chg: lf nexwath sim/clone - now supports 88bit format direct. See helptext for samples

This commit is contained in:
iceman1001 2020-05-11 21:58:47 +02:00
commit 5fd48305de

View file

@ -24,45 +24,131 @@
#include "protocols.h" // t55xx defines #include "protocols.h" // t55xx defines
#include "cmdlft55xx.h" // clone.. #include "cmdlft55xx.h" // clone..
typedef enum {
SCRAMBLE,
DESCRAMBLE
} NexWatchScramble_t;
static int CmdHelp(const char *Cmd); static int CmdHelp(const char *Cmd);
static int usage_lf_nexwatch_clone(void) { static int usage_lf_nexwatch_clone(void) {
PrintAndLogEx(NORMAL, "clone a Nexwatch tag to a T55x7 tag."); PrintAndLogEx(NORMAL, "clone a Nexwatch tag to a T55x7 tag.");
PrintAndLogEx(NORMAL, "You can use raw hex values or create a credential based on id, mode");
PrintAndLogEx(NORMAL, "and type of credential (Nexkey/Quadrakey)");
PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf nexwatch clone [h] [b <raw hex>]"); PrintAndLogEx(NORMAL, "Usage: lf nexwatch clone [h] [b <raw hex>] [c <id>] [m <mode>] [n|q]");
PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " r <raw hex> : raw hex data. 16 bytes max"); PrintAndLogEx(NORMAL, " r <raw hex> : raw hex data. 12 bytes max");
PrintAndLogEx(NORMAL, " c <id> : card id (decimal)");
PrintAndLogEx(NORMAL, " m <mode> : mode (decimal) (0-15, defaults to 1)");
PrintAndLogEx(NORMAL, " n : Nexkey credential");
PrintAndLogEx(NORMAL, " q : Quadrakey credential");
PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf nexwatch clone r 5600000000213C9F8F150C"); PrintAndLogEx(NORMAL, " lf nexwatch clone r 5600000000213C9F8F150C");
PrintAndLogEx(NORMAL, " lf nexwatch clone c 521512301 m 1 n -- Nexkey credential");
PrintAndLogEx(NORMAL, " lf nexwatch clone c 521512301 m 1 q -- Quadrakey credential");
return PM3_SUCCESS; return PM3_SUCCESS;
} }
static int usage_lf_nexwatch_sim(void) { static int usage_lf_nexwatch_sim(void) {
PrintAndLogEx(NORMAL, "Enables simulation of Nexwatch card"); PrintAndLogEx(NORMAL, "Enables simulation of Nexwatch card");
PrintAndLogEx(NORMAL, "You can use raw hex values or create a credential based on id, mode");
PrintAndLogEx(NORMAL, "and type of credential (Nexkey/Quadrakey)");
PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued."); PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued.");
PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Usage: lf nexwatch sim [h] <r raw hex>"); PrintAndLogEx(NORMAL, "Usage: lf nexwatch sim [h] <r raw hex> [c <id>] [m <mode>] [n|q]");
PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, "Options:");
PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " h : this help");
PrintAndLogEx(NORMAL, " r <raw hex> : raw hex data. 16 bytes max"); PrintAndLogEx(NORMAL, " r <raw hex> : raw hex data. 16 bytes max");
PrintAndLogEx(NORMAL, " c <id> : card id (decimal)");
PrintAndLogEx(NORMAL, " m <mode> : mode (decimal) (0-15, defaults to 1)");
PrintAndLogEx(NORMAL, " n : Nexkey credential");
PrintAndLogEx(NORMAL, " q : Quadrakey credential");
PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, " lf nexwatch sim r 5600000000213C9F8F150C"); PrintAndLogEx(NORMAL, " lf nexwatch sim r 5600000000213C9F8F150C");
PrintAndLogEx(NORMAL, " lf nexwatch sim c 521512301 m 1 n -- Nexkey credential");
PrintAndLogEx(NORMAL, " lf nexwatch sim c 521512301 m 1 q -- Quadrakey credential");
return PM3_SUCCESS; return PM3_SUCCESS;
} }
/*
static inline uint32_t bitcount(uint32_t a) { // scramble parity (1234) -> (4231)
#if defined __GNUC__ static uint8_t nexwatch_parity_swap(uint8_t parity) {
return __builtin_popcountl(a); uint8_t a = (((parity >> 3 ) & 1) );
#else a |= (((parity >> 1 ) & 1) << 1);
a = a - ((a >> 1) & 0x55555555); a |= (((parity >> 2 ) & 1) << 2);
a = (a & 0x33333333) + ((a >> 2) & 0x33333333); a |= ((parity & 1) << 3);
return (((a + (a >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24; return a;
#endif
} }
*/ // parity check
// from 32b hex id, 4b mode,
static uint8_t nexwatch_parity(uint8_t hexid[5]) {
uint8_t p = 0;
for (uint8_t i = 0; i < 5; i++) {
p ^= NIBBLE_HIGH(hexid[i]);
p ^= NIBBLE_LOW(hexid[i]);
}
return nexwatch_parity_swap(p);
}
/// NETWATCH checksum
/// @param magic = 0xBE Quadrakey, 0x88 Nexkey
/// @param id = descrambled id (printed card number)
/// @param parity = the parity based upon the scrambled raw id.
static uint8_t nexwatch_checksum(uint8_t magic, uint32_t id, uint8_t parity) {
uint8_t a = ((id >> 24) & 0xFF);
a -= ((id >> 16) & 0xFF);
a -= ((id >> 8) & 0xFF);
a -= (id & 0xFF);
a -= magic;
a -= (reflect8(parity) >> 4);
return reflect8(a);
}
// Scrambled id ( 88 bit cardnumber format)
// ref:: http://www.proxmark.org/forum/viewtopic.php?pid=14662#p14662
static int nexwatch_scamble(NexWatchScramble_t action, uint32_t *id, uint32_t *scambled) {
// 255 = Not used/Unknown other values are the bit offset in the ID/FC values
uint8_t hex_2_id [] = {
31, 27, 23, 19, 15, 11, 7, 3,
30, 26, 22, 18, 14, 10, 6, 2,
29, 25, 21, 17, 13, 9, 5, 1,
28, 24, 20, 16, 12, 8, 4, 0
};
switch(action) {
case DESCRAMBLE: {
*id = 0;
for (uint8_t idx = 0; idx < 32; idx++) {
if (hex_2_id[idx] == 255)
continue;
bool bit_state = (*scambled >> hex_2_id[idx]) & 1;
*id |= (bit_state << (31 - idx));
}
break;
}
case SCRAMBLE: {
*scambled = 0;
for (uint8_t idx = 0; idx < 32; idx++) {
if (hex_2_id[idx] == 255)
continue;
bool bit_state = (*id >> idx) & 1;
*scambled |= (bit_state << (31 - hex_2_id[idx]));
}
break;
}
default: break;
}
return PM3_SUCCESS;
}
int demodNexWatch(void) { int demodNexWatch(void) {
if (PSKDemod("", false) != PM3_SUCCESS) { if (PSKDemod("", false) != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch can't demod signal"); PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch can't demod signal");
@ -95,10 +181,15 @@ int demodNexWatch(void) {
setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock)); setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock));
if (invert) { if (invert) {
PrintAndLogEx(INFO, "Had to Invert - probably NexKey"); PrintAndLogEx(INFO, "Inverted the demodulated data");
for (size_t i = 0; i < size; i++) for (size_t i = 0; i < size; i++)
DemodBuffer[i] ^= 1; DemodBuffer[i] ^= 1;
} }
//got a good demod
uint32_t raw1 = bytebits_to_byte(DemodBuffer, 32);
uint32_t raw2 = bytebits_to_byte(DemodBuffer + 32, 32);
uint32_t raw3 = bytebits_to_byte(DemodBuffer + 32 + 32, 32);
// get rawid // get rawid
uint32_t rawid = 0; uint32_t rawid = 0;
@ -108,140 +199,62 @@ int demodNexWatch(void) {
} }
} }
/*
Descrambled id
ref:: http://www.proxmark.org/forum/viewtopic.php?pid=14662#p14662
32bit UID: 00100100011001000011111100010010
bits numbered from left (MSB):
1234 5678 9012 34567 8901234567890 12
0010 0100 0110 0100 00111111000100 10
descramble:
b1 b5 b9 b13 b17 b21 b25 b29 b2 b6 b10 b14 b18 b22 b26 b30 b3 b7 b11 b15 b19 b23 b27 b31 b4 b8 b12 b16 b20 b24 b28 b32
gives:
0000 0100 0111 0100 1010 1101 0000 1110 = 74755342
*/
// Since the description is not zero indexed we adjust.
#define DOFFSET 8 + 32 - 1
// descrambled id // descrambled id
uint32_t d_id = 0; uint32_t cn = 0;
// b1 b5 b9 b13 uint32_t scambled = bytebits_to_byte(DemodBuffer + 8 + 32, 32);
d_id |= DemodBuffer[DOFFSET + 1] << 31; nexwatch_scamble(DESCRAMBLE, &cn, &scambled);
d_id |= DemodBuffer[DOFFSET + 5] << 30;
d_id |= DemodBuffer[DOFFSET + 9] << 29;
d_id |= DemodBuffer[DOFFSET + 13] << 28;
// b17 b21 b25 b29
d_id |= DemodBuffer[DOFFSET + 17] << 27;
d_id |= DemodBuffer[DOFFSET + 21] << 26;
d_id |= DemodBuffer[DOFFSET + 25] << 25;
d_id |= DemodBuffer[DOFFSET + 29] << 24;
// b2 b6 b10 b14
d_id |= DemodBuffer[DOFFSET + 2] << 23;
d_id |= DemodBuffer[DOFFSET + 6] << 22;
d_id |= DemodBuffer[DOFFSET + 10] << 21;
d_id |= DemodBuffer[DOFFSET + 14] << 20;
// b18 b22 b26 b30
d_id |= DemodBuffer[DOFFSET + 18] << 19;
d_id |= DemodBuffer[DOFFSET + 22] << 18;
d_id |= DemodBuffer[DOFFSET + 26] << 17;
d_id |= DemodBuffer[DOFFSET + 30] << 16;
// b3 b7 b11 b15
d_id |= DemodBuffer[DOFFSET + 3] << 15;
d_id |= DemodBuffer[DOFFSET + 7] << 14;
d_id |= DemodBuffer[DOFFSET + 11] << 13;
d_id |= DemodBuffer[DOFFSET + 15] << 12;
// b19 b23 b27 b31
d_id |= DemodBuffer[DOFFSET + 19] << 11;
d_id |= DemodBuffer[DOFFSET + 23] << 10;
d_id |= DemodBuffer[DOFFSET + 27] << 9;
d_id |= DemodBuffer[DOFFSET + 31] << 8;
// b4 b8 b12 b16
d_id |= DemodBuffer[DOFFSET + 4] << 7;
d_id |= DemodBuffer[DOFFSET + 8] << 6;
d_id |= DemodBuffer[DOFFSET + 12] << 5;
d_id |= DemodBuffer[DOFFSET + 16] << 4;
// b20 b24 b28 b32
d_id |= DemodBuffer[DOFFSET + 20] << 3;
d_id |= DemodBuffer[DOFFSET + 24] << 2;
d_id |= DemodBuffer[DOFFSET + 28] << 1;
d_id |= DemodBuffer[DOFFSET + 32];
uint8_t mode = bytebits_to_byte(DemodBuffer + 72, 4); uint8_t mode = bytebits_to_byte(DemodBuffer + 72, 4);
uint8_t parity = bytebits_to_byte(DemodBuffer + 76, 4); uint8_t parity = bytebits_to_byte(DemodBuffer + 76, 4);
uint8_t chk = bytebits_to_byte(DemodBuffer + 80, 8); uint8_t chk = bytebits_to_byte(DemodBuffer + 80, 8);
// parity check // parity check
// from 32 hex id, 4 mode, descramble par (1234) -> (4231) // from 32b hex id, 4b mode
uint8_t xor_par = 0; uint8_t hex[5] = {0};
for (uint8_t i = 40; i < 76; i +=4) { for (uint8_t i = 0; i < 5; i++) {
xor_par ^= bytebits_to_byte(DemodBuffer + i, 4); hex[i] = bytebits_to_byte(DemodBuffer + 8 + 32 + (i * 8), 8);
} }
// mode is only 4 bits.
uint8_t calc_parity ; hex[4] &= 0xf0;
calc_parity = (((xor_par >> 3 ) & 1) ); uint8_t calc_parity = nexwatch_parity(hex);
calc_parity |= (((xor_par >> 1 ) & 1) << 1);
calc_parity |= (((xor_par >> 2 ) & 1) << 2); // Checksum
calc_parity |= ((xor_par & 1) << 3);
// Checksum
uint8_t calc;
calc = ((d_id >> 24) & 0xFF);
calc -= ((d_id >> 16) & 0xFF);
calc -= ((d_id >> 8) & 0xFF);
calc -= (d_id & 0xFF);
uint8_t revpar = (reflect8(calc_parity) >> 4);
typedef struct { typedef struct {
uint8_t magic; uint8_t magic;
char desc[10]; char desc[10];
uint8_t chk; uint8_t chk;
} nexwatch_magic_t; } nexwatch_magic_t;
nexwatch_magic_t items[] = { {0xBE, "Quadrakey", 0}, {0x88, "Nexkey", 0} }; nexwatch_magic_t items[] = { {0xBE, "Quadrakey", 0}, {0x88, "Nexkey", 0} };
uint8_t m_idx; uint8_t m_idx;
for ( m_idx = 0; m_idx < ARRAYLEN(items); m_idx++) { for ( m_idx = 0; m_idx < ARRAYLEN(items); m_idx++) {
uint8_t foo = calc;
foo -= items[m_idx].magic; items[m_idx].chk = nexwatch_checksum(items[m_idx].magic, cn, calc_parity);
foo -= revpar; if (items[m_idx].chk == chk) {
foo = reflect8(foo);
items[m_idx].chk = foo;
if (foo == chk) {
break; break;
} }
} }
// detect keytype
// output // output
PrintAndLogEx(SUCCESS, " NexWatch raw id : " _YELLOW_("0x%"PRIx32) , rawid); PrintAndLogEx(SUCCESS, " NexWatch raw id : " _YELLOW_("0x%"PRIx32) , rawid);
PrintAndLogEx(SUCCESS, " 88bit id : " _YELLOW_("%"PRIu32) " " _YELLOW_("0x%"PRIx32), d_id, d_id);
PrintAndLogEx(SUCCESS, " mode : %x", mode);
PrintAndLogEx(SUCCESS, " parity : %s [%X == %X]", (parity == calc_parity) ? _GREEN_("ok") : _RED_("fail"), parity, calc_parity);
if (m_idx < 3) { if (m_idx < 3) {
PrintAndLogEx(SUCCESS, " checksum : %s [%X]", _GREEN_("ok"), chk); PrintAndLogEx(SUCCESS, " fingerprint : " _GREEN_("%s"), items[m_idx].desc);
PrintAndLogEx(SUCCESS, " Keytype : " _GREEN_("%s"), items[m_idx].desc); }
PrintAndLogEx(SUCCESS, " 88bit id : " _YELLOW_("%"PRIu32) " (" _YELLOW_("0x%"PRIx32)")", cn, cn);
PrintAndLogEx(SUCCESS, " mode : %x", mode);
if ( parity == calc_parity) {
PrintAndLogEx(SUCCESS, " parity : %s (0x%X)", _GREEN_("ok"), parity);
} else { } else {
PrintAndLogEx(WARNING, " checksum : %s [%X == %X]", _RED_("fail"), chk, items[m_idx].chk); PrintAndLogEx(WARNING, " parity : %s (0x%X != 0x%X)", _RED_("fail"), parity, calc_parity);
}
if (m_idx < 3) {
PrintAndLogEx(SUCCESS, " checksum : %s (0x%02X)", _GREEN_("ok"), chk);
} else {
PrintAndLogEx(WARNING, " checksum : %s (0x%02X != 0x%02X)", _RED_("fail"), chk, items[m_idx].chk);
} }
// bits to hex (output used for SIM/CLONE cmd) PrintAndLogEx(INFO, " raw : " _YELLOW_("%"PRIX64"%"PRIX64"%"PRIX64), raw1, raw2, raw3);
CmdPrintDemodBuff("x");
// PrintAndLogEx(INFO, "Raw: %s", sprint_hex_inrow(DemodBuffer, size));
return PM3_SUCCESS; return PM3_SUCCESS;
} }
@ -259,29 +272,54 @@ static int CmdNexWatchRead(const char *Cmd) {
static int CmdNexWatchClone(const char *Cmd) { static int CmdNexWatchClone(const char *Cmd) {
// 56000000 00213C9F 8F150C00 00000000 // 56000000 00213C9F 8F150C00
uint32_t blocks[5]; uint32_t blocks[4];
bool use_raw = false;
bool errors = false; bool errors = false;
uint8_t cmdp = 0; uint8_t cmdp = 0;
int datalen = 0; int datalen = 0;
uint8_t magic = 0xBE;
uint32_t cn = 0;
uint8_t rawhex[16] = {0x56, 0};
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) { switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h': case 'h':
return usage_lf_nexwatch_clone(); return usage_lf_nexwatch_clone();
case 'r': { case 'r': {
// skip first block, 4*4 = 16 bytes left
uint8_t rawhex[16] = {0};
int res = param_gethex_to_eol(Cmd, cmdp + 1, rawhex, sizeof(rawhex), &datalen); int res = param_gethex_to_eol(Cmd, cmdp + 1, rawhex, sizeof(rawhex), &datalen);
if (res != 0) if (res != 0)
errors = true; errors = true;
for (uint8_t i = 1; i < ARRAYLEN(blocks); i++) { use_raw = true;
blocks[i] = bytes_to_num(rawhex + ((i - 1) * 4), sizeof(uint32_t));
}
cmdp += 2; cmdp += 2;
break; break;
} }
case 'c': {
cn = param_get32ex(Cmd, cmdp + 1, 0, 10);
uint32_t scrambled;
nexwatch_scamble(SCRAMBLE, &cn, &scrambled);
num_to_bytes(scrambled, 4, rawhex + 5);
cmdp += 2;
break;
}
case 'm': {
uint8_t mode = param_get8ex(Cmd, cmdp + 1, 1, 10);
mode &= 0x0F;
rawhex[9] |= (mode << 4);
cmdp += 2;
break;
}
case 'n': {
magic = 0x88;
cmdp++;
break;
}
case 'q': {
magic = 0xBE;
cmdp++;
break;
}
default: default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true; errors = true;
@ -292,7 +330,17 @@ static int CmdNexWatchClone(const char *Cmd) {
if (errors || cmdp == 0) return usage_lf_nexwatch_clone(); if (errors || cmdp == 0) return usage_lf_nexwatch_clone();
//Nexwatch - compat mode, PSK, data rate 40, 3 data blocks //Nexwatch - compat mode, PSK, data rate 40, 3 data blocks
blocks[0] = T55x7_MODULATION_PSK1 | T55x7_BITRATE_RF_32 | 4 << T55x7_MAXBLOCK_SHIFT; blocks[0] = T55x7_MODULATION_PSK1 | T55x7_BITRATE_RF_32 | 3 << T55x7_MAXBLOCK_SHIFT;
if (use_raw == false) {
uint8_t parity = nexwatch_parity(rawhex + 5) & 0xF;
rawhex[9] |= parity;
rawhex[10] |= nexwatch_checksum(magic, cn, parity);
}
for (uint8_t i = 1; i < ARRAYLEN(blocks); i++) {
blocks[i] = bytes_to_num(rawhex + ((i - 1) * 4), sizeof(uint32_t));
}
PrintAndLogEx(INFO, "Preparing to clone NexWatch to T55x7 with raw hex"); PrintAndLogEx(INFO, "Preparing to clone NexWatch to T55x7 with raw hex");
print_blocks(blocks, ARRAYLEN(blocks)); print_blocks(blocks, ARRAYLEN(blocks));
@ -307,9 +355,12 @@ static int CmdNexWatchSim(const char *Cmd) {
uint8_t cmdp = 0; uint8_t cmdp = 0;
bool errors = false; bool errors = false;
int rawlen = 0; bool use_raw = false;
uint8_t rawhex[16] = {0}; uint8_t rawhex[12] = {0x56, 0};
uint32_t rawblocks[4]; int rawlen = sizeof(rawhex);
uint8_t magic = 0xBE;
uint32_t cn = 0;
uint8_t bs[128]; uint8_t bs[128];
memset(bs, 0, sizeof(bs)); memset(bs, 0, sizeof(bs));
@ -322,9 +373,35 @@ static int CmdNexWatchSim(const char *Cmd) {
if (res != 0) if (res != 0)
errors = true; errors = true;
use_raw = true;
cmdp += 2; cmdp += 2;
break; break;
} }
case 'c': {
cn = param_get32ex(Cmd, cmdp + 1, 0, 10);
uint32_t scrambled;
nexwatch_scamble(SCRAMBLE, &cn, &scrambled);
num_to_bytes(scrambled, 4, rawhex + 5);
cmdp += 2;
break;
}
case 'm': {
uint8_t mode = param_get8ex(Cmd, cmdp + 1, 1, 10);
mode &= 0x0F;
rawhex[9] |= (mode << 4);
cmdp += 2;
break;
}
case 'n': {
magic = 0x88;
cmdp++;
break;
}
case 'q': {
magic = 0xBE;
cmdp++;
break;
}
default: default:
PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp));
errors = true; errors = true;
@ -334,7 +411,14 @@ static int CmdNexWatchSim(const char *Cmd) {
if (errors || cmdp == 0) return usage_lf_nexwatch_sim(); if (errors || cmdp == 0) return usage_lf_nexwatch_sim();
if (use_raw == false) {
uint8_t parity = nexwatch_parity(rawhex + 5) & 0xF;
rawhex[9] |= parity;
rawhex[10] |= nexwatch_checksum(magic, cn, parity);
}
// hex to bits. // hex to bits.
uint32_t rawblocks[4];
for (size_t i = 0; i < ARRAYLEN(rawblocks); i++) { for (size_t i = 0; i < ARRAYLEN(rawblocks); i++) {
rawblocks[i] = bytes_to_num(rawhex + (i * sizeof(uint32_t)), sizeof(uint32_t)); rawblocks[i] = bytes_to_num(rawhex + (i * sizeof(uint32_t)), sizeof(uint32_t));
num_to_bytebits(rawblocks[i], sizeof(uint32_t) * 8, bs + (i * sizeof(uint32_t) * 8)); num_to_bytebits(rawblocks[i], sizeof(uint32_t) * 8, bs + (i * sizeof(uint32_t) * 8));