crc = hitag_crc(tx,12);
tx[1] |= crc >> 4;
tx[2] = crc << 4;
*txlen = 20;
}
} break;
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
return true;
}
size_t flipped_bit = 0;
uint32_t byte_value = 0;
bool hitag1_authenticate(uint8_t* rx, const size_t rxlen, uint8_t* tx, size_t* txlen) {
uint8_t crc;
*txlen = 0;
switch (rxlen) {
case 0: {
// retry waking up card
/*tx[0] = 0xb0; // Rev 3.0*/
tx[0] = 0x30; // Rev 2.0
*txlen = 5;
if (bCrypto && byte_value <= 0xff){
// to retry
bCrypto = false;
}
if(!bCollision) blocknr--;
if(blocknr < 0) {
blocknr = 0;
}
bCollision = true;
// will receive 32-bit UID
} break;
case 2: {
if (bAuthenticating) {
// received Auth init ACK, send nonce
// TODO Roel, bit-manipulation goes here
/*nonce[0] = 0x2d;*/
/*nonce[1] = 0x74;*/
/*nonce[2] = 0x80;*/
/*nonce[3] = 0xa5;*/
nonce[0]=byte_value;
byte_value++;
/*set_bit(nonce,flipped_bit);*/
memcpy(tx,nonce,4);
*txlen = 32;
// will receive 32 bit encrypted Logdata
} else if (bCrypto) {
// authed, start reading
tx[0] = 0xe0 | blocknr >> 4; // RDCPAGE
tx[1] = blocknr << 4;
crc = hitag_crc(tx,12);
tx[1] |= crc >> 4;
tx[2] = crc << 4;
*txlen = 20;
// will receive 32-bit encrypted page
}
} break;
case 32: {
if (bCollision){
// Select card by serial from response
tx[0] = 0x00 | rx[0] >> 5;
tx[1] = rx[0] << 3 | rx[1] >> 5;
tx[2] = rx[1] << 3 | rx[2] >> 5;
tx[3] = rx[2] << 3 | rx[3] >> 5;
tx[4] = rx[3] << 3;
crc = hitag_crc(tx,37);
tx[4] |= crc >> 5;
tx[5] = crc << 3;
*txlen = 45;
bCollision = false;
bSelecting = true;
// will receive 32-bit configuration page
} else if (bSelecting){
// Initiate auth
tx[0] = 0xa0 | key_no >> 4; // WRCPAGE
tx[1] = blocknr << 4;
crc = hitag_crc(tx,12);
tx[1] |= crc >> 4;
tx[2] = crc << 4;
*txlen = 20;
bSelecting = false;
bAuthenticating = true;
// will receive 2-bit ACK
} else if (bAuthenticating) {
// received 32-bit logdata 0
// TODO decrypt logdata 0, verify against logdata_0
memcpy(tag.sectors[0], rx, 4);
memcpy(tag.sectors[1], tx, 4);
Dbprintf("%02x%02x%02x%02x %02x%02x%02x%02x", rx[0], rx[1], rx[2], rx[3], tx[0], tx[1], tx[2], tx[3]);
// TODO replace with secret data stream
// TODO encrypt logdata_1
memcpy(tx,logdata_1,4);
*txlen = 32;
bAuthenticating = false;
bCrypto = true;
// will receive 2-bit ACK
} else if (bCrypto) {
// received 32-bit encrypted page
// TODO decrypt rx
memcpy(tag.sectors[blocknr],rx,4);
blocknr++;
if (blocknr > 63) {
DbpString("Read succesful!");
bSuccessful = true;
return false;
}
// TEST
Dbprintf("Succesfully authenticated with logdata:");
Dbhexdump(4,logdata_1,false);
bSuccessful = true;
return false;
// read next page of card until done
tx[0] = 0xe0 | blocknr >> 4; // RDCPAGE
tx[1] = blocknr << 4;
crc = hitag_crc(tx,12);
tx[1] |= crc >> 4;
tx[2] = crc << 4;
*txlen = 20;
}
} break;
default: {
Dbprintf("Uknown frame length: %d",rxlen);
return false;
} break;
}
return true;
}
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
// Hitag2 operations // Hitag2 operations
//----------------------------------------------------------------------------- //-----------------------------------------------------------------------------
@ -686,9 +919,11 @@ static bool hitag2_read_uid(uint8_t *rx, const size_t rxlen, uint8_t *tx, size_t
// Store the received block // Store the received block
memcpy(tag.sectors[blocknr], rx, 4); memcpy(tag.sectors[blocknr], rx, 4);
blocknr++; blocknr++;
Dbhexdump(4, rx, false);
} }
if (blocknr > 0) { if (blocknr > 0) {
// DbpString("Read successful!"); DbpString("Read successful!");
bSuccessful = true; bSuccessful = true;
return false; return false;
} }
@ -705,21 +940,11 @@ static bool hitag2_read_uid(uint8_t *rx, const size_t rxlen, uint8_t *tx, size_t
} }
// Hitag2 Sniffing // Hitag2 Sniffing
void SniffHitag(void) { void SniffHitag(uint32_t type) {
LEDsoff();
StopTicks(); StopTicks();
// int frame_count;
int response;
int overflow;
bool rising_edge;
bool reader_frame;
int lastbit;
bool bSkip;
int tag_sof;
uint8_t rx[HITAG_FRAME_LEN];
size_t rxlen = 0;
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
BigBuf_free(); BigBuf_free();
BigBuf_Clear_ext(false); BigBuf_Clear_ext(false);
@ -735,143 +960,41 @@ void SniffHitag(void) {
DbpString("Starting Hitag2 sniffing"); DbpString("Starting Hitag2 sniffing");
LED_D_ON(); LED_D_ON();
// Set up eavesdropping mode, frequency divisor which will drive the FPGA lf_init(false);
// and analog mux selection. logging = false;
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125);
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Configure output pin that is connected to the FPGA (for modulating) size_t periods = 0;
AT91C_BASE_PIOA->PIO_OER |= GPIO_SSC_DOUT; uint8_t periods_bytes[4];
AT91C_BASE_PIOA->PIO_PER |= GPIO_SSC_DOUT;
// Disable modulation, we are going to eavesdrop, not modulate ;) /*bool waiting_for_first_edge = true;*/
LOW(GPIO_SSC_DOUT); LED_C_ON();
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// synchronized startup procedure
while (AT91C_BASE_TC1->TC_CV > 0) {}; // wait until TC1 returned to zero
// Reset the received frame, frame count and timing info
memset(rx, 0x00, sizeof(rx));
// frame_count = 0;
response = 0;
overflow = 0;
reader_frame = false;
lastbit = 1;
bSkip = true;
tag_sof = 4;
while (!BUTTON_PRESS() && !data_available()) { while (!BUTTON_PRESS() && !data_available()) {
// Watchdog hit
WDT_HIT(); WDT_HIT();
// Receive frame, watch for at most T0*EOF periods // Receive frame, watch for at most T0*EOF periods
while (AT91C_BASE_TC1->TC_CV < T0 * HITAG_T_EOF) { lf_reset_counter();
// Check if rising edge in modulation is detected
if (AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA / T0);
// Find out if we are dealing with a rising or falling edge // Wait "infinite" for reader modulation
rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0; periods = lf_detect_gap(20000);
// Shorter periods will only happen with reader frames // Test if we detected the first reader modulation edge
if (!reader_frame && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) { if (periods != 0) {
// Switch from tag to reader capture if (logging == false) {
LED_C_OFF(); logging = true;
reader_frame = true; LED_D_ON();
memset(rx, 0x00, sizeof(rx));
rxlen = 0;
}
// Only handle if reader frame and rising edge, or tag frame and falling edge
if (reader_frame != rising_edge) {
overflow += ra;
continue;
}
// Add the buffered timing values of earlier captured edges which were skipped
ra += overflow;
overflow = 0;
if (reader_frame) {
LED_B_ON();
// Capture reader frame
if (ra >= HITAG_T_STOP) {
if (rxlen != 0) {
//DbpString("wierd0?");
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW);
} else if (ra >= HITAG_T_1_MIN) {
// '1' bit
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
} else if (ra >= HITAG_T_0_MIN) {
// '0' bit
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
} else {
// Ignore wierd value, is to small to mean anything
}
} else {
LED_C_ON();
// Capture tag frame (manchester decoding using only falling edges)
if (ra >= HITAG_T_EOF) {
if (rxlen != 0) {
//DbpString("wierd1?");
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra - HITAG_T_TAG_HALF_PERIOD;
} else if (ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
} else if (ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if (ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7 - (rxlen % 8));
rxlen++;
}
} else {
// Ignore wierd value, is to small to mean anything
}
}
} }
} }
/*lf_count_edge_periods(10000);*/
while ((periods = lf_detect_gap(64)) != 0){
num_to_bytes(periods, 4, periods_bytes);
LogTrace(periods_bytes, 4, 0, 0, NULL, true);
}
/*
// Check if frame was captured // Check if frame was captured
if (rxlen > 0) { if (rxlen > 0) {
// frame_count++; // frame_count++;
@ -885,38 +1008,14 @@ void SniffHitag(void) {
auth_table_len += 8; auth_table_len += 8;
} }
} }
*/
// Reset the received frame and response timing info
memset(rx, 0x00, sizeof(rx));
response = 0;
reader_frame = false;
lastbit = 1;
bSkip = true;
tag_sof = 4;
overflow = 0;
LED_B_OFF();
LED_C_OFF();
} else {
// Save the timer overflow, will be 0 when frame was received
overflow += (AT91C_BASE_TC1->TC_CV / T0);
}
// Reset the frame length
rxlen = 0;
// Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
} }
LEDsoff();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; lf_finalize();
// release allocated memory from BigBuff.
BigBuf_free();
StartTicks(); StartTicks();
DbpString("Hitag2 sniffing end, use `lf hitag list` for annotations"); DbpString("Hitag2 sniffing finish. Use `lf hitag list` for annotations");
} }
// Hitag2 simulation // Hitag2 simulation
@ -1098,24 +1197,61 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
StopTicks(); StopTicks();
// int frame_count = 0; int frame_count = 0;
int response = 0; int response;
uint8_t rx[HITAG_FRAME_LEN]; uint8_t rx[HITAG_FRAME_LEN];
size_t rxlen = 0; size_t rxlen = 0;
uint8_t txbuf[HITAG_FRAME_LEN]; uint8_t txbuf[HITAG_FRAME_LEN];
uint8_t *tx = txbuf; uint8_t *tx = txbuf;
size_t txlen = 0; size_t txlen = 0;
int lastbit = 1; int t_wait_1;
bool bSkip; int t_wait_2;
int reset_sof; size_t tag_size;
int tag_sof; bool bStop = false;
int t_wait = HITAG_T_WAIT_MAX;
bool bStop = false;
// Raw demodulation/decoding by sampling edge periods
size_t periods = 0;
// Reset the return status
bSuccessful = false; bSuccessful = false;
bCrypto = false;
// Clean up trace and prepare it for storing frames
set_tracing(true);
clear_trace();
DbpString("Starting Hitag reader family");
// Check configuration // Check configuration
switch (htf) { switch (htf) {
case RHT1F_PLAIN: {
Dbprintf("Read public blocks in plain mode");
// this part will be unreadable
memset(tag.sectors+2, 0x0, 30);
blocknr = 0;
} break;
case RHT1F_AUTHENTICATE: {
Dbprintf("Read all blocks in authed mode");
memcpy(nonce, htd->ht1auth.nonce, 4);
memcpy(key, htd->ht1auth.key, 4);
memcpy(logdata_0, htd->ht1auth.logdata_0, 4);
memcpy(logdata_1, htd->ht1auth.logdata_1, 4);
// TEST
memset(nonce, 0x0, 4);
memset(logdata_1, 0x00, 4);
byte_value = 0;
key_no = htd->ht1auth.key_no;
Dbprintf("Authenticating using key #%d:", key_no);
Dbhexdump(4, key, false);
DbpString("Nonce:");
Dbhexdump(4, nonce, false);
DbpString("Logdata_0:");
Dbhexdump(4, logdata_0, false);
DbpString("Logdata_1:");
Dbhexdump(4, logdata_1, false);
blocknr = 0;
} break;
case RHT2F_PASSWORD: { case RHT2F_PASSWORD: {
Dbprintf("List identifier in password mode"); Dbprintf("List identifier in password mode");
memcpy(password, htd->pwd.password, 4); memcpy(password, htd->pwd.password, 4);
@ -1136,6 +1272,9 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
DbpString("Authenticating using key:"); DbpString("Authenticating using key:");
memcpy(key, htd->crypto.key, 6); //HACK; 4 or 6?? I read both in the code. memcpy(key, htd->crypto.key, 6); //HACK; 4 or 6?? I read both in the code.
Dbhexdump(6, key, false); Dbhexdump(6, key, false);
DbpString("Nonce:");
Dbhexdump(4,nonce,false);
memcpy(nonce,htd->crypto.data,4);
blocknr = 0; blocknr = 0;
bCrypto = false; bCrypto = false;
bAuthenticating = false; bAuthenticating = false;
@ -1162,71 +1301,45 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
} }
} }
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
BigBuf_free();
clear_trace();
set_tracing(true);
LED_D_ON(); LED_D_ON();
hitag2_init(); hitag2_init();
// init as reader
lf_init(true);
// Set fpga in edge detect with reader field, we can modulate as reader now uint8_t attempt_count = 0;
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_READER_FIELD);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); //125kHz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
// Configure output and enable pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER |= GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER |= GPIO_SSC_DOUT;
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
// TIMER_CLOCK1, used to capture edges of the tag frames
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1);
// PIO_A - BSR
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// TC0: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), no triggers
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
// TC1: Capture mode, default timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on falling edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_FALLING | AT91C_TC_ABETRG | AT91C_TC_LDRA_FALLING;
// Enable and reset counters
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// synchronized startup procedure
while (AT91C_BASE_TC0->TC_CV > 0) {}; // wait until TC0 returned to zero
// Tag specific configuration settings (sof, timings, etc.) // Tag specific configuration settings (sof, timings, etc.)
if (htf < 10) { if (htf < 10){
// hitagS settings // hitagS settings
reset_sof = 1; t_wait_1 = 204;
t_wait = 200; t_wait_2 = 128;
/*tag_size = 256;*/
flipped_bit = 0;
tag_size = 8;
DbpString("Configured for hitagS reader");
} else if (htf < 20) { } else if (htf < 20) {
// hitag1 settings // hitag1 settings
reset_sof = 1; t_wait_1 = 204;
t_wait = 200; t_wait_2 = 128;
tag_size = 256;
flipped_bit = 0;
DbpString("Configured for hitag1 reader");
} else if (htf < 30) { } else if (htf < 30) {
// hitag2 settings // hitag2 settings
reset_sof = 4; t_wait_1 = 206;
t_wait = HITAG_T_WAIT_2; t_wait_2 = 90;
tag_size = 48;
DbpString("Configured for hitag2 reader");
} else { } else {
Dbprintf("Error, unknown hitag reader type: %d", htf); Dbprintf("Error, unknown hitag reader type: %d", htf);
goto out; return;
} }
uint8_t attempt_count = 0;
uint8_t tag_modulation;
size_t max_nrzs = 8 * HITAG_FRAME_LEN + 5;
uint8_t nrz_samples[max_nrzs];
size_t nrzs = 0;
while (!bStop && !BUTTON_PRESS() && !data_available()) { while (!bStop && !BUTTON_PRESS() && !data_available()) {
@ -1234,13 +1347,23 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
// Check if frame was captured and store it // Check if frame was captured and store it
if (rxlen > 0) { if (rxlen > 0) {
// frame_count++; frame_count++;
response++;
LogTrace(rx, nbytes(rxlen), response, response, NULL, false); LogTrace(rx, nbytes(rxlen), response, response, NULL, false);
//Dbhexdump(nbytes(rxlen), rx, false);
} }
// By default reset the transmission buffer // By default reset the transmission buffer
tx = txbuf; tx = txbuf;
switch (htf) { switch (htf) {
case RHT1F_PLAIN: {
bStop = !hitag_plain(rx, rxlen, tx, &txlen, false);
} break;
case RHT1F_AUTHENTICATE: {
bStop = !hitag1_authenticate(rx, rxlen, tx, &txlen);
} break;
case RHT2F_PASSWORD: { case RHT2F_PASSWORD: {
bStop = !hitag2_password(rx, rxlen, tx, &txlen, false); bStop = !hitag2_password(rx, rxlen, tx, &txlen, false);
break; break;
@ -1271,113 +1394,153 @@ void ReaderHitag(hitag_function htf, hitag_data *htd) {
} }
} }
// Send and store the reader command // Wait for t_wait_2 carrier periods after the last tag bit before transmitting,
// Disable timer 1 with external trigger to avoid triggers during our own modulation lf_wait_periods(t_wait_2);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Wait for HITAG_T_WAIT_2 carrier periods after the last tag bit before transmitting,
// Since the clock counts since the last falling edge, a 'one' means that the
// falling edge occurred halfway the period. with respect to this falling edge,
// we need to wait (T_Wait2 + half_tag_period) when the last was a 'one'.
// All timer values are in terms of T0 units
while (AT91C_BASE_TC0->TC_CV < T0 * (t_wait + (HITAG_T_TAG_HALF_PERIOD * lastbit)));
// Transmit the reader frame // Transmit the reader frame
hitag_reader_send_frame(tx, txlen); hitag_reader_send_frame(tx, txlen);
// Enable and reset external trigger in timer for capturing future frames // Let the antenna and ADC values settle
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // And find the position where edge sampling should start
lf_wait_periods(t_wait_1 - 64);
// Add transmitted frame to total count // Reset the response time (in number of periods)
response = 0;
// Keep administration of the first edge detection
bool waiting_for_first_edge = true;
// Did we detected any modulaiton at all
bool detected_tag_modulation = false;
// Use the current modulation state as starting point
tag_modulation = lf_get_tag_modulation();
// Reset the number of NRZ samples and use edge detection to detect them
nrzs = 0;
while (nrzs < max_nrzs) {
// Get the timing of the next edge in number of wave periods
periods = lf_count_edge_periods(128);
// Are we dealing with the first incoming edge
if (waiting_for_first_edge) {
// Just break out of loop after an initial time-out (tag is probably not available)
if (periods == 0) break;
// Register the number of periods that have passed
response = t_wait_1-64 + periods;
// Indicate that we have dealt with the first edge
waiting_for_first_edge = false;
// The first edge is always a single NRZ bit, force periods on 16
periods = 16;
// We have received more than 0 periods, so we have detected a tag response
detected_tag_modulation = true;
} else {
// The function lf_count_edge_periods() returns 0 when a time-out occurs
if (periods == 0) {
Dbprintf("Detected timeout after [%d] nrz samples",nrzs);
break;
}
}
// Evaluate the number of periods before the next edge
if (periods > 24 && periods <= 64){
// Detected two sequential equal bits and a modulation switch
// NRZ modulation: (11 => --|) or (11 __|)
nrz_samples[nrzs++] = tag_modulation;
nrz_samples[nrzs++] = tag_modulation;
// Invert tag modulation state
tag_modulation ^= 1;
} else if (periods > 0 && periods <= 24){
// Detected one bit and a modulation switch
// NRZ modulation: (1 => -|) or (0 _|)
nrz_samples[nrzs++] = tag_modulation;
tag_modulation ^= 1;
} else {
tag_modulation ^= 1;
// The function lf_count_edge_periods() returns > 64 periods, this is not a valid number periods
Dbprintf("Detected unexpected period count: %d", periods);
break;
}
}
// Store the TX frame, we do this now at this point, to avoid delay in processing
// and to be able to overwrite the first samples with the trace (since they currently
// still use the same memory space)
if (txlen > 0) { if (txlen > 0) {
// frame_count++; frame_count++;
LogTrace(tx, nbytes(txlen), HITAG_T_WAIT_2, HITAG_T_WAIT_2, NULL, true); LogTrace(tx, nbytes(txlen), HITAG_T_WAIT_2, HITAG_T_WAIT_2, NULL, true);
} }
// Reset values for receiving frames // Reset values for receiving frames
memset(rx, 0x00, sizeof(rx)); memset(rx, 0x00, sizeof(rx));
rxlen = 0; rxlen = 0;
lastbit = 1;
bSkip = true;
tag_sof = reset_sof;
response = 0;
uint32_t errorCount = 0;
// Receive frame, watch for at most T0*EOF periods // If there is no response, just repeat the loop
while (AT91C_BASE_TC1->TC_CV < T0 * HITAG_T_WAIT_MAX) { if (!detected_tag_modulation) continue;
// Check if falling edge in tag modulation is detected // Make sure we always have an even number of samples. This fixes the problem
if (AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { // of ending the manchester decoding with a zero. See the example below where
// Retrieve the new timing values // the '|' character is end of modulation
int ra = (AT91C_BASE_TC1->TC_RA / T0); // One at the end: ..._-|_____...
// Zero at the end: ...-_|_____...
// The last modulation change of a zero is not detected, but we should take
// the half period in account, otherwise the demodulator will fail.
if ((nrzs % 2) != 0) {
nrz_samples[nrzs++] = tag_modulation;
}
// Reset timer every frame, we have to capture the last edge for timing LED_B_ON();
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
LED_B_ON(); // decode bitstream
manrawdecode((uint8_t*)nrz_samples, &nrzs, true, 0);
// Capture tag frame (manchester decoding using only falling edges) // decode frame
if (ra >= HITAG_T_EOF) {
// Capture the T0 periods that have passed since last communication or field drop (reset) // Verify if the header consists of five consecutive ones
// We always recieve a 'one' first, which has the falling edge after a half period |-_| if (nrzs < 5) {
response = ra - HITAG_T_TAG_HALF_PERIOD; Dbprintf("Detected unexpected number of manchester decoded samples [%d]",nrzs);
} else if (ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) { break;
// Manchester coding example |-_|_-|-_| (101) } else {
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8)); for (size_t i = 0; i < 5; i++){
rxlen++; if (nrz_samples[i] != 1) {
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8)); Dbprintf("Detected incorrect header, the bit [%d] is zero instead of one",i);
rxlen++;
} else if (ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (!bSkip) {
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if (ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7 - (rxlen % 8));
rxlen++;
}
} else {
errorCount++;
// Ignore wierd value, is to small to mean anything
} }
} }
//if we saw over 100 wierd values break it probably isn't hitag...
if (errorCount > 100) break;
// We can break this loop if we received the last bit from a frame
if (AT91C_BASE_TC1->TC_CV > T0 * HITAG_T_EOF) {
if (rxlen > 0) break;
}
} }
}
// Pack the response into a byte array
for (size_t i = 5; i < 37; i++){
uint8_t bit = nrz_samples[i];
rx[rxlen / 8] |= bit << (7 - (rxlen % 8));
rxlen++;
}
// Check if frame was captured and store it
if (rxlen > 0) {
frame_count++;
if (bCollision){
// AC decoding hack
fix_ac_decoding(rx, 64);
rxlen = 32;
}
LogTrace(rx, rxlen, response, 0, NULL, false);
//Dbhexdump(rxlen, rx, false);
}
}
out: out:
LEDsoff(); lf_finalize();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); Dbprintf("frame received: %u", frame_count);
set_tracing(false);
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
// release allocated memory from BigBuff. // release allocated memory from BigBuff.
BigBuf_free(); BigBuf_free();
StartTicks(); StartTicks();
if (bSuccessful) if (bSuccessful)
reply_old(CMD_ACK, bSuccessful, 0, 0, (uint8_t *)tag.sectors, 48); reply_old(CMD_ACK, bSuccessful, 0, 0, (uint8_t *)tag.sectors, tag_size);
else else
reply_old(CMD_ACK, bSuccessful, 0, 0, 0, 0); reply_mix(CMD_ACK, bSuccessful, 0, 0, 0, 0);
} }
void WriterHitag(hitag_function htf, hitag_data *htd, int page) { void WriterHitag(hitag_function htf, hitag_data *htd, int page) {

View file

@ -14,7 +14,7 @@
#include "common.h" #include "common.h"
#include "hitag.h" #include "hitag.h"
void SniffHitag(void); void SniffHitag(uint32_t type);
void SimulateHitagTag(bool tag_mem_supplied, uint8_t *data); void SimulateHitagTag(bool tag_mem_supplied, uint8_t *data);
void ReaderHitag(hitag_function htf, hitag_data *htd); void ReaderHitag(hitag_function htf, hitag_data *htd);
void WriterHitag(hitag_function htf, hitag_data *htd, int page); void WriterHitag(hitag_function htf, hitag_data *htd, int page);

View file

@ -168,7 +168,9 @@ void lf_init(bool reader) {
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Prepare data trace // Prepare data trace
if (logging) initSampleBuffer(NULL); uint32_t bufsize = 20000;
if (logging) initSampleBuffer(&bufsize);
} }

View file

@ -106,17 +106,23 @@ sampling_t samples = {0, 0, 0, 0};
void initSampleBuffer(uint32_t *sample_size) { void initSampleBuffer(uint32_t *sample_size) {
BigBuf_free();
BigBuf_Clear_ext(false);
if (sample_size == NULL || *sample_size == 0) { if (sample_size == NULL || *sample_size == 0) {
*sample_size = BigBuf_max_traceLen(); *sample_size = BigBuf_max_traceLen();
data.buffer = BigBuf_get_addr();
memset(data.buffer, 0, *sample_size);
} else { } else {
*sample_size = MIN(*sample_size, BigBuf_max_traceLen()); *sample_size = MIN(*sample_size, BigBuf_max_traceLen());
data.buffer = BigBuf_malloc(*sample_size);
memset(data.buffer, 0, *sample_size);
} }
// use a bitstream to handle the output
data.buffer = BigBuf_get_addr();
memset(data.buffer, 0, *sample_size);
// //
samples.dec_counter = 0; samples.dec_counter = 0;
samples.sum = 0; samples.sum = 0;

View file

@ -485,8 +485,9 @@ static int CmdLFHitagInfo(const char *Cmd) {
if (getHitagUid(&uid) == false) if (getHitagUid(&uid) == false)
return 1; return 1;
PrintAndLogEx(SUCCESS, "UID: %08X", uid); PrintAndLogEx(SUCCESS, "UID: " _YELLOW_("%08X"), uid);
return PM3_SUCCESS;
// how to detemine Hitag types? // how to detemine Hitag types?
// read block3, get configuration byte. // read block3, get configuration byte.
PrintAndLogEx(FAILED, _RED_("TODO: This is a hardcoded example!")); PrintAndLogEx(FAILED, _RED_("TODO: This is a hardcoded example!"));
@ -497,7 +498,7 @@ static int CmdLFHitagInfo(const char *Cmd) {
//printHitagConfiguration( 0x02 ); //printHitagConfiguration( 0x02 );
//printHitagConfiguration( 0x00 ); //printHitagConfiguration( 0x00 );
//printHitagConfiguration( 0x04 ); //printHitagConfiguration( 0x04 );
return 0; return PM3_SUCCESS;
} }
// TODO: iceman // TODO: iceman
@ -564,7 +565,7 @@ static int CmdLFHitagReader(const char *Cmd) {
uint32_t id = bytes_to_num(resp.data.asBytes, 4); uint32_t id = bytes_to_num(resp.data.asBytes, 4);
PrintAndLogEx(SUCCESS, "Valid Hitag2 tag found - UID: %08x", id); PrintAndLogEx(SUCCESS, "Valid Hitag2 tag found - UID: " _YELLOW_("%08x"), id);
if (htf != RHT2F_UID_ONLY) { if (htf != RHT2F_UID_ONLY) {
PrintAndLogEx(SUCCESS, "Dumping tag memory..."); PrintAndLogEx(SUCCESS, "Dumping tag memory...");

View file

@ -21,6 +21,8 @@ typedef enum {
RHTSF_KEY = 02, RHTSF_KEY = 02,
WHTSF_CHALLENGE = 03, WHTSF_CHALLENGE = 03,
WHTSF_KEY = 04, WHTSF_KEY = 04,
RHT1F_PLAIN = 11,
RHT1F_AUTHENTICATE = 12,
RHT2F_PASSWORD = 21, RHT2F_PASSWORD = 21,
RHT2F_AUTHENTICATE = 22, RHT2F_AUTHENTICATE = 22,
RHT2F_CRYPTO = 23, RHT2F_CRYPTO = 23,
@ -44,8 +46,17 @@ typedef struct {
uint8_t data[4]; uint8_t data[4];
} PACKED rht2d_crypto; } PACKED rht2d_crypto;
typedef struct {
bool key_no;
uint8_t logdata_0[4];
uint8_t logdata_1[4];
uint8_t nonce[4];
uint8_t key[4];
} PACKED rht1d_authenticate;
typedef union { typedef union {
rht2d_password pwd; rht2d_password pwd;
rht1d_authenticate ht1auth;
rht2d_authenticate auth; rht2d_authenticate auth;
rht2d_crypto crypto; rht2d_crypto crypto;
} hitag_data; } hitag_data;