chg 'hf mf nested' - uses NG. chg 'hw tune' - now also prints the 'lf config q' divisor voltage.

This commit is contained in:
iceman1001 2019-10-03 16:15:47 +02:00
commit 5d3eb444fb
8 changed files with 175 additions and 89 deletions

View file

@ -143,11 +143,25 @@ uint16_t AvgAdc(int ch) {
void MeasureAntennaTuning(void) {
uint8_t LF_Results[256];
uint32_t i, peak = 0, peakv = 0, peakf = 0;
uint32_t v_lf125 = 0, v_lf134 = 0, v_hf = 0; // in mV
uint32_t peak = 0;
// in mVolt
struct p {
uint32_t v_lf134;
uint32_t v_lf125;
uint32_t v_lfconf;
uint32_t v_hf;
uint32_t peak_v;
uint32_t peak_f;
int divisor;
uint8_t results[256];
} PACKED payload;
memset(payload.results, 0, sizeof(payload.results));
sample_config *sc = getSamplingConfig();
payload.divisor = sc->divisor;
memset(LF_Results, 0, sizeof(LF_Results));
LED_B_ON();
/*
@ -163,21 +177,26 @@ void MeasureAntennaTuning(void) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
SpinDelay(50);
for (i = 255; i >= 19; i--) {
for (uint8_t i = 255; i >= 19; i--) {
WDT_HIT();
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, i);
SpinDelay(20);
uint32_t adcval = ((MAX_ADC_LF_VOLTAGE * AvgAdc(ADC_CHAN_LF)) >> 10);
if (i == 95)
v_lf125 = adcval; // voltage at 125kHz
if (i == 89)
v_lf134 = adcval; // voltage at 134kHz
if (i == 96)
payload.v_lf125 = adcval; // voltage at 125kHz
LF_Results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
if (LF_Results[i] > peak) {
peakv = adcval;
peakf = i;
peak = LF_Results[i];
if (i == 89)
payload.v_lf134 = adcval; // voltage at 134kHz
if (i == sc->divisor)
payload.v_lfconf = adcval; // voltage at `lf config q`
payload.results[i] = adcval >> 9; // scale int to fit in byte for graphing purposes
if (payload.results[i] > peak) {
payload.peak_v = adcval;
payload.peak_f = i;
peak = payload.results[i];
}
}
@ -186,23 +205,16 @@ void MeasureAntennaTuning(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR);
SpinDelay(50);
v_hf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
payload.v_hf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
// RDV40 will hit the roof, try other ADC channel used in that hardware revision.
if (v_hf > MAX_ADC_HF_VOLTAGE - 300) {
v_hf = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF_RDV40)) >> 10;
if (payload.v_hf > MAX_ADC_HF_VOLTAGE - 300) {
payload.v_hf = (MAX_ADC_HF_VOLTAGE_RDV40 * AvgAdc(ADC_CHAN_HF_RDV40)) >> 10;
}
uint64_t arg0 = v_lf134;
arg0 <<= 32;
arg0 |= v_lf125;
uint64_t arg2 = peakv;
arg2 <<= 32;
arg2 |= peakf;
reply_mix(CMD_MEASURE_ANTENNA_TUNING, arg0, v_hf, arg2, LF_Results, 256);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
reply_ng(CMD_MEASURE_ANTENNA_TUNING, PM3_SUCCESS, (uint8_t*)&payload, sizeof(payload));
LEDsoff();
}
@ -1083,7 +1095,16 @@ static void PacketReceived(PacketCommandNG *packet) {
break;
}
case CMD_HF_MIFARE_NESTED: {
MifareNested(packet->oldarg[0], packet->oldarg[1], packet->oldarg[2], packet->data.asBytes);
struct p {
uint8_t block;
uint8_t keytype;
uint8_t target_block;
uint8_t target_keytype;
bool calibrate;
uint8_t key[6];
} PACKED;
struct p *payload = (struct p *) packet->data.asBytes;
MifareNested(payload->block, payload->keytype, payload->target_block, payload->target_keytype, payload->calibrate, payload->key);
break;
}
case CMD_HF_MIFARE_CHKKEYS: {

View file

@ -24,11 +24,11 @@ Default LF config is set to:
divisor = 95 (125kHz)
trigger_threshold = 0
*/
sample_config config = { 1, 8, 1, 95, 0, 0 } ;
sample_config config = { 1, 8, 1, 96, 0, 0 } ;
void printConfig() {
DbpString(_BLUE_("LF Sampling config"));
Dbprintf(" [q] divisor.............%d ( "_GREEN_("%d kHz")")", config.divisor, 12000 / (config.divisor + 1));
Dbprintf(" [q] divisor.............%d ( "_GREEN_("%d kHz")")", config.divisor, 12000 / config.divisor);
Dbprintf(" [b] bps.................%d", config.bits_per_sample);
Dbprintf(" [d] decimation..........%d", config.decimation);
Dbprintf(" [a] averaging...........%s", (config.averaging) ? "Yes" : "No");
@ -151,7 +151,7 @@ uint32_t DoAcquisition(uint8_t decimation, uint32_t bits_per_sample, bool averag
uint16_t checker = 0;
while (true) {
if (checker == 1000) {
if (checker == 2000) {
if (BUTTON_PRESS() || data_available())
break;
else

View file

@ -866,26 +866,20 @@ void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags,
// MIFARE nested authentication.
//
//-----------------------------------------------------------------------------
void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) {
// params
uint8_t blockNo = arg0 & 0xff;
uint8_t keyType = (arg0 >> 8) & 0xff;
uint8_t targetBlockNo = arg1 & 0xff;
uint8_t targetKeyType = (arg1 >> 8) & 0xff;
// calibrate = arg2
void MifareNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, bool calibrate, uint8_t *key) {
uint64_t ui64Key = 0;
ui64Key = bytes_to_num(datain, 6);
ui64Key = bytes_to_num(key, 6);
// variables
uint16_t i, j, len;
static uint16_t dmin, dmax;
uint8_t par[1] = {0x00};
uint8_t par_array[4] = {0x00};
uint8_t uid[10] = {0x00};
uint32_t cuid = 0, nt1, nt2, nttest, ks1;
uint8_t par[1] = {0x00};
uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00};
uint8_t par_array[4] = {0x00};
uint16_t ncount = 0;
struct Crypto1State mpcs = {0, 0};
struct Crypto1State *pcs;
@ -903,13 +897,15 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
BigBuf_free();
BigBuf_Clear_ext(false);
if (arg2) clear_trace();
if (calibrate)
clear_trace();
set_tracing(true);
// statistics on nonce distance
int16_t isOK = 0;
#define NESTED_MAX_TRIES 12
if (arg2) { // calibrate: for first call only. Otherwise reuse previous calibration
if (calibrate) { // calibrate: for first call only. Otherwise reuse previous calibration
LED_B_ON();
WDT_HIT();
@ -1061,15 +1057,28 @@ void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain)
crypto1_destroy(pcs);
uint8_t buf[4 + 4 * 4] = {0};
memcpy(buf, &cuid, 4);
memcpy(buf + 4, &target_nt[0], 4);
memcpy(buf + 8, &target_ks[0], 4);
memcpy(buf + 12, &target_nt[1], 4);
memcpy(buf + 16, &target_ks[1], 4);
struct p {
int16_t isOK;
uint8_t block;
uint8_t keytype;
uint8_t cuid[4];
uint8_t nt_a[4];
uint8_t ks_a[4];
uint8_t nt_b[4];
uint8_t ks_b[4];
} PACKED payload;
payload.isOK = isOK;
payload.block = targetBlockNo;
payload.keytype = targetKeyType;
memcpy(payload.cuid, &cuid, 4);
memcpy(payload.nt_a, &target_nt[0], 4);
memcpy(payload.ks_a, &target_ks[0], 4);
memcpy(payload.nt_b, &target_nt[1], 4);
memcpy(payload.ks_b, &target_ks[1], 4);
LED_B_ON();
reply_mix(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf));
reply_ng(CMD_HF_MIFARE_NESTED, PM3_SUCCESS, (uint8_t*)&payload, sizeof(payload));
LED_B_OFF();
if (DBGLEVEL >= 3) DbpString("NESTED FINISHED");

View file

@ -21,8 +21,10 @@ void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain)
void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t *datain);
void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain);
//void MifareUWriteBlockCompat(uint8_t arg0,uint8_t *datain);
void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain);
void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain);
void MifareNested(uint8_t blockNo, uint8_t keyType, uint8_t targetBlockNo, uint8_t targetKeyType, bool calibrate, uint8_t *key);
void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain);
void MifareAcquireNonces(uint32_t arg0, uint32_t flags);
void MifareChkKeys(uint8_t *datain);

View file

@ -1654,52 +1654,69 @@ int CmdTuneSamples(const char *Cmd) {
return PM3_ETIMEOUT;
}
}
if (resp.status != PM3_SUCCESS) {
PrintAndLogEx(WARNING, "Antenna tuning failed");
return PM3_ESOFT;
}
PrintAndLogEx(NORMAL, "\n");
// in mVolt
struct p {
uint32_t v_lf134;
uint32_t v_lf125;
uint32_t v_lfconf;
uint32_t v_hf;
uint32_t peak_v;
uint32_t peak_f;
int divisor;
uint8_t results[256];
} PACKED;
uint32_t v_lf125 = resp.oldarg[0];
uint32_t v_lf134 = resp.oldarg[0] >> 32;
struct p* package = (struct p*)resp.data.asBytes;
uint32_t v_hf = resp.oldarg[1];
uint32_t peakf = resp.oldarg[2];
uint32_t peakv = resp.oldarg[2] >> 32;
if (package->v_lf125 > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - 125.00 kHz", (package->v_lf125 * ANTENNA_ERROR) / 1000.0);
if (v_lf125 > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - 125.00 kHz", (v_lf125 * ANTENNA_ERROR) / 1000.0);
if (v_lf134 > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - 134.00 kHz", (v_lf134 * ANTENNA_ERROR) / 1000.0);
if (peakv > NON_VOLTAGE && peakf > 0)
PrintAndLogEx(SUCCESS, "LF optimal: %5.2f V - %6.2f kHz", (peakv * ANTENNA_ERROR) / 1000.0, 12000.0 / (peakf + 1));
if (package->v_lf134 > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - 134.00 kHz", (package->v_lf134 * ANTENNA_ERROR) / 1000.0);
if (package->v_lfconf > NON_VOLTAGE && package->divisor > 0)
PrintAndLogEx(SUCCESS, "LF antenna: %5.2f V - %d kHz", (package->v_lfconf * ANTENNA_ERROR) / 1000.0, (12000 / package->divisor));
if (package->peak_v > NON_VOLTAGE && package->peak_f > 0)
PrintAndLogEx(SUCCESS, "LF optimal: %5.2f V - %6.2f kHz", (package->peak_v * ANTENNA_ERROR) / 1000.0, 12000.0 / (package->peak_f + 1));
char judgement[20];
memset(judgement, 0, sizeof(judgement));
// LF evaluation
if (peakv < LF_UNUSABLE_V)
if (package->peak_v < LF_UNUSABLE_V)
sprintf(judgement, _RED_("UNUSABLE"));
else if (peakv < LF_MARGINAL_V)
else if (package->peak_v < LF_MARGINAL_V)
sprintf(judgement, _YELLOW_("MARGINAL"));
else
sprintf(judgement, _GREEN_("OK"));
PrintAndLogEx(NORMAL, "%sLF antenna is %s \n"
, (peakv < LF_UNUSABLE_V) ? _CYAN_("[!]") : _GREEN_("[+]")
, (package->peak_v < LF_UNUSABLE_V) ? _CYAN_("[!]") : _GREEN_("[+]")
, judgement
);
// HF evaluation
if (v_hf > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "HF antenna: %5.2f V - 13.56 MHz", (v_hf * ANTENNA_ERROR) / 1000.0);
if (package->v_hf > NON_VOLTAGE)
PrintAndLogEx(SUCCESS, "HF antenna: %5.2f V - 13.56 MHz", (package->v_hf * ANTENNA_ERROR) / 1000.0);
memset(judgement, 0, sizeof(judgement));
if (v_hf < HF_UNUSABLE_V)
if (package->v_hf < HF_UNUSABLE_V)
sprintf(judgement, _RED_("UNUSABLE"));
else if (v_hf < HF_MARGINAL_V)
else if (package->v_hf < HF_MARGINAL_V)
sprintf(judgement, _YELLOW_("MARGINAL"));
else
sprintf(judgement, _GREEN_("OK"));
PrintAndLogEx(NORMAL, "%sHF antenna is %s"
, (v_hf < HF_UNUSABLE_V) ? _CYAN_("[!]") : _GREEN_("[+]")
, (package->v_hf < HF_UNUSABLE_V) ? _CYAN_("[!]") : _GREEN_("[+]")
, judgement
);
@ -1707,12 +1724,12 @@ int CmdTuneSamples(const char *Cmd) {
// even here, these values has 3% error.
uint16_t test1 = 0;
for (int i = 0; i < 256; i++) {
GraphBuffer[i] = resp.data.asBytes[i] - 128;
test1 += resp.data.asBytes[i];
GraphBuffer[i] = package->results[i] - 128;
test1 += package->results[i];
}
if (test1 > 0) {
PrintAndLogEx(SUCCESS, "\nDisplaying LF tuning graph. Divisor 89 is 134kHz, 95 is 125kHz.\n\n");
PrintAndLogEx(SUCCESS, "\nDisplaying LF tuning graph. Divisor 89 is 134kHz, 96 is 125kHz.\n\n");
GraphTraceLen = 256;
ShowGraphWindow();
RepaintGraphWindow();

View file

@ -4425,12 +4425,12 @@ static command_t CommandTable[] = {
{"ecfill", CmdHF14AMfECFill, IfPm3Iso14443a, "Fill simulator memory with help of keys from simulator"},
{"ekeyprn", CmdHF14AMfEKeyPrn, IfPm3Iso14443a, "Print keys from simulator memory"},
{"-----------", CmdHelp, IfPm3Iso14443a, ""},
{"csetuid", CmdHF14AMfCSetUID, IfPm3Iso14443a, "Set UID for magic Chinese card"},
{"csetblk", CmdHF14AMfCSetBlk, IfPm3Iso14443a, "Write block - Magic Chinese card"},
{"cgetblk", CmdHF14AMfCGetBlk, IfPm3Iso14443a, "Read block - Magic Chinese card"},
{"cgetsc", CmdHF14AMfCGetSc, IfPm3Iso14443a, "Read sector - Magic Chinese card"},
{"cload", CmdHF14AMfCLoad, IfPm3Iso14443a, "Load dump into magic Chinese card"},
{"csave", CmdHF14AMfCSave, IfPm3Iso14443a, "Save dump from magic Chinese card into file or emulator"},
{"csetuid", CmdHF14AMfCSetUID, IfPm3Iso14443a, "Set UID (magic chinese card)"},
{"csetblk", CmdHF14AMfCSetBlk, IfPm3Iso14443a, "Write block (magic chinese card)"},
{"cgetblk", CmdHF14AMfCGetBlk, IfPm3Iso14443a, "Read block (magic chinese card)"},
{"cgetsc", CmdHF14AMfCGetSc, IfPm3Iso14443a, "Read sector (magic chinese card)"},
{"cload", CmdHF14AMfCLoad, IfPm3Iso14443a, "Load dump (magic chinese card)"},
{"csave", CmdHF14AMfCSave, IfPm3Iso14443a, "Save dump from magic chinese card into file or emulator"},
{"-----------", CmdHelp, IfPm3Iso14443a, ""},
{"mad", CmdHF14AMfMAD, IfPm3Iso14443a, "Checks and prints MAD"},
{"ndef", CmdHFMFNDEF, IfPm3Iso14443a, "Prints NDEF records from card"},

View file

@ -1243,9 +1243,9 @@ static command_t CommandTable[] = {
// {"verichip", CmdLFVerichip, AlwaysAvailable, "{ VeriChip RFIDs... }"},
{"viking", CmdLFViking, AlwaysAvailable, "{ Viking RFIDs... }"},
{"visa2000", CmdLFVisa2k, AlwaysAvailable, "{ Visa2000 RFIDs... }"},
{"", CmdHelp, AlwaysAvailable, ""},
{"config", CmdLFSetConfig, IfPm3Lf, "Set config for LF sampling, bit/sample, decimation, frequency"},
{"cmdread", CmdLFCommandRead, IfPm3Lf, "<off period> <'0' period> <'1' period> <command> ['h' 134] \n\t\t-- Modulate LF reader field to send command before read (all periods in microseconds)"},
{"flexdemod", CmdFlexdemod, AlwaysAvailable, "Demodulate samples for FlexPass"},
{"read", CmdLFRead, IfPm3Lf, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"},
{"search", CmdLFfind, AlwaysAvailable, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) \n\t\t-- 'u' to search for unknown tags"},
{"sim", CmdLFSim, IfPm3Lf, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"},
@ -1256,6 +1256,7 @@ static command_t CommandTable[] = {
{"sniff", CmdLFSniff, IfPm3Lf, "Sniff LF traffic between reader and tag"},
{"tune", CmdLFTune, IfPm3Lf, "Continuously measure LF antenna tuning"},
// {"vchdemod", CmdVchDemod, AlwaysAvailable, "['clone'] -- Demodulate samples for VeriChip"},
{"flexdemod", CmdFlexdemod, AlwaysAvailable, "Demodulate samples for Motorola FlexPass"},
{NULL, NULL, NULL, NULL}
};

View file

@ -339,27 +339,63 @@ __attribute__((force_align_arg_pointer))
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate) {
uint16_t i;
uint32_t uid;
PacketResponseNG resp;
StateList_t statelists[2];
struct Crypto1State *p1, *p2, *p3, *p4;
struct {
uint8_t block;
uint8_t keytype;
uint8_t target_block;
uint8_t target_keytype;
bool calibrate;
uint8_t key[6];
} PACKED payload;
payload.block = blockNo;
payload.keytype = keyType;
payload.target_block = trgBlockNo;
payload.target_keytype = trgKeyType;
payload.calibrate = calibrate;
memcpy(payload.key, key, sizeof(payload.key));
PacketResponseNG resp;
clearCommandBuffer();
SendCommandOLD(CMD_HF_MIFARE_NESTED, blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate, key, 6);
if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return PM3_ETIMEOUT;
SendCommandNG(CMD_HF_MIFARE_NESTED, (uint8_t*)&payload, sizeof(payload));
if (!WaitForResponseTimeout(CMD_HF_MIFARE_NESTED, &resp, 1500)) return PM3_ETIMEOUT;
if (resp.status != PM3_SUCCESS)
return PM3_ESOFT;
struct p {
int16_t isOK;
uint8_t block;
uint8_t keytype;
uint8_t cuid[4];
uint8_t nt_a[4];
uint8_t ks_a[4];
uint8_t nt_b[4];
uint8_t ks_b[4];
} PACKED;
struct p* package = (struct p*)resp.data.asBytes;
// error during nested
if (resp.oldarg[0]) return resp.oldarg[0];
if (package->isOK) return package->isOK;
memcpy(&uid, resp.data.asBytes, 4);
memcpy(&uid, package->cuid, sizeof(package->cuid));
for (i = 0; i < 2; i++) {
statelists[i].blockNo = resp.oldarg[2] & 0xff;
statelists[i].keyType = (resp.oldarg[2] >> 8) & 0xff;
statelists[i].blockNo = package->block;
statelists[i].keyType = package->keytype;
statelists[i].uid = uid;
memcpy(&statelists[i].nt, (void *)(resp.data.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.data.asBytes + 4 + i * 8 + 4), 4);
}
memcpy(&statelists[0].nt, package->nt_a, sizeof(package->nt_a));
memcpy(&statelists[0].ks1, package->ks_a, sizeof(package->ks_a));
memcpy(&statelists[1].nt, package->nt_b, sizeof(package->nt_b));
memcpy(&statelists[1].ks1, package->ks_b, sizeof(package->ks_b));
// calc keys
pthread_t thread_id[2];