Added tiread command to demod TI tags on the PM3

This commit is contained in:
d18c7db 2009-08-06 12:53:06 +00:00
commit 7381e8f2f2
5 changed files with 258 additions and 167 deletions

View file

@ -115,15 +115,181 @@ void ModThenAcquireRawAdcSamples125k(int delay_off,int period_0,int period_1,BYT
DoAcquisition125k(at134khz);
}
/* blank r/w tag data stream
...0000000000000000 01111111
1010101010101010101010101010101010101010101010101010101010101010
0011010010100001
01111111
101010101010101[0]000...
[5555fe852c5555555555555555fe0000]
*/
void ReadTItag()
{
// some hardcoded initial params
// when we read a TI tag we sample the zerocross line at 2Mhz
// TI tags modulate a 1 as 16 cycles of 123.2Khz
// TI tags modulate a 0 as 16 cycles of 134.2Khz
#define FSAMPLE 2000000
#define FREQLO 123200
#define FREQHI 134200
signed char *dest = (signed char *)BigBuf;
int n = sizeof(BigBuf);
// int *dest = GraphBuffer;
// int n = GraphTraceLen;
// 128 bit shift register [shift3:shift2:shift1:shift0]
DWORD shift3 = 0, shift2 = 0, shift1 = 0, shift0 = 0;
int i, cycles=0, samples=0;
// how many sample points fit in 16 cycles of each frequency
DWORD sampleslo = (FSAMPLE<<4)/FREQLO, sampleshi = (FSAMPLE<<4)/FREQHI;
// when to tell if we're close enough to one freq or another
DWORD threshold = (sampleslo - sampleshi + 1)>>1;
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
for (i=0; i<n-1; i++) {
// count cycles by looking for lo to hi zero crossings
if ( (dest[i]<0) && (dest[i+1]>0) ) {
cycles++;
// after 16 cycles, measure the frequency
if (cycles>15) {
cycles=0;
samples=i-samples; // number of samples in these 16 cycles
// TI bits are coming to us lsb first so shift them
// right through our 128 bit right shift register
shift0 = (shift0>>1) | (shift1 << 31);
shift1 = (shift1>>1) | (shift2 << 31);
shift2 = (shift2>>1) | (shift3 << 31);
shift3 >>= 1;
// check if the cycles fall close to the number
// expected for either the low or high frequency
if ( (samples>(sampleslo-threshold)) && (samples<(sampleslo+threshold)) ) {
// low frequency represents a 1
shift3 |= (1<<31);
} else if ( (samples>(sampleshi-threshold)) && (samples<(sampleshi+threshold)) ) {
// high frequency represents a 0
} else {
// probably detected a gay waveform or noise
// use this as gaydar or discard shift register and start again
shift3 = shift2 = shift1 = shift0 = 0;
}
samples = i;
// for each bit we receive, test if we've detected a valid tag
// if we see 17 zeroes followed by 6 ones, we might have a tag
// remember the bits are backwards
if ( ((shift0 & 0x7fffff) == 0x7e0000) ) {
// if start and end bytes match, we have a tag so break out of the loop
if ( ((shift0>>16)&0xff) == ((shift3>>8)&0xff) ) {
cycles = 0xF0B; //use this as a flag (ugly but whatever)
break;
}
}
}
}
}
// if flag is set we have a tag
if (cycles!=0xF0B) {
DbpString("Info: No valid tag detected.");
} else {
// put 64 bit data into shift1 and shift0
shift0 = (shift0>>24) | (shift1 << 8);
shift1 = (shift1>>24) | (shift2 << 8);
// align 16 bit crc into lower half of shift2
shift2 = ((shift2>>24) | (shift3 << 8)) & 0x0ffff;
// if r/w tag, check ident match
if ( shift3&(1<<15) ) {
DbpString("Info: TI tag is rewriteable");
// only 15 bits compare, last bit of ident is not valid
if ( ((shift3>>16)^shift0)&0x7fff ) {
DbpString("Error: Ident mismatch!");
} else {
DbpString("Info: TI tag ident is valid");
}
} else {
DbpString("Info: TI tag is readonly");
}
// WARNING the order of the bytes in which we calc crc below needs checking
// i'm 99% sure the crc algorithm is correct, but it may need to eat the
// bytes in reverse or something
// calculate CRC
DWORD crc=0;
crc = update_crc16(crc, (shift0)&0xff);
crc = update_crc16(crc, (shift0>>8)&0xff);
crc = update_crc16(crc, (shift0>>16)&0xff);
crc = update_crc16(crc, (shift0>>24)&0xff);
crc = update_crc16(crc, (shift1)&0xff);
crc = update_crc16(crc, (shift1>>8)&0xff);
crc = update_crc16(crc, (shift1>>16)&0xff);
crc = update_crc16(crc, (shift1>>24)&0xff);
DbpString("Info: Tag data_hi, data_lo, crc = ");
DbpIntegers(shift1, shift0, shift2&0xffff);
if (crc != (shift2&0xffff)) {
DbpString("Error: CRC mismatch, expected");
DbpIntegers(0, 0, crc);
} else {
DbpString("Info: CRC is good");
}
}
}
void WriteTIbyte(BYTE b)
{
int i = 0;
// modulate 8 bits out to the antenna
for (i=0; i<8; i++)
{
if (b&(1<<i)) {
// stop modulating antenna
PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
SpinDelayUs(1000);
// modulate antenna
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
SpinDelayUs(1000);
} else {
// stop modulating antenna
PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
SpinDelayUs(300);
// modulate antenna
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
SpinDelayUs(1700);
}
}
}
void AcquireTiType(void)
{
int i;
int i, j, n;
// tag transmission is <20ms, sampling at 2M gives us 40K samples max
// each sample is 1 bit stuffed into a DWORD so we need 1250 DWORDS
int n = 1250;
#define TIBUFLEN 1250
// clear buffer
DbpIntegers((DWORD)BigBuf, sizeof(BigBuf), 0x12345678);
memset(BigBuf,0,sizeof(BigBuf));
// Set up the synchronous serial port
@ -163,7 +329,7 @@ void AcquireTiType(void)
for(;;) {
if(SSC_STATUS & SSC_STATUS_RX_READY) {
BigBuf[i] = SSC_RECEIVE_HOLDING; // store 32 bit values in buffer
i++; if(i >= n) return;
i++; if(i >= TIBUFLEN) break;
}
WDT_HIT();
}
@ -171,54 +337,22 @@ void AcquireTiType(void)
// return stolen pin to SSP
PIO_DISABLE = (1<<GPIO_SSC_DOUT);
PIO_PERIPHERAL_A_SEL = (1<<GPIO_SSC_DIN) | (1<<GPIO_SSC_DOUT);
}
void ReadTItag()
{
}
void WriteTIbyte(BYTE b)
{
int i = 0;
// modulate 8 bits out to the antenna
for (i=0; i<8; i++)
{
if (b&(1<<i)) {
// stop modulating antenna
PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
SpinDelayUs(1000);
// modulate antenna
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
SpinDelayUs(1000);
} else {
// stop modulating antenna
PIO_OUTPUT_DATA_CLEAR = (1<<GPIO_SSC_DOUT);
SpinDelayUs(300);
// modulate antenna
PIO_OUTPUT_DATA_SET = (1<<GPIO_SSC_DOUT);
SpinDelayUs(1700);
char *dest = (char *)BigBuf;
n = TIBUFLEN*32;
// unpack buffer
for (i=TIBUFLEN-1; i>=0; i--) {
// DbpIntegers(0, 0, BigBuf[i]);
for (j=0; j<32; j++) {
if(BigBuf[i] & (1 << j)) {
dest[--n] = 1;
} else {
dest[--n] = -1;
}
}
}
}
void AcquireRawBitsTI(void)
{
// TI tags charge at 134.2Khz
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 88); //134.8Khz
// Place FPGA in passthrough mode, in this mode the CROSS_LO line
// connects to SSP_DIN and the SSP_DOUT logic level controls
// whether we're modulating the antenna (high)
// or listening to the antenna (low)
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU);
// get TI tag data into the buffer
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
}
// arguments: 64bit data split into 32bit idhi:idlo and optional 16bit crc
// if crc provided, it will be written with the data verbatim (even if bogus)
// if not provided a valid crc will be computed from the data and written.
@ -292,7 +426,7 @@ void WriteTItag(DWORD idhi, DWORD idlo, WORD crc)
AcquireTiType();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
DbpString("Now use tibits and tidemod");
DbpString("Now use tiread to check");
}
void SimulateTagLowFrequency(int period, int ledcontrol)