make style

This commit is contained in:
Philippe Teuwen 2020-08-13 12:25:04 +02:00
parent 8a602ed99d
commit 4ed57c7c4d
57 changed files with 878 additions and 878 deletions

View file

@ -159,8 +159,8 @@ void BigBuf_print_status(void) {
Dbprintf(" traceLen ...............%d", trace_len);
Dbprintf(" dma8 memory.............%d", dma_8.buf - BigBuf_get_addr());
Dbprintf(" dma16 memory............%d", (uint8_t*)dma_16.buf - BigBuf_get_addr());
Dbprintf(" toSend memory...........%d", toSend.buf - BigBuf_get_addr() );
Dbprintf(" dma16 memory............%d", (uint8_t *)dma_16.buf - BigBuf_get_addr());
Dbprintf(" toSend memory...........%d", toSend.buf - BigBuf_get_addr());
}
// return the maximum trace length (i.e. the unallocated size of BigBuf)
@ -229,7 +229,7 @@ bool RAMFUNC LogTrace(const uint8_t *btBytes, uint16_t iLen, uint32_t timestamp_
*/
duration = 0;
}
hdr->timestamp = timestamp_start;
hdr->duration = duration & 0xFFFF;
hdr->data_len = iLen;
@ -309,7 +309,7 @@ void tosend_stuffbit(int b) {
dmabuf16_t *get_dma16(void) {
if (dma_16.buf == NULL)
dma_16.buf = (uint16_t*)BigBuf_malloc(DMA_BUFFER_SIZE * sizeof(uint16_t));
dma_16.buf = (uint16_t *)BigBuf_malloc(DMA_BUFFER_SIZE * sizeof(uint16_t));
return &dma_16;
}

View file

@ -22,7 +22,7 @@
#define DMA_BUFFER_SIZE 256
// 8 data bits and 1 parity bit per payload byte, 1 correction bit, 1 SOC bit, 2 EOC bits
#define TOSEND_BUFFER_SIZE (9 * MAX_FRAME_SIZE + 1 + 1 + 2)
#define TOSEND_BUFFER_SIZE (9 * MAX_FRAME_SIZE + 1 + 1 + 2)
uint8_t *BigBuf_get_addr(void);
uint32_t BigBuf_get_size(void);

View file

@ -30,7 +30,7 @@ SRC_ISO14443b = iso14443b.c
SRC_FELICA = felica.c
SRC_CRAPTO1 = crypto1.c des.c desfire_crypto.c mifaredesfire.c aes.c platform_util.c
SRC_CRC = crc.c crc16.c crc32.c
SRC_ICLASS = iclass.c optimized_cipherutils.c optimized_ikeys.c optimized_elite.c optimized_cipher.c
SRC_ICLASS = iclass.c optimized_cipherutils.c optimized_ikeys.c optimized_elite.c optimized_cipher.c
SRC_LEGIC = legicrf.c legicrfsim.c legic_prng.c
SRC_NFCBARCODE = thinfilm.c

View file

@ -51,7 +51,7 @@
#define HF_ICLASS_CC_A "iceclass_cc_a.bin"
#define HF_ICLASS_CC_B "iceclass_cc_b.bin"
char* cc_files[] = { HF_ICLASS_CC_A, HF_ICLASS_CC_B };
char *cc_files[] = { HF_ICLASS_CC_A, HF_ICLASS_CC_B };
@ -65,7 +65,7 @@ char* cc_files[] = { HF_ICLASS_CC_A, HF_ICLASS_CC_B };
#endif
// iclass card descriptors
char * card_types[] = {
char *card_types[] = {
"PicoPass 16K / 16", // 000
"PicoPass 32K with current book 16K / 16", // 001
"Unknown Card Type!", // 010
@ -112,13 +112,13 @@ static uint8_t csns[8 * NUM_CSNS] = {
static void download_instructions(uint8_t t) {
DbpString("");
switch (t) {
switch (t) {
case ICE_STATE_FULLSIM: {
DbpString("The emulator memory was saved to SPIFFS");
DbpString("1. " _YELLOW_("mem spiffs dump o " HF_ICLASS_FULLSIM_MOD_BIN " f " HF_ICLASS_FULLSIM_MOD" e"));
DbpString("2. " _YELLOW_("hf iclass view f " HF_ICLASS_FULLSIM_MOD_BIN));
break;
}
}
case ICE_STATE_ATTACK: {
DbpString("The collected data was saved to SPIFFS. The file names below may differ");
DbpString("1. " _YELLOW_("mem spiffs tree"));
@ -143,9 +143,9 @@ static void save_to_flash(uint8_t *data, uint16_t datalen) {
char fn[SPIFFS_OBJ_NAME_LEN];
sprintf(fn, "iclass-%02X%02X%02X%02X%02X%02X%02X%02X.bin",
data[0], data[1], data[2], data[3],
data[4], data[5], data[6], data[7]
);
data[0], data[1], data[2], data[3],
data[4], data[5], data[6], data[7]
);
int res;
if (exists_in_spiffs(fn) == false) {
@ -185,7 +185,7 @@ static int fullsim_mode(void) {
Dbprintf("loaded " _GREEN_(HF_ICLASS_FULLSIM_ORIG_BIN) " (%u bytes)", fsize);
}
iclass_simulate(ICLASS_SIM_MODE_FULL, 0 , false, NULL, NULL, NULL);
iclass_simulate(ICLASS_SIM_MODE_FULL, 0, false, NULL, NULL, NULL);
LED_B_ON();
rdv40_spiffs_lazy_mount();
@ -252,7 +252,7 @@ static int reader_attack_mode(void) {
rdv40_spiffs_lazy_unmount();
LED_B_OFF();
if (res == SPIFFS_OK) {
Dbprintf("saved to " _GREEN_("%s"), fn);
Dbprintf("saved to " _GREEN_("%s"), fn);
} else {
Dbprintf(_RED_("error") " writing %s to flash ( %d )", fn, res);
}
@ -280,7 +280,7 @@ static int reader_dump_mode(void) {
break;
}
// setup authenticate AA1
// setup authenticate AA1
iclass_auth_req_t auth = {
.use_raw = false,
.use_elite = false,
@ -334,7 +334,7 @@ static int reader_dump_mode(void) {
res = authenticate_iclass_tag(&auth, hdr, &start_time, &eof_time, NULL);
if (res == false) {
switch_off();
Dbprintf( _RED_("failed AA1 auth") ", skipping ");
Dbprintf(_RED_("failed AA1 auth") ", skipping ");
continue;
}
@ -389,7 +389,7 @@ static int reader_dump_mode(void) {
}
}
switch_off();
save_to_flash(card_data, (start_block + dumped) * 8 );
save_to_flash(card_data, (start_block + dumped) * 8);
Dbprintf("%u bytes saved", (start_block + dumped) * 8);
}
DbpString("-=[ exiting " _CYAN_("`read & dump`") " mode ]=-");
@ -409,7 +409,7 @@ static int config_sim_mode(void) {
if (res == SPIFFS_OK) {
Dbprintf("loaded " _GREEN_("%s") " (%u bytes) to emulator memory", cc_files[i], fsize);
iclass_simulate(ICLASS_SIM_MODE_FULL, 0 , false, NULL, NULL, NULL);
iclass_simulate(ICLASS_SIM_MODE_FULL, 0, false, NULL, NULL, NULL);
}
}
@ -490,7 +490,7 @@ void RunMod(void) {
// Look for config cards
rdv40_spiffs_lazy_mount();
for (uint8_t i =0; i < 2; i++) {
for (uint8_t i = 0; i < 2; i++) {
if (exists_in_spiffs(cc_files[i]) == false) {
Dbprintf(_RED_("error") ", " _YELLOW_("%s") " file missing", cc_files[i]);
mode = ICE_STATE_NONE;

View file

@ -64,12 +64,12 @@ static void fillbuff(uint8_t bit) {
}
static void construct_EM410x_emul(uint64_t id) {
int i, j;
int binary[4] = {0};
int parity[4] = {0};
buflen = 0;
for (i = 0; i < 9; i++)
fillbuff(1);

View file

@ -295,7 +295,7 @@ static void TimingIntervalAcquisition(void) {
static void print_debug_level(void) {
char dbglvlstr[20] = {0};
switch(DBGLEVEL) {
switch (DBGLEVEL) {
case DBG_NONE:
sprintf(dbglvlstr, "NONE");
break;
@ -308,7 +308,7 @@ static void print_debug_level(void) {
case DBG_DEBUG:
sprintf(dbglvlstr, "DEBUG");
break;
case DBG_EXTENDED:
case DBG_EXTENDED:
sprintf(dbglvlstr, "EXTENDED");
break;
}
@ -362,9 +362,9 @@ static void SendStatus(void) {
print_stack_usage();
print_debug_level();
tosend_t *ts = get_tosend();
Dbprintf(" ToSendMax...............%d", ts->max );
Dbprintf(" ToSendMax...............%d", ts->max);
Dbprintf(" ToSend BUFFERSIZE.......%d", TOSEND_BUFFER_SIZE);
while ((AT91C_BASE_PMC->PMC_MCFR & AT91C_CKGR_MAINRDY) == 0); // Wait for MAINF value to become available...
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & AT91C_CKGR_MAINF; // Get # main clocks within 16 slow clocks

View file

@ -113,7 +113,7 @@ static uint8_t bits2byte(uint8_t *bits, int length) {
byte |= bits[i];
if (i != length-1)
if (i != length - 1)
byte <<= 1;
}
@ -145,17 +145,17 @@ static void save_word(int pos, uint8_t bits[EM4X50_TAG_WORD]) {
// data and row parities
for (int i = 0; i < 4; i++) {
tag.sectors[pos][i] = bits2byte(&bits[9*i],8);
row_parity[i] = bits[9*i+8];
tag.sectors[pos][i] = bits2byte(&bits[9 * i], 8);
row_parity[i] = bits[9 * i + 8];
}
tag.sectors[pos][4] = bits2byte(row_parity,4);
tag.sectors[pos][4] = bits2byte(row_parity, 4);
// column parities
for (int i = 0; i < 8; i++)
col_parity[i] = bits[36+i];
col_parity[i] = bits[36 + i];
tag.sectors[pos][5] = bits2byte(col_parity,8);
tag.sectors[pos][5] = bits2byte(col_parity, 8);
// stop bit
tag.sectors[pos][6] = bits[44];
@ -311,13 +311,13 @@ static int get_next_bit(void) {
}
static uint32_t get_pulse_length(void) {
// iterates pulse length (low -> high -> low)
uint8_t sample = 0;
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
while (sample > gLow)
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@ -333,20 +333,20 @@ static uint32_t get_pulse_length(void) {
}
static bool check_pulse_length(uint32_t pl, int length) {
// check if pulse length <pl> corresponds to given length <length>
if ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) &
(pl <= T0 * (length + EM4X50_TAG_TOLERANCE)))
(pl <= T0 * (length + EM4X50_TAG_TOLERANCE)))
return true;
else
return false;
}
static void em4x50_send_bit(int bit) {
// send single bit according to EM4x50 application note and datasheet
// reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
@ -361,13 +361,13 @@ static void em4x50_send_bit(int bit) {
// half of bit period
HIGH(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD);
// disable modulation for second half of bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
} else {
// bit = "1" means disable modulation for full bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
@ -377,20 +377,20 @@ static void em4x50_send_bit(int bit) {
static void em4x50_send_byte(uint8_t byte) {
// send byte (without parity)
for (int i = 0; i < 8; i++)
em4x50_send_bit((byte >> (7-i)) & 1);
em4x50_send_bit((byte >> (7 - i)) & 1);
}
static void em4x50_send_byte_with_parity(uint8_t byte) {
// send byte followed by its (equal) parity bit
int parity = 0, bit = 0;
for (int i = 0; i < 8; i++) {
bit = (byte >> (7-i)) & 1;
bit = (byte >> (7 - i)) & 1;
em4x50_send_bit(bit);
parity ^= bit;
}
@ -399,12 +399,12 @@ static void em4x50_send_byte_with_parity(uint8_t byte) {
}
static void em4x50_send_word(const uint8_t bytes[4]) {
// send 32 bit word with parity bits according to EM4x50 datasheet
for (int i = 0; i < 4; i++)
em4x50_send_byte_with_parity(bytes[i]);
// send column parities
em4x50_send_byte(bytes[0] ^ bytes[1] ^ bytes[2] ^ bytes[3]);
@ -413,70 +413,70 @@ static void em4x50_send_word(const uint8_t bytes[4]) {
}
static bool find_single_listen_window(void) {
// find single listen window
int cnt_pulses = 0;
while (cnt_pulses < EM4X50_T_WAITING_FOR_SNGLLIW) {
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// listen window found
return true;
}
} else {
cnt_pulses++;
}
}
return false;
}
static bool find_double_listen_window(bool bcommand) {
// find two successive listen windows that indicate the beginning of
// data transmission
// double listen window to be detected within 1600 pulses -> worst case
// reason: first detectable double listen window after 34 words
// -> 34 words + 34 single listen windows -> about 1600 pulses
int cnt_pulses = 0;
while (cnt_pulses < EM4X50_T_WAITING_FOR_DBLLIW) {
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// first listen window found
if (bcommand) {
// data transmission from card has to be stopped, because
// a commamd shall be issued
// unfortunately the posititon in listen window (where
// command request has to be sent) has gone, so if a
// second window follows - sync on this to issue a command
// skip the next bit...
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_FULL_PERIOD);
// ...and check if the following bit does make sense
// (if not it is the correct position within the second
// listen window)
if (get_next_bit() == EM4X50_BIT_OTHER) {
// send RM for request mode
em4x50_send_bit(0);
em4x50_send_bit(0);
@ -498,47 +498,47 @@ static bool find_double_listen_window(bool bcommand) {
cnt_pulses++;
}
}
return false;
}
static bool find_em4x50_tag(void) {
// function is used to check wether a tag on the proxmark is an
// EM4x50 tag or not -> speed up "lf search" process
return (find_single_listen_window());
}
static bool request_receive_mode(void) {
// To issue a command we have to find a listen window first.
// Because identification and sychronization at the same time is not
// possible when using pulse lengths a double listen window is used.
bool bcommand = true;
return find_double_listen_window(bcommand);
}
static bool check_ack(bool bliw) {
// returns true if signal structue corresponds to ACK, anything else is
// counted as NAK (-> false)
// Only relevant for pasword writing function:
// If <bliw> is true then within the single listen window right after the
// ack signal a RM request has to be sent.
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 4 * EM4X50_T_TAG_FULL_PERIOD) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// The received signal is either ACK or NAK.
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// Now the signal must be ACK.
if (!bliw) {
@ -546,17 +546,17 @@ static bool check_ack(bool bliw) {
return true;
} else {
// send RM request after ack signal
// wait for 2 bits (remaining "bit" of ACK signal + first
// "bit" of listen window)
wait_timer(FPGA_TIMER_0, T0 * 2 * EM4X50_T_TAG_FULL_PERIOD);
// check for listen window (if first bit cannot be inerpreted
// as a valid bit it must belong to a listen window)
if (get_next_bit() == EM4X50_BIT_OTHER) {
// send RM for request mode
em4x50_send_bit(0);
em4x50_send_bit(0);
@ -565,7 +565,7 @@ static bool check_ack(bool bliw) {
}
}
} else {
// It's NAK -> stop searching
break;
}
@ -580,7 +580,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// decodes one word by evaluating pulse lengths and previous bit;
// word must have 45 bits in total:
// 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit
bool bbitchange = false;
int i = 0;
uint32_t pl = 0;
@ -599,7 +599,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
bbitchange = true;
} else {
// pulse length = 2.5
bits[0] = 0;
bits[1] = 1;
@ -609,35 +609,35 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// identify remaining bits based on pulse lengths
// between two listen windows only pulse lengths of 1, 1.5 and 2 are possible
while (true) {
i++;
pl = get_pulse_length();
if (check_pulse_length(pl, EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length = 1 -> keep former bit value
bits[i] = bits[i-1];
bits[i] = bits[i - 1];
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
// pulse length = 1.5 -> decision on bit change
if (bbitchange) {
// if number of pulse lengths with 1.5 periods is even -> add bit
bits[i] = (bits[i-1] == 1) ? 1 : 0;
bits[i] = (bits[i - 1] == 1) ? 1 : 0;
// pulse length of 1.5 changes bit value
bits[i+1] = (bits[i] == 1) ? 0 : 1;
bits[i + 1] = (bits[i] == 1) ? 0 : 1;
i++;
// next time add only one bit
bbitchange = false;
} else {
bits[i] = (bits[i-1] == 1) ? 0 : 1;
bits[i] = (bits[i - 1] == 1) ? 0 : 1;
// next time two bits have to be added
bbitchange = true;
}
@ -646,7 +646,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// pulse length of 2 means: adding 2 bits "01"
bits[i] = 0;
bits[i+1] = 1;
bits[i + 1] = 1;
i++;
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_FULL_PERIOD)) {
@ -654,7 +654,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// pulse length of 3 indicates listen window -> clear last
// bit (= 0) and return
return --i;
}
}
}
@ -667,8 +667,8 @@ static bool login(uint8_t password[4]) {
// simple login to EM4x50,
// used in operations that require authentication
if (request_receive_mode ()) {
if (request_receive_mode()) {
// send login command
em4x50_send_byte_with_parity(EM4X50_COMMAND_LOGIN);
@ -679,12 +679,12 @@ static bool login(uint8_t password[4]) {
// check if ACK is returned
if (check_ack(false))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
@ -695,18 +695,18 @@ static bool login(uint8_t password[4]) {
static bool reset(void) {
// resets EM4x50 tag (used by write function)
if (request_receive_mode ()) {
if (request_receive_mode()) {
// send login command
em4x50_send_byte_with_parity(EM4X50_COMMAND_RESET);
if (check_ack(false))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
@ -717,10 +717,10 @@ static bool reset(void) {
//==============================================================================
static bool standard_read(int *now) {
// reads data that tag transmits when exposed to reader field
// (standard read mode); number of read words is saved in <now>
int fwr = *now;
uint8_t bits[EM4X50_TAG_WORD] = {0};
@ -733,23 +733,23 @@ static bool standard_read(int *now) {
// number of detected words
*now -= fwr;
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("didn't find a listen window");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("didn't find a listen window");
}
return false;
}
static bool selective_read(uint8_t addresses[4]) {
// reads from "first word read" (fwr = addresses[3]) to "last word read"
// (lwr = addresses[2])
// result is verified by "standard read mode"
int fwr = addresses[3]; // first word read
int lwr = addresses[2]; // last word read
int now = fwr; // number of words
@ -764,26 +764,26 @@ static bool selective_read(uint8_t addresses[4]) {
// look for ACK sequence
if (check_ack(false))
// save and verify via standard read mode (compare number of words)
if (standard_read(&now))
if (now == (lwr - fwr + 1))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
void em4x50_info(em4x50_data_t *etd) {
// collects as much information as possible via selective read mode
// if no password is given -> try with standard password "0x00000000"
// otherwise continue without login
bool bsuccess = false, blogin = false;
uint8_t status = 0;
uint8_t addresses[] = {0x00, 0x00, 0x21, 0x00}; // fwr = 0, lwr = 33
@ -801,28 +801,28 @@ void em4x50_info(em4x50_data_t *etd) {
blogin = login(etd->password);
} else {
// if no password is given, try to login with "0x00000000"
blogin = login(password);
}
bsuccess = selective_read(addresses);
}
status = (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
}
void em4x50_read(em4x50_data_t *etd) {
// reads in two different ways:
// - using "selective read mode" -> bidirectional communication
// - using "standard read mode" -> unidirectional communication (read
// data that tag transmits "voluntarily")
bool bsuccess = false, blogin = false;
int now = 0;
uint8_t status = 0;
@ -830,32 +830,32 @@ void em4x50_read(em4x50_data_t *etd) {
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
if (etd->addr_given) {
// selective read mode
// try to login with given password
if (etd->pwd_given)
blogin = login(etd->password);
// only one word has to be read -> first word read = last word read
addresses[2] = addresses[3] = etd->address;
bsuccess = selective_read(addresses);
} else {
// standard read mode
bsuccess = standard_read(&now);
}
}
status = (now << 2) + (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
}
@ -867,7 +867,7 @@ void em4x50_read(em4x50_data_t *etd) {
static bool write(uint8_t word[4], uint8_t address) {
// writes <word> to specified <address>
if (request_receive_mode()) {
// send write command
@ -893,8 +893,8 @@ static bool write(uint8_t word[4], uint8_t address) {
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
@ -903,7 +903,7 @@ static bool write(uint8_t word[4], uint8_t address) {
static bool write_password(uint8_t password[4], uint8_t new_password[4]) {
// changes password from <password> to <new_password>
if (request_receive_mode()) {
// send write password command
@ -932,36 +932,36 @@ static bool write_password(uint8_t password[4], uint8_t new_password[4]) {
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
void em4x50_write(em4x50_data_t *etd) {
// write operation process for EM4x50 tag,
// single word is written to given address, verified by selective read operation
bool bsuccess = false, blogin = false;
uint8_t status = 0;
uint8_t word[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t addresses[4] = {0x00, 0x00, 0x00, 0x00};
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// reorder word according to datasheet
msb2lsb_word(etd->word);
// if password is given try to login first
if (etd->pwd_given)
blogin = login(etd->password);
// write word to given address
if (write(etd->word, etd->address)) {
@ -982,7 +982,7 @@ void em4x50_write(em4x50_data_t *etd) {
word[2] = tag.sectors[etd->address][2];
word[3] = tag.sectors[etd->address][3];
msb2lsb_word(word);
bsuccess = true;
for (int i = 0; i < 4; i++)
bsuccess &= (word[i] == etd->word[i]) ? true : false;
@ -993,20 +993,20 @@ void em4x50_write(em4x50_data_t *etd) {
}
status = (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
}
void em4x50_write_password(em4x50_data_t *etd) {
// sinmple change of password
bool bsuccess = false;
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
@ -1021,19 +1021,19 @@ void em4x50_write_password(em4x50_data_t *etd) {
}
void em4x50_wipe(em4x50_data_t *etd) {
// set all data of EM4x50 tag to 0x0 including password
bool bsuccess = false;
uint8_t zero[4] = {0, 0, 0, 0};
uint8_t addresses[4] = {0, 0, EM4X50_NO_WORDS - 3, 1};
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login first
if (login(etd->password)) {
@ -1058,9 +1058,9 @@ void em4x50_wipe(em4x50_data_t *etd) {
bsuccess &= (tag.sectors[i][j] == 0) ? true : false;
}
if (bsuccess) {
// so far everything is fine
// last task: reset password
if (login(etd->password))

View file

@ -152,16 +152,16 @@ void FpgaSetupSsc(uint16_t fpga_mode) {
// data and frame signal is sampled on falling edge of RK
AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1);
// 8, 16 or 32 bits per transfer, no loopback, MSB first, 1 transfer per sync
// 8, 16 or 32 bits per transfer, no loopback, MSB first, 1 transfer per sync
// pulse, no output sync
if ((fpga_mode & FPGA_MAJOR_MODE_MASK) == FPGA_MAJOR_MODE_HF_READER && FpgaGetCurrent() == FPGA_BITSTREAM_HF) {
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(16) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
} else {
if ((fpga_mode & FPGA_MAJOR_MODE_MASK) == FPGA_MAJOR_MODE_HF_READER && FpgaGetCurrent() == FPGA_BITSTREAM_HF) {
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(16) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
} else {
AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0);
}
}
// TX clock comes from TK pin, no clock output, outputs change on rising edge of TK,
// TF (frame sync) is sampled on falling edge of TK, start TX on rising edge of TF
// TX clock comes from TK pin, no clock output, outputs change on rising edge of TK,
// TF (frame sync) is sampled on falling edge of TK, start TX on rising edge of TF
AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) | SSC_CLOCK_MODE_START(5);
// tx framing is the same as the rx framing

View file

@ -52,7 +52,7 @@ int HfSniff(uint32_t samplesToSkip, uint32_t triggersToSkip, uint16_t *len) {
*len = (BigBuf_max_traceLen() & 0xFFFE);
uint8_t *mem = BigBuf_malloc(*len);
uint32_t trigger_cnt = 0;
uint32_t trigger_cnt = 0;
uint16_t r = 0, interval = 0;
bool pressed = false;
@ -77,7 +77,7 @@ int HfSniff(uint32_t samplesToSkip, uint32_t triggersToSkip, uint16_t *len) {
// 180 (0xB4) arbitary value to see if a strong RF field is near.
if (r > 180) {
if (++trigger_cnt > triggersToSkip) {
break;
}
@ -97,7 +97,7 @@ int HfSniff(uint32_t samplesToSkip, uint32_t triggersToSkip, uint16_t *len) {
}
}
optimizedSniff((uint16_t*)mem, *len);
optimizedSniff((uint16_t *)mem, *len);
if (DBGLEVEL >= DBG_INFO) {
Dbprintf("Trigger kicked in (%d >= 180)", r);

View file

@ -1002,7 +1002,7 @@ void SniffHitag2(void) {
size_t periods = 0;
uint8_t periods_bytes[4];
// int16_t checked = 0;
// int16_t checked = 0;
/*bool waiting_for_first_edge = true;*/
LED_C_ON();
@ -1015,18 +1015,18 @@ void SniffHitag2(void) {
WDT_HIT();
/*
// only every 1000th times, in order to save time when collecting samples.
if (checked == 1000) {
if (data_available()) {
checked = -1;
break;
} else {
checked = 0;
}
}
++checked;
*/
/*
// only every 1000th times, in order to save time when collecting samples.
if (checked == 1000) {
if (data_available()) {
checked = -1;
break;
} else {
checked = 0;
}
}
++checked;
*/
// Receive frame, watch for at most T0*EOF periods

View file

@ -736,7 +736,7 @@ void SmartCardRaw(uint64_t arg0, uint64_t arg1, uint8_t *data) {
if ((flags & SC_LOG) == SC_LOG)
set_tracing(true);
else
else
set_tracing(false);
if ((flags & SC_CONNECT)) {

View file

@ -162,9 +162,9 @@ void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_
LEDsoff();
Iso15693InitTag();
clear_trace();
// only logg if we are called from the client.
set_tracing(send_reply);
@ -190,15 +190,15 @@ void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_
// In this mode, a number of csns are within datain. We'll simulate each one, one at a time
// in order to collect MAC's from the reader. This can later be used in an offlne-attack
// in order to obtain the keys, as in the "dismantling iclass"-paper.
#define EPURSE_MAC_SIZE 16
#define EPURSE_MAC_SIZE 16
int i = 0;
for (; i < num_csns && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) {
memcpy(emulator, datain + (i * 8), 8);
if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) {
if (dataoutlen)
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE;
// Button pressed
@ -207,7 +207,7 @@ void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_
goto out;
}
}
if (dataoutlen)
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE;
if (send_reply)
@ -227,7 +227,7 @@ void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_
} else if (sim_type == ICLASS_SIM_MODE_CONFIG_CARD) {
// config card
// config card
do_iclass_simulation(ICLASS_SIM_MODE_FULL, NULL);
// swap bin
@ -252,11 +252,11 @@ void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_
// keyroll 1
if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) {
if (dataoutlen)
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE * 2;
if (send_reply)
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
// Button pressed
@ -266,10 +266,10 @@ void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_
// keyroll 2
if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + (i + num_csns) * EPURSE_MAC_SIZE)) {
if (dataoutlen)
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE * 2;
if (send_reply)
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
// Button pressed
@ -277,13 +277,13 @@ void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_
}
}
if (dataoutlen)
if (dataoutlen)
*dataoutlen = i * EPURSE_MAC_SIZE * 2;
// double the amount of collected data.
if (send_reply)
reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2);
} else {
// We may want a mode here where we hardcode the csns to use (from proxclone).
// That will speed things up a little, but not required just yet.
@ -300,7 +300,7 @@ out:
/**
* Simulation assumes a SECURE PAGE simulation with authentication and application areas.
*
*
*
* @brief Does the actual simulation
* @param csn - csn to use
@ -318,7 +318,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
State cipher_state_KD[8];
State cipher_state_KC[8];
State *cipher_state = &cipher_state_KD[0];
uint8_t *emulator = BigBuf_get_EM_addr();
uint8_t *csn = emulator;
@ -346,14 +346,14 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
// AIA
uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(conf_block, emulator + (8 * 1), 8); // blk 1
memcpy(card_challenge_data, emulator + (8 * 2), 8); // e-purse, blk 2
memcpy(diversified_kd, emulator + (8 * 3), 8); // Kd, blk 3
memcpy(diversified_kc, emulator + (8 * 4), 8); // Kc, blk 4
// (iceman) this only works for 2KS / 16KS tags.
// Use application data from block 5
memcpy(aia_data, emulator + (8 * 5), 8);
@ -378,7 +378,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
bool personalization_mode = conf_block[7] & 0x80;
uint8_t block_wr_lock = conf_block[3];
// chip memory may be divided in 8 pages
uint8_t max_page = ((conf_block[4] & 0x10) == 0x10) ? 0 : 7;
@ -512,7 +512,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
modulated_response_size = 0;
trace_data = NULL;
trace_data_size = 0;
uint32_t reader_eof_time = 0;
len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
if (len < 0) {
@ -520,7 +520,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
exit_loop = true;
continue;
}
// extra response data
cmd = receivedCmd[0] & 0xF;
options = (receivedCmd[0] >> 4) & 0xFF;
@ -532,7 +532,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
modulated_response_size = resp_sof_len;
chip_state = ACTIVATED;
goto send;
} else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // 0x0C
// Reader asks for anti collision CSN
if (chip_state == SELECTED || chip_state == ACTIVATED) {
@ -576,7 +576,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
}
if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) {
// provide defaults for blocks 0 ... 5
// block0,1,2,5 is always readable.
switch (block) {
case 0: { // csn (0c 00)
@ -646,7 +646,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
}
// debit key
if (receivedCmd[0] == 0x88 ){
if (receivedCmd[0] == 0x88) {
cipher_state = &cipher_state_KD[current_page];
diversified_key = diversified_kd;
using_kc = false;
@ -662,7 +662,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
trace_data_size = sizeof(card_challenge_data);
goto send;
} else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05
} else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05
// Reader random and reader MAC!!!
if (chip_state != SELECTED) {
@ -677,14 +677,14 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
opt_doReaderMAC_2(*cipher_state, receivedCmd + 1, _mac, diversified_key);
if (_mac[0] != receivedCmd[5] || _mac[1] != receivedCmd[6] || _mac[2] != receivedCmd[7] || _mac[3] != receivedCmd[8]) {
Dbprintf("reader auth " _RED_("failed"));
Dbprintf("reader auth " _RED_("failed"));
Dbprintf("hf iclass lookup u %02x%02x%02x%02x%02x%02x%02x%02x p %02x%02x%02x%02x%02x%02x%02x%02x m %02x%02x%02x%02x%02x%02x%02x%02x f iclass_default_keys.dic",
csn_data[0],csn_data[1],csn_data[2],csn_data[3],csn_data[4],csn_data[5],csn_data[6],csn_data[7],
card_challenge_data[0],card_challenge_data[1],card_challenge_data[2],card_challenge_data[3],
card_challenge_data[4],card_challenge_data[5],card_challenge_data[6],card_challenge_data[7],
receivedCmd[1],receivedCmd[2],receivedCmd[3],receivedCmd[4],
receivedCmd[5],receivedCmd[6],receivedCmd[7],receivedCmd[8]
);
csn_data[0], csn_data[1], csn_data[2], csn_data[3], csn_data[4], csn_data[5], csn_data[6], csn_data[7],
card_challenge_data[0], card_challenge_data[1], card_challenge_data[2], card_challenge_data[3],
card_challenge_data[4], card_challenge_data[5], card_challenge_data[6], card_challenge_data[7],
receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4],
receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]
);
goto send;
}
@ -760,13 +760,13 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
// is chip in ReadOnly (RO)
if ((block_wr_lock & 0x80) == 0) goto send;
if ( block == 12 && (block_wr_lock & 0x40) == 0) goto send;
if ( block == 11 && (block_wr_lock & 0x20) == 0) goto send;
if ( block == 10 && (block_wr_lock & 0x10) == 0) goto send;
if ( block == 9 && (block_wr_lock & 0x08) == 0) goto send;
if ( block == 8 && (block_wr_lock & 0x04) == 0) goto send;
if ( block == 7 && (block_wr_lock & 0x02) == 0) goto send;
if ( block == 6 && (block_wr_lock & 0x01) == 0) goto send;
if (block == 12 && (block_wr_lock & 0x40) == 0) goto send;
if (block == 11 && (block_wr_lock & 0x20) == 0) goto send;
if (block == 10 && (block_wr_lock & 0x10) == 0) goto send;
if (block == 9 && (block_wr_lock & 0x08) == 0) goto send;
if (block == 8 && (block_wr_lock & 0x04) == 0) goto send;
if (block == 7 && (block_wr_lock & 0x02) == 0) goto send;
if (block == 6 && (block_wr_lock & 0x01) == 0) goto send;
if (block == 2) { // update e-purse
memcpy(card_challenge_data, receivedCmd + 2, 8);
@ -777,7 +777,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kc);
if (simulationMode == ICLASS_SIM_MODE_FULL) {
memcpy(emulator + (current_page * page_size) + (8 * 2), card_challenge_data, 8);
}
}
} else if (block == 3) { // update Kd
for (int i = 0; i < 8; i++) {
if (personalization_mode) {
@ -830,7 +830,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
// if on 2k, always ignore 3msb, & 0x1F)
uint8_t page = receivedCmd[1] & 0x1F;
if ( page > max_page) {
if (page > max_page) {
goto send;
}
@ -844,7 +844,7 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
personalization_mode = data_generic_trace[7] & 0x80;
block_wr_lock = data_generic_trace[3];
AddCrc(data_generic_trace, 8);
trace_data = data_generic_trace;
@ -856,8 +856,8 @@ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) {
modulated_response_size = ts->max;
}
goto send;
} else if(cmd == ICLASS_CMD_DETECT) { // 0x0F
} else if (cmd == ICLASS_CMD_DETECT) { // 0x0F
// not supported yet, ignore
} else if (cmd == 0x26 && len == 5) {
// standard ISO15693 INVENTORY command. Ignore.
@ -876,7 +876,7 @@ send:
TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false);
LogTrace_ISO15693(trace_data, trace_data_size, response_time * 32, (response_time * 32) + (modulated_response_size * 32 * 64), NULL, false);
}
if (chip_state == HALTED) {
uint32_t wait_time = GetCountSspClk() + ICLASS_READER_TIMEOUT_ACTALL;
while (GetCountSspClk() < wait_time) {};
@ -927,8 +927,8 @@ int do_iclass_simulation_nonsec(void) {
// AIA
uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00};
memcpy(conf_block, emulator + (8 * 1), 8);
memcpy(conf_block, emulator + (8 * 1), 8);
memcpy(aia_data, emulator + (8 * 2), 8);
AddCrc(conf_block, 8);
@ -1025,7 +1025,7 @@ int do_iclass_simulation_nonsec(void) {
bool exit_loop = false;
while (exit_loop == false) {
WDT_HIT();
uint32_t reader_eof_time = 0;
len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time);
if (len < 0) {
@ -1048,13 +1048,13 @@ int do_iclass_simulation_nonsec(void) {
if (cmd == ICLASS_CMD_ACTALL && len == 1) { // 0x0A
// Reader in anti collision phase
if (chip_state != HALTED) {
if (chip_state != HALTED) {
modulated_response = resp_sof;
modulated_response_size = resp_sof_len;
chip_state = ACTIVATED;
}
goto send;
} else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // 0x0C
// Reader asks for anti collision CSN
if (chip_state == SELECTED || chip_state == ACTIVATED) {
@ -1135,7 +1135,7 @@ int do_iclass_simulation_nonsec(void) {
} else if (cmd == ICLASS_CMD_READCHECK) { // 0x88
goto send;
} else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05
} else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05
goto send;
} else if (cmd == ICLASS_CMD_HALT && options == 0 && len == 1) {
@ -1210,7 +1210,7 @@ int do_iclass_simulation_nonsec(void) {
modulated_response_size = ts->max;
}
goto send;
// } else if(cmd == ICLASS_CMD_DETECT) { // 0x0F
} else if (cmd == 0x26 && len == 5) {
// standard ISO15693 INVENTORY command. Ignore.
@ -1249,15 +1249,15 @@ static void iclass_send_as_reader(uint8_t *frame, int len, uint32_t *start_time,
LogTrace_ISO15693(frame, len, (*start_time * 4), (*end_time * 4), NULL, true);
}
static bool iclass_send_cmd_with_retries(uint8_t* cmd, size_t cmdsize, uint8_t* resp, size_t max_resp_size,
uint8_t expected_size, uint8_t tries, uint32_t *start_time,
uint16_t timeout, uint32_t *eof_time) {
static bool iclass_send_cmd_with_retries(uint8_t *cmd, size_t cmdsize, uint8_t *resp, size_t max_resp_size,
uint8_t expected_size, uint8_t tries, uint32_t *start_time,
uint16_t timeout, uint32_t *eof_time) {
while (tries-- > 0) {
iclass_send_as_reader(cmd, cmdsize, start_time, eof_time);
if (resp == NULL) {
return true;
return true;
}
if (expected_size == GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time)) {
@ -1285,7 +1285,7 @@ static bool select_iclass_tag_ex(uint8_t *card_data, bool use_credit_key, uint32
uint8_t resp[ICLASS_BUFFER_SIZE] = {0};
picopass_hdr *hdr = (picopass_hdr *)card_data;
// Bit 4: K.If this bit equals to one, the READCHECK will use the Credit Key (Kc); if equals to zero, Debit Key (Kd) will be used
// bit 7: parity.
if (use_credit_key)
@ -1297,14 +1297,14 @@ static bool select_iclass_tag_ex(uint8_t *card_data, bool use_credit_key, uint32
int len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time);
if (len < 0)
return false;
// send Identify
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(identify, 1, &start_time, eof_time);
// expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10)
if (len != 10)
return false;
// copy the Anti-collision CSN to our select-packet
@ -1325,17 +1325,17 @@ static bool select_iclass_tag_ex(uint8_t *card_data, bool use_credit_key, uint32
// card selected, now read config (block1) (only 8 bytes no CRC)
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_conf, sizeof(read_conf), &start_time, eof_time);
// expect a 8-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10)
return false;
// save CONF
memcpy( (uint8_t*)&hdr->conf, resp, sizeof(hdr->conf));
if (status)
*status |= (FLAG_ICLASS_CSN | FLAG_ICLASS_CONF);
memcpy((uint8_t *)&hdr->conf, resp, sizeof(hdr->conf));
if (status)
*status |= (FLAG_ICLASS_CSN | FLAG_ICLASS_CONF);
uint8_t pagemap = get_pagemap(hdr);
if (pagemap != PICOPASS_NON_SECURE_PAGEMODE) {
@ -1343,12 +1343,12 @@ static bool select_iclass_tag_ex(uint8_t *card_data, bool use_credit_key, uint32
// read App Issuer Area block 5
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time);
// expect a 10-byte response here
// expect a 10-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10)
return false;
if (status) {
*status |= FLAG_ICLASS_AIA;
memcpy(hdr->app_issuer_area, resp, sizeof(hdr->app_issuer_area));
@ -1357,7 +1357,7 @@ static bool select_iclass_tag_ex(uint8_t *card_data, bool use_credit_key, uint32
// card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC)
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_check_cc, sizeof(read_check_cc), &start_time, eof_time);
// expect a 8-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 8)
@ -1365,7 +1365,7 @@ static bool select_iclass_tag_ex(uint8_t *card_data, bool use_credit_key, uint32
memcpy(hdr->epurse, resp, sizeof(hdr->epurse));
*status |= FLAG_ICLASS_CC;
} else {
// read App Issuer Area block 2
@ -1375,18 +1375,18 @@ static bool select_iclass_tag_ex(uint8_t *card_data, bool use_credit_key, uint32
start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time);
// expect a 10-byte response here
len = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time);
if (len != 10)
return false;
if (status) {
if (status) {
*status |= FLAG_ICLASS_AIA;
memcpy(card_data + (8 * 2), resp, 8);
}
}
}
return true;
}
@ -1424,8 +1424,8 @@ void ReaderIClass(uint8_t flags) {
return;
}
// Page mapping for secure mode
// Page mapping for secure mode
// 0 : CSN
// 1 : Configuration
// 2 : e-purse
@ -1433,22 +1433,22 @@ void ReaderIClass(uint8_t flags) {
// 4 : kc / credit / aa1 (write-only)
// 5 : AIA, Application issuer area
//
// Page mapping for non secure mode
// Page mapping for non secure mode
// 0 : CSN
// 1 : Configuration
// 2 : AIA, Application issuer area
// Return to client, e 6 * 8 bytes of data.
// with 0xFF:s in block 3 and 4.
LED_B_ON();
reply_mix(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
//Send back to client, but don't bother if we already sent this -
// only useful if looping in arm (not try_once && not abort_after_read)
/*
if (memcmp(last_csn, card_data, 8) != 0) {
reply_mix(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data));
if (flag_readonce) {
LED_B_OFF();
@ -1465,12 +1465,12 @@ void ReaderIClass(uint8_t flags) {
// reply_mix(CMD_ACK, result_status, 0, 0, card_data, 0);
// }
switch_off();
switch_off();
}
// turn off afterwards
void ReaderIClass_Replay(uint8_t *rnr, uint8_t *mac) {
BigBuf_free();
uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
@ -1488,11 +1488,11 @@ void ReaderIClass_Replay(uint8_t *rnr, uint8_t *mac) {
uint32_t start_time = 0;
uint32_t eof_time = 0;
Iso15693InitReader();
picopass_hdr hdr = {0};
bool res = select_iclass_tag( (uint8_t *)&hdr, false, &eof_time);
bool res = select_iclass_tag((uint8_t *)&hdr, false, &eof_time);
if (res == false) {
reply_ng(CMD_HF_ICLASS_REPLAY, PM3_ETIMEOUT, NULL, 0);
switch_off();
@ -1513,22 +1513,22 @@ void ReaderIClass_Replay(uint8_t *rnr, uint8_t *mac) {
uint8_t mem = hdr.conf.mem_config;
uint8_t cardsize = ((mem & 0x80) == 0x80) ? 255 : 32;
/*
static struct memory_t {
int k16;
int book;
int k2;
int lockauth;
int keyaccess;
} memory;
/*
static struct memory_t {
int k16;
int book;
int k2;
int lockauth;
int keyaccess;
} memory;
// memory.k16 = ((mem & 0x80) == 0x80);
// memory.book = ((mem & 0x20) == 0x20);
// memory.k2 = ((mem & 0x08) == 0x08);
// memory.lockauth = ((mem & 0x02) == 0x02);
// memory.keyaccess = ((mem & 0x01) == 0x01);
// uint8_t cardsize = memory.k16 ? 255 : 32;
*/
// memory.k16 = ((mem & 0x80) == 0x80);
// memory.book = ((mem & 0x20) == 0x20);
// memory.k2 = ((mem & 0x08) == 0x08);
// memory.lockauth = ((mem & 0x02) == 0x02);
// memory.keyaccess = ((mem & 0x01) == 0x01);
// uint8_t cardsize = memory.k16 ? 255 : 32;
*/
bool dumpsuccess = true;
@ -1576,11 +1576,11 @@ bool authenticate_iclass_tag(iclass_auth_req_t *payload, picopass_hdr *hdr, uint
uint8_t mac[4] = {0};
uint8_t resp_auth[4] = {0};
uint8_t ccnr[12] = {0};
uint8_t *pmac = mac;
if (mac_out)
pmac = mac_out;
memcpy(ccnr, hdr->epurse, sizeof(hdr->epurse));
if (payload->use_raw)
@ -1639,14 +1639,14 @@ void iClass_Authentication_fast(uint64_t arg0, uint64_t arg1, uint8_t *datain) {
// fresh start
switch_off();
SpinDelay(20);
Iso15693InitReader();
uint32_t start_time = 0, eof_time = 0;
if (select_iclass_tag(card_data, use_credit_key, &eof_time) == false)
goto out;
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// since select_iclass_tag call sends s readcheck, we start with sending first response.
@ -1715,13 +1715,13 @@ void iClass_ReadBlock(uint8_t *msg) {
uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, payload->blockno, 0x00, 0x00};
AddCrc(cmd_read + 1, 1);
Iso15693InitReader();
// select tag.
uint32_t eof_time = 0;
picopass_hdr hdr = {0};
bool res = select_iclass_tag( (uint8_t *)&hdr, payload->use_credit_key, &eof_time);
bool res = select_iclass_tag((uint8_t *)&hdr, payload->use_credit_key, &eof_time);
if (res == false) {
if (payload->send_reply) {
response.isOK = res;
@ -1731,10 +1731,10 @@ void iClass_ReadBlock(uint8_t *msg) {
}
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// authenticate
// authenticate
if (payload->do_auth) {
res = authenticate_iclass_tag(payload, &hdr, &start_time, &eof_time, NULL);
if (res == false) {
if (payload->send_reply) {
@ -1751,8 +1751,8 @@ void iClass_ReadBlock(uint8_t *msg) {
uint8_t resp[10];
res = iclass_send_cmd_with_retries(cmd_read, sizeof(cmd_read), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time);
if (res) {
memcpy(response.data, resp, sizeof(response.data));
if (payload->send_reply) {
memcpy(response.data, resp, sizeof(response.data));
if (payload->send_reply) {
reply_ng(CMD_HF_ICLASS_READBL, PM3_SUCCESS, (uint8_t *)&response, sizeof(response));
}
} else {
@ -1763,16 +1763,16 @@ void iClass_ReadBlock(uint8_t *msg) {
}
out:
switch_off();
switch_off();
}
// Dump command seems to dump a block related portion of card memory.
// I suppose it will need to do an authentatication to AA1, read its blocks by calling this.
// then authenticate AA2, and read those blocks by calling this.
// By the looks at it only 2K cards is supported, or first page dumps on larger cards.
// turn off afterwards
// turn off afterwards
void iClass_Dump(uint8_t *msg) {
BigBuf_free();
iclass_dump_req_t *cmd = (iclass_dump_req_t *)msg;
@ -1790,11 +1790,11 @@ void iClass_Dump(uint8_t *msg) {
memset(dataout, 0xFF, ICLASS_16KS_SIZE);
Iso15693InitReader();
// select tag.
uint32_t eof_time = 0;
picopass_hdr hdr = {0};
bool res = select_iclass_tag( (uint8_t *)&hdr, req->use_credit_key, &eof_time);
bool res = select_iclass_tag((uint8_t *)&hdr, req->use_credit_key, &eof_time);
if (res == false) {
if (req->send_reply) {
reply_ng(CMD_HF_ICLASS_DUMP, PM3_ETIMEOUT, NULL, 0);
@ -1802,10 +1802,10 @@ void iClass_Dump(uint8_t *msg) {
switch_off();
return;
}
uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
// authenticate
// authenticate
if (req->do_auth) {
res = authenticate_iclass_tag(req, &hdr, &start_time, &eof_time, NULL);
if (res == false) {
@ -1838,7 +1838,7 @@ void iClass_Dump(uint8_t *msg) {
}
}
switch_off();
switch_off();
// copy diversified key back.
if (req->do_auth) {
@ -1870,27 +1870,27 @@ static bool iclass_writeblock_ext(uint8_t blockno, uint8_t *data) {
memcpy(write + 2, data, 12); // data + mac
AddCrc(write + 1, 13);
uint8_t resp[10] = {0};
uint8_t resp[10] = {0};
uint32_t eof_time = 0, start_time = 0;
bool isOK = iclass_send_cmd_with_retries(write, sizeof(write), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_UPDATE, &eof_time);
if (isOK == false) {
return false;
}
uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
if (blockno == 2) {
// check response. e-purse update swaps first and second half
if (memcmp(data + 4, resp, 4) || memcmp(data, resp + 4, 4)) {
if (memcmp(data + 4, resp, 4) || memcmp(data, resp + 4, 4)) {
return false;
}
} else if (blockno == 3 || blockno == 4) {
// check response. Key updates always return 0xffffffffffffffff
if (memcmp(all_ff, resp, 8)) {
if (memcmp(all_ff, resp, 8)) {
return false;
}
} else {
// check response. All other updates return unchanged data
if (memcmp(data, resp, 8)) {
if (memcmp(data, resp, 8)) {
return false;
}
}
@ -1900,19 +1900,19 @@ static bool iclass_writeblock_ext(uint8_t blockno, uint8_t *data) {
// turn off afterwards
void iClass_WriteBlock(uint8_t *msg) {
LED_A_ON();
iclass_writeblock_req_t *payload = (iclass_writeblock_req_t *)msg;
uint8_t write[16] = { 0x80 | ICLASS_CMD_UPDATE, payload->req.blockno };
Iso15693InitReader();
// select tag.
uint32_t eof_time = 0;
picopass_hdr hdr = {0};
bool res = select_iclass_tag( (uint8_t *)&hdr, payload->req.use_credit_key, &eof_time);
bool res = select_iclass_tag((uint8_t *)&hdr, payload->req.use_credit_key, &eof_time);
if (res == false) {
goto out;
}
@ -1921,7 +1921,7 @@ void iClass_WriteBlock(uint8_t *msg) {
uint8_t mac[4] = {0};
// authenticate
// authenticate
if (payload->req.do_auth) {
res = authenticate_iclass_tag(&payload->req, &hdr, &start_time, &eof_time, mac);
@ -1939,13 +1939,13 @@ void iClass_WriteBlock(uint8_t *msg) {
doMAC_N(wb, sizeof(wb), hdr.key_c, mac);
else
doMAC_N(wb, sizeof(wb), hdr.key_d, mac);
memcpy(write + 2, payload->data, 8); // data
memcpy(write + 10, mac, sizeof(mac)); // mac
AddCrc(write + 1, 13);
start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER;
uint8_t resp[10] = {0};
res = iclass_send_cmd_with_retries(write, sizeof(write), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_UPDATE, &eof_time);
if (res == false) {
@ -1956,19 +1956,19 @@ void iClass_WriteBlock(uint8_t *msg) {
uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
if (payload->req.blockno == 2) {
// check response. e-purse update swaps first and second half
if (memcmp(payload->data + 4, resp, 4) || memcmp(payload->data, resp + 4, 4)) {
if (memcmp(payload->data + 4, resp, 4) || memcmp(payload->data, resp + 4, 4)) {
res = false;
goto out;
}
} else if (payload->req.blockno == 3 || payload->req.blockno == 4) {
// check response. Key updates always return 0xffffffffffffffff
if (memcmp(all_ff, resp, 8)) {
if (memcmp(all_ff, resp, 8)) {
res = false;
goto out;
}
} else {
// check response. All other updates return unchanged data
if (memcmp(payload->data, resp, 8)) {
if (memcmp(payload->data, resp, 8)) {
res = false;
goto out;
}
@ -1986,10 +1986,10 @@ void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) {
}
void iClass_Restore(uint8_t *msg) {
iclass_restore_req_t *cmd = (iclass_restore_req_t *)msg;
// iclass_auth_req_t *req = &cmd->req;
LED_A_ON();
uint16_t written = 0;
uint16_t total_blocks = (cmd->end_block - cmd->start_block) + 1;

View file

@ -729,7 +729,7 @@ void RAMFUNC SniffIso14443a(uint8_t param) {
static void CodeIso14443aAsTagPar(const uint8_t *cmd, uint16_t len, uint8_t *par, bool collision) {
tosend_reset();
tosend_t *ts = get_tosend();
// Correction bit, might be removed when not needed
@ -798,7 +798,7 @@ static void Code4bitAnswerAsTag(uint8_t cmd) {
uint8_t b = cmd;
tosend_reset();
tosend_t *ts = get_tosend();
// Correction bit, might be removed when not needed
@ -888,7 +888,7 @@ bool prepare_tag_modulation(tag_response_info_t *response_info, size_t max_buffe
CodeIso14443aAsTag(response_info->response, response_info->response_n);
tosend_t *ts = get_tosend();
// Make sure we do not exceed the free buffer space
if (ts->max > max_buffer_size) {
Dbprintf("ToSend buffer, Out-of-bound, when modulating bits for tag answer:");
@ -908,7 +908,7 @@ bool prepare_tag_modulation(tag_response_info_t *response_info, size_t max_buffe
bool prepare_allocated_tag_modulation(tag_response_info_t *response_info, uint8_t **buffer, size_t *max_buffer_size) {
tosend_t *ts = get_tosend();
// Retrieve and store the current buffer index
response_info->modulation = *buffer;
@ -1977,7 +1977,7 @@ int EmSendCmd14443aRaw(uint8_t *resp, uint16_t respLen) {
int EmSend4bit(uint8_t resp) {
Code4bitAnswerAsTag(resp);
tosend_t *ts = get_tosend();
tosend_t *ts = get_tosend();
int res = EmSendCmd14443aRaw(ts->buf, ts->max);
// do the tracing for the previous reader request and this tag answer:
uint8_t par[1] = {0x00};
@ -1999,7 +1999,7 @@ int EmSendCmdPar(uint8_t *resp, uint16_t respLen, uint8_t *par) {
}
int EmSendCmdParEx(uint8_t *resp, uint16_t respLen, uint8_t *par, bool collision) {
CodeIso14443aAsTagPar(resp, respLen, par, collision);
tosend_t *ts = get_tosend();
tosend_t *ts = get_tosend();
int res = EmSendCmd14443aRaw(ts->buf, ts->max);
// do the tracing for the previous reader request and this tag answer:
@ -2162,7 +2162,7 @@ void ReaderTransmitBitsPar(uint8_t *frame, uint16_t bits, uint8_t *par, uint32_t
CodeIso14443aBitsAsReaderPar(frame, bits, par);
// Send command to tag
tosend_t *ts = get_tosend();
tosend_t *ts = get_tosend();
TransmitFor14443a(ts->buf, ts->max, timing);
if (g_trigger) LED_A_ON();

View file

@ -187,12 +187,12 @@ static void CodeIso14443bAsTag(const uint8_t *cmd, int len) {
// Send EOF.
// 10-11 ETU * 4 sample rate = ZEROS
for(i = 0; i < 10; i++) {
for (i = 0; i < 10; i++) {
SEND4STUFFBIT(0);
}
// why this?
for(i = 0; i < 2; i++) {
for (i = 0; i < 2; i++) {
SEND4STUFFBIT(1);
}
@ -448,7 +448,7 @@ static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) {
while (BUTTON_PRESS() == false) {
WDT_HIT();
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
for (uint8_t mask = 0x80; mask != 0x00; mask >>= 1) {
if (Handle14443bReaderUartBit(b & mask)) {
@ -501,11 +501,11 @@ void SimulateIso14443bTag(uint32_t pupi) {
// supports only 106kBit/s in both directions, max frame size = 32Bytes,
// supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
uint8_t respATQB[] = {
0x50,
0x82, 0x0d, 0xe1, 0x74,
0x20, 0x38, 0x19,
0x22, 0x00, 0x21, 0x85,
0x5e, 0xd7
0x50,
0x82, 0x0d, 0xe1, 0x74,
0x20, 0x38, 0x19,
0x22, 0x00, 0x21, 0x85,
0x5e, 0xd7
};
// response to HLTB and ATTRIB
@ -516,7 +516,7 @@ void SimulateIso14443bTag(uint32_t pupi) {
num_to_bytes(pupi, 4, respATQB + 1);
AddCrc14B(respATQB, 12);
}
// setup device.
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
@ -537,7 +537,7 @@ void SimulateIso14443bTag(uint32_t pupi) {
int vHf = 0; // in mV
tosend_t *ts = get_tosend();
uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);
// prepare "ATQB" tag answer (encoded):
@ -556,7 +556,7 @@ void SimulateIso14443bTag(uint32_t pupi) {
// Simulation loop
while (BUTTON_PRESS() == false) {
WDT_HIT();
//iceman: limit with 2000 times..
if (data_available()) {
break;
@ -588,7 +588,7 @@ void SimulateIso14443bTag(uint32_t pupi) {
// WUP in HALTED state
if (len == 5) {
if ((receivedCmd[0] == ISO14443B_REQB && (receivedCmd[2] & 0x8) == 0x8 && cardSTATE == SIM_HALTED) ||
receivedCmd[0] == ISO14443B_REQB) {
receivedCmd[0] == ISO14443B_REQB) {
LogTrace(receivedCmd, len, 0, 0, NULL, true);
cardSTATE = SIM_SELECTING;
}
@ -668,7 +668,7 @@ void SimulateIso14443bTag(uint32_t pupi) {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("Emulator stopped. Trace length: %d ", BigBuf_get_traceLen());
switch_off(); //simulate
}
@ -733,7 +733,7 @@ static RAMFUNC int Handle14443bTagSamplesDemod(uint16_t amplitude) {
Demod.posCount = 0; // start of SOF sequence
} else {
// maximum length of TR1 = 200 1/fs
if (Demod.posCount > 200 / 4){
if (Demod.posCount > 200 / 4) {
Demod.state = DEMOD_UNSYNCD;
}
}
@ -851,9 +851,9 @@ static int GetTagSamplesFor14443bDemod(int timeout) {
// wait for last transfer to complete
while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY))
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
// Setup and start DMA.
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
// The DMA buffer, used to stream samples from the FPGA
dmabuf16_t *dma = get_dma16();
if (FpgaSetupSscDma((uint8_t *) dma->buf, DMA_BUFFER_SIZE) == false) {
@ -870,8 +870,8 @@ static int GetTagSamplesFor14443bDemod(int timeout) {
// uint32_t dma_start_time;
uint16_t *upTo = dma->buf;
for(;;) {
uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
for (;;) {
uint16_t behindBy = ((uint16_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
if (behindBy == 0) continue;
@ -884,7 +884,7 @@ static int GetTagSamplesFor14443bDemod(int timeout) {
*/
volatile uint16_t tagdata = *upTo++;
if (upTo >= dma->buf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dma->buf; // start reading the circular buffer from the beginning
if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
@ -893,7 +893,7 @@ static int GetTagSamplesFor14443bDemod(int timeout) {
break;
}
}
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated.
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf; // refresh the DMA Next Buffer and
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers
@ -904,7 +904,7 @@ static int GetTagSamplesFor14443bDemod(int timeout) {
break;
}
if(samples > timeout && Demod.state < DEMOD_PHASE_REF_TRAINING) {
if (samples > timeout && Demod.state < DEMOD_PHASE_REF_TRAINING) {
ret = -1;
LED_C_OFF();
break;
@ -918,7 +918,7 @@ static int GetTagSamplesFor14443bDemod(int timeout) {
}
if (Demod.len > 0) {
LogTrace(Demod.output, Demod.len, 0, 0, NULL, false);
LogTrace(Demod.output, Demod.len, 0, 0, NULL, false);
}
return ret;
@ -933,23 +933,23 @@ static void TransmitFor14443b_AsReader(void) {
LED_B_ON();
tosend_t *ts = get_tosend();
for (int c = 0; c < ts->max; c++) {
uint8_t data = ts->buf[c];
for (int i = 0; i < 8; i++) {
uint16_t send_word = (data & 0x80) ? 0x0000 : 0xffff;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
AT91C_BASE_SSC->SSC_THR = send_word;
while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ;
AT91C_BASE_SSC->SSC_THR = send_word;
data <<= 1;
}
WDT_HIT();
WDT_HIT();
}
LED_B_OFF();
}
@ -978,7 +978,7 @@ static void CodeIso14443bAsReader(const uint8_t *cmd, int len) {
// Send SOF
// 10-11 ETUs of ZERO
for (int i = 0; i < 10; i++)
for (int i = 0; i < 10; i++)
tosend_stuffbit(0);
@ -1021,7 +1021,7 @@ static void CodeIso14443bAsReader(const uint8_t *cmd, int len) {
// 8ETUS minum?
// Per specification, Subcarrier must be stopped no later than 2 ETUs after EOF.
// I'm guessing this is for the FPGA to be able to send all bits before we switch to listening mode
// ensure that last byte is filled up
for (int i = 0; i < 8 ; ++i)
tosend_stuffbit(1);
@ -1068,7 +1068,7 @@ uint8_t iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *r
if (ret < 3) {
LED_A_OFF();
return 0;
return 0;
}
// VALIDATE CRC
@ -1081,7 +1081,7 @@ uint8_t iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *r
memcpy(response, Demod.output, Demod.len);
return Demod.len;
LED_A_OFF();
LED_A_OFF();
}
/**
@ -1322,7 +1322,7 @@ void ReadSTMemoryIso14443b(uint8_t numofblocks) {
if (i == 0xff) break;
++i;
}
// Todo: iceman: send back read data to client.
// reply_ng(..., );
@ -1419,7 +1419,7 @@ void RAMFUNC SniffIso14443b(void) {
time_0 = GetCountSspClk();
// loop and listen
for(;;) {
for (;;) {
int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE - 1);
if (behindBy > maxBehindBy) {
@ -1437,7 +1437,7 @@ void RAMFUNC SniffIso14443b(void) {
if (upTo >= dma->buf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content.
upTo = dma->buf; // start reading the circular buffer from the beginning again
lastRxCounter += DMA_BUFFER_SIZE;
if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) {
Dbprintf("About to blow circular buffer - aborted! behindBy=%d", behindBy);
break;
}
@ -1462,7 +1462,7 @@ void RAMFUNC SniffIso14443b(void) {
LED_A_INV();
if (Handle14443bReaderUartBit(ci & 0x01)) {
time_stop = GetCountSspClk() - time_0;
LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, true);
Uart14bReset();

View file

@ -66,7 +66,7 @@
#include "ticks.h"
#include "BigBuf.h"
#include "crc16.h"
// Delays in SSP_CLK ticks.
// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
#define DELAY_READER_TO_ARM 8
@ -106,7 +106,7 @@
static void BuildIdentifyRequest(uint8_t *cmd);
// ---------------------------
// ---------------------------
// Signal Processing
// ---------------------------
@ -114,12 +114,12 @@ static void BuildIdentifyRequest(uint8_t *cmd);
// prepare data using "1 out of 4" code for later transmission
// resulting data rate is 26.48 kbit/s (fc/512)
// cmd ... data
// n ... length of data
static uint8_t encode15_lut[] = {
0x40, // 01000000
0x10, // 00010000
0x04, // 00000100
0x01 // 00000001
// n ... length of data
static uint8_t encode15_lut[] = {
0x40, // 01000000
0x10, // 00010000
0x04, // 00000100
0x01 // 00000001
};
void CodeIso15693AsReader(uint8_t *cmd, int n) {
@ -132,16 +132,16 @@ void CodeIso15693AsReader(uint8_t *cmd, int n) {
// data
for (int i = 0; i < n; i++) {
volatile uint8_t b = (cmd[i] >> 0) & 0x03;
ts->buf[++ts->max] = encode15_lut[b];
b = (cmd[i] >> 2) & 0x03;
ts->buf[++ts->max] = encode15_lut[b];
b = (cmd[i] >> 4) & 0x03;
ts->buf[++ts->max] = encode15_lut[b];
b = (cmd[i] >> 6) & 0x03;
ts->buf[++ts->max] = encode15_lut[b];
}
@ -167,12 +167,12 @@ static void CodeIso15693AsReader256(uint8_t *cmd, int n) {
tosend_reset();
tosend_t *ts = get_tosend();
// SOF for 1of256
ts->buf[++ts->max] = 0x81; //10000001
// data
for(int i = 0; i < n; i++) {
for (int i = 0; i < n; i++) {
for (int j = 0; j <= 255; j++) {
if (cmd[i] == j) {
tosend_stuffbit(0);
@ -189,7 +189,7 @@ static void CodeIso15693AsReader256(uint8_t *cmd, int n) {
ts->max++;
}
static const uint8_t encode_4bits[16] = {
static const uint8_t encode_4bits[16] = {
// 0 1 2 3
0xaa, 0x6a, 0x9a, 0x5a,
// 4 5 6 7
@ -292,7 +292,7 @@ void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time,
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K);
uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF
while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time
if (slot_time) {
modulation_start_time += slot_time; // use next available slot
@ -310,14 +310,14 @@ void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time,
LED_C_ON();
uint8_t bits_to_shift = 0x00;
uint8_t bits_to_send = 0x00;
uint8_t bits_to_send = 0x00;
for (size_t c = 0; c < len; c++) {
for (int i = (c == 0 ? 4 : 7); i >= 0; i--) {
uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00;
for (int j = 0; j < (slow ? 4 : 1); ) {
for (int j = 0; j < (slow ? 4 : 1);) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay;
AT91C_BASE_SSC->SSC_THR = bits_to_send;
@ -332,7 +332,7 @@ void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time,
// send the remaining bits, padded with 0:
bits_to_send = bits_to_shift << (8 - shift_delay);
if (bits_to_send) {
for ( ; ; ) {
for (; ;) {
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
AT91C_BASE_SSC->SSC_THR = bits_to_send;
break;
@ -631,7 +631,7 @@ static void DecodeTagInit(DecodeTag_t *tag, uint8_t *data, uint16_t max_len) {
/*
* Receive and decode the tag response, also log to tracebuffer
*/
int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time) {
int samples = 0, ret = 0;
@ -661,10 +661,10 @@ int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeo
uint32_t dma_start_time = 0;
uint16_t *upTo = dma->buf;
for(;;) {
for (;;) {
volatile uint16_t behindBy = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
if (behindBy == 0)
volatile uint16_t behindBy = ((uint16_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
if (behindBy == 0)
continue;
samples++;
@ -715,14 +715,14 @@ int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeo
if (DBGLEVEL >= DBG_EXTENDED) {
Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d, maxlen = %u",
samples,
ret,
dt->state,
dt->lastBit,
dt->len,
dt->bitCount,
dt->posCount,
dt->max_len
samples,
ret,
dt->state,
dt->lastBit,
dt->len,
dt->bitCount,
dt->posCount,
dt->max_len
);
Dbprintf("timing: sof_time = %d, eof_time = %d", (sof_time * 4), (*eof_time * 4));
}
@ -776,7 +776,7 @@ typedef struct {
uint8_t *jam_search_string;
} DecodeReader_t;
static void DecodeReaderInit(DecodeReader_t* reader, uint8_t *data, uint16_t max_len, uint8_t jam_search_len, uint8_t *jam_search_string) {
static void DecodeReaderInit(DecodeReader_t *reader, uint8_t *data, uint16_t max_len, uint8_t jam_search_len, uint8_t *jam_search_string) {
reader->output = data;
reader->byteCountMax = max_len;
reader->state = STATE_READER_UNSYNCD;
@ -788,12 +788,12 @@ static void DecodeReaderInit(DecodeReader_t* reader, uint8_t *data, uint16_t max
reader->jam_search_string = jam_search_string;
}
static void DecodeReaderReset(DecodeReader_t* reader) {
static void DecodeReaderReset(DecodeReader_t *reader) {
reader->state = STATE_READER_UNSYNCD;
}
//static inline __attribute__((always_inline))
static int RAMFUNC Handle15693SampleFromReader(bool bit, DecodeReader_t *reader) {
static int RAMFUNC Handle15693SampleFromReader(bool bit, DecodeReader_t *reader) {
switch (reader->state) {
case STATE_READER_UNSYNCD:
// wait for unmodulated carrier
@ -832,7 +832,7 @@ static void DecodeReaderReset(DecodeReader_t* reader) {
reader->posCount++;
if (bit == false) { // detected a falling edge
if (reader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest)
DecodeReaderReset(reader);
} else if (reader->posCount < 23) { // SOF for 1 out of 4 coding
@ -911,7 +911,7 @@ static void DecodeReaderReset(DecodeReader_t* reader) {
// do nothing, keep waiting
}
} else { // unexpected falling edge
DecodeReaderReset(reader);
DecodeReaderReset(reader);
}
break;
@ -924,14 +924,14 @@ static void DecodeReaderReset(DecodeReader_t* reader) {
reader->sum1 = bit ? 1 : 0;
} else if (reader->posCount <= 4) {
if (bit)
reader->sum1++;
} else if (reader->posCount == 5) {
reader->sum2 = bit ? 1 : 0;
} else {
if (bit)
reader->sum2++;
@ -1098,9 +1098,9 @@ int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eo
uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8;
for (;;) {
volatile uint16_t behindBy = ((uint8_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
volatile uint16_t behindBy = ((uint8_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
if (behindBy == 0) continue;
if (samples == 0) {
// DMA has transferred the very first data
dma_start_time = GetCountSspClk() & 0xfffffff0;
@ -1144,15 +1144,15 @@ int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eo
if (DBGLEVEL >= DBG_EXTENDED) {
Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d",
samples, gotFrame, dr->state, dr->byteCount,
dr->bitCount, dr->posCount);
samples, gotFrame, dr->state, dr->byteCount,
dr->bitCount, dr->posCount);
}
if (dr->byteCount >= 0) {
uint32_t sof_time = *eof_time
- dr->byteCount * (dr->Coding == CODING_1_OUT_OF_4 ? 128 : 2048) // time for byte transfers
- 32 // time for SOF transfer
- 16; // time for EOF transfer
- dr->byteCount * (dr->Coding == CODING_1_OUT_OF_4 ? 128 : 2048) // time for byte transfers
- 32 // time for SOF transfer
- 16; // time for EOF transfer
LogTrace_ISO15693(dr->output, dr->byteCount, (sof_time * 32), (*eof_time * 32), NULL, true);
}
@ -1192,8 +1192,8 @@ void AcquireRawAdcSamplesIso15693(void) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE);
for(int c = 0; c < 4000; ) {
if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
for (int c = 0; c < 4000;) {
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
uint16_t r = AT91C_BASE_SSC->SSC_RHR;
dest[c++] = r >> 5;
}
@ -1212,7 +1212,7 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
BigBuf_free();
clear_trace();
set_tracing(true);
DecodeTag_t dtag = {0};
uint8_t response[ISO15693_MAX_RESPONSE_LENGTH] = {0};
DecodeTagInit(&dtag, response, sizeof(response));
@ -1228,7 +1228,7 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNIFF_AMPLITUDE);
LED_D_OFF();
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
StartCountSspClk();
@ -1247,12 +1247,12 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
// Count of samples received so far, so that we can include timing
int samples = 0;
uint16_t *upTo = dma->buf;
for (;;) {
volatile int behind_by = ((uint16_t*)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
volatile int behind_by = ((uint16_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1);
if (behind_by < 1) continue;
samples++;
@ -1264,10 +1264,10 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
volatile uint16_t sniffdata = *upTo++;
// we have read all of the DMA buffer content
if (upTo >= dma->buf + DMA_BUFFER_SIZE) {
if (upTo >= dma->buf + DMA_BUFFER_SIZE) {
// start reading the circular buffer from the beginning
upTo = dma->buf;
upTo = dma->buf;
// DMA Counter Register had reached 0, already rotated.
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) {
@ -1282,7 +1282,7 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf;
AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE;
}
WDT_HIT();
if (BUTTON_PRESS()) {
DbpString("Sniff stopped");
@ -1299,9 +1299,9 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
uint32_t eof_time = dma_start_time + (samples * 16) + 8 - DELAY_READER_TO_ARM_SNIFF; // end of EOF
if (dreader.byteCount > 0) {
uint32_t sof_time = eof_time
- dreader.byteCount * (dreader.Coding == CODING_1_OUT_OF_4 ? 128 * 16 : 2048 * 16) // time for byte transfers
- 32 * 16 // time for SOF transfer
- 16 * 16; // time for EOF transfer
- dreader.byteCount * (dreader.Coding == CODING_1_OUT_OF_4 ? 128 * 16 : 2048 * 16) // time for byte transfers
- 32 * 16 // time for SOF transfer
- 16 * 16; // time for EOF transfer
LogTrace_ISO15693(dreader.output, dreader.byteCount, (sof_time * 4), (eof_time * 4), NULL, true);
}
// And ready to receive another command.
@ -1315,9 +1315,9 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
uint32_t eof_time = dma_start_time + (samples * 16) + 16 - DELAY_READER_TO_ARM_SNIFF; // end of EOF
if (dreader.byteCount > 0) {
uint32_t sof_time = eof_time
- dreader.byteCount * (dreader.Coding == CODING_1_OUT_OF_4 ? 128 * 16 : 2048 * 16) // time for byte transfers
- 32 * 16 // time for SOF transfer
- 16 * 16; // time for EOF transfer
- dreader.byteCount * (dreader.Coding == CODING_1_OUT_OF_4 ? 128 * 16 : 2048 * 16) // time for byte transfers
- 32 * 16 // time for SOF transfer
- 16 * 16; // time for EOF transfer
LogTrace_ISO15693(dreader.output, dreader.byteCount, (sof_time * 4), (eof_time * 4), NULL, true);
}
// And ready to receive another command
@ -1370,14 +1370,14 @@ void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string) {
Dbprintf(" DecodeReader byteCnt...%d", dreader.byteCount);
Dbprintf(" DecodeReader posCount..%d", dreader.posCount);
Dbprintf(" Trace length..........." _YELLOW_("%d"), BigBuf_get_traceLen());
DbpString("");
DbpString("");
}
// Initialize Proxmark3 as ISO15693 reader
void Iso15693InitReader(void) {
LEDsoff();
LEDsoff();
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Start from off (no field generated)
@ -1387,7 +1387,7 @@ void Iso15693InitReader(void) {
// switch field on
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER);
LED_D_ON();
// initialize SSC and select proper AD input
FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
@ -1427,7 +1427,7 @@ static void BuildIdentifyRequest(uint8_t *cmd) {
// If you do not need the answer use NULL for *recv[]
// return: length of received data
// logging enabled
int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv,
int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv,
uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time) {
if (init) {
@ -1599,7 +1599,7 @@ void ReaderIso15693(uint32_t parameter) {
// When SIM: initialize the Proxmark3 as ISO15693 tag
void Iso15693InitTag(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
// Start from off (no field generated)
@ -1658,10 +1658,10 @@ void SimTagIso15693(uint8_t *uid) {
tosend_t *ts = get_tosend();
enum { NO_FIELD, IDLE, ACTIVATED, SELECTED, HALTED } chip_state = NO_FIELD;
bool button_pressed = false;
int vHf = 0; // in mV
int vHf = 0; // in mV
bool exit_loop = false;
while (exit_loop == false) {
WDT_HIT();
@ -1678,7 +1678,7 @@ void SimTagIso15693(uint8_t *uid) {
chip_state = IDLE;
LED_A_ON();
} else {
continue;
continue;
}
}
@ -1699,7 +1699,7 @@ void SimTagIso15693(uint8_t *uid) {
uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM;
TransmitTo15693Reader(ts->buf, ts->max, &response_time, 0, slow);
LogTrace_ISO15693(resp_inv, CMD_INV_RESP, response_time * 32, (response_time * 32) + (ts->max * 32 * 64), NULL, false);
chip_state = SELECTED;
}
}
@ -1715,7 +1715,7 @@ void SimTagIso15693(uint8_t *uid) {
void BruteforceIso15693Afi(uint32_t speed) {
uint8_t data[7] = {0};
uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH];
Iso15693InitReader();
// first without AFI
@ -1726,7 +1726,7 @@ void BruteforceIso15693Afi(uint32_t speed) {
data[2] = 0; // AFI
AddCrc15(data, 3);
int datalen = 5;
int datalen = 5;
uint32_t eof_time = 0;
uint32_t start_time = GetCountSspClk();
int recvlen = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, ISO15693_READER_TIMEOUT, &eof_time);
@ -1754,7 +1754,7 @@ void BruteforceIso15693Afi(uint32_t speed) {
recvlen = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, ISO15693_READER_TIMEOUT, &eof_time);
start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;
WDT_HIT();
if (recvlen >= 12) {
@ -1790,7 +1790,7 @@ void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint
uint32_t eof_time;
uint16_t timeout;
bool request_answer = false;
switch (data[1]) {
case ISO15_CMD_WRITE:
case ISO15_CMD_LOCK:
@ -1804,7 +1804,7 @@ void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint
break;
default:
timeout = ISO15693_READER_TIMEOUT;
}
}
if (DBGLEVEL >= DBG_EXTENDED) {
Dbprintf("SEND:");
@ -1814,10 +1814,10 @@ void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint
recvlen = SendDataTag(data, datalen, true, speed, (recv ? recvbuf : NULL), sizeof(recvbuf), 0, timeout, &eof_time);
// send a single EOF to get the tag response
if (request_answer) {
if (request_answer) {
recvlen = SendDataTagEOF((recv ? recvbuf : NULL), sizeof(recvbuf), 0, ISO15693_READER_TIMEOUT, &eof_time);
}
// for the time being, switch field off to protect rdv4.0
// note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
@ -1882,9 +1882,9 @@ void SetTag15693Uid(uint8_t *uid) {
AddCrc15(cmd[3], 7);
uint32_t start_time = 0;
for (int i = 0; i < 4; i++) {
recvlen = SendDataTag(cmd[i], sizeof(cmd[i]), i == 0 ? true : false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, &eof_time);
start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER;

View file

@ -13,7 +13,7 @@
#include "common.h"
#include "pm3_cmd.h" // struct
// Delays in SSP_CLK ticks.
// SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag
@ -27,11 +27,11 @@ void Iso15693InitReader(void);
void Iso15693InitTag(void);
void CodeIso15693AsReader(uint8_t *cmd, int n);
void CodeIso15693AsTag(uint8_t *cmd, size_t len);
void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow);
int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time);
void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time);
int GetIso15693AnswerFromTag(uint8_t* response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time);
int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time);
//void RecordRawAdcSamplesIso15693(void);
void AcquireRawAdcSamplesIso15693(void);
@ -43,9 +43,9 @@ void Iso15693InitReader(void);
void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string);
int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv,
int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv,
uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time);
int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time);
void SetTag15693Uid(uint8_t *uid);

View file

@ -148,7 +148,7 @@ bool lf_get_reader_modulation(void) {
}
void lf_wait_periods(size_t periods) {
// wait detect gap
// wait detect gap
lf_count_edge_periods_ex(periods, true, false);
}
@ -238,40 +238,40 @@ void lf_finalize(void) {
}
size_t lf_detect_field_drop(size_t max) {
/*
size_t periods = 0;
// int16_t checked = 0;
/*
size_t periods = 0;
// int16_t checked = 0;
while (BUTTON_PRESS() == false) {
while (BUTTON_PRESS() == false) {
// // only every 1000th times, in order to save time when collecting samples.
// if (checked == 4000) {
// if (data_available()) {
// checked = -1;
// break;
// } else {
// checked = 0;
// // only every 1000th times, in order to save time when collecting samples.
// if (checked == 4000) {
// if (data_available()) {
// checked = -1;
// break;
// } else {
// checked = 0;
// }
// }
// }
// ++checked;
// ++checked;
WDT_HIT();
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
periods++;
volatile uint8_t adc_val = AT91C_BASE_SSC->SSC_RHR;
if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
periods++;
volatile uint8_t adc_val = AT91C_BASE_SSC->SSC_RHR;
if (g_logging) logSampleSimple(adc_val);
if (g_logging) logSampleSimple(adc_val);
if (adc_val == 0) {
rising_edge = false;
return periods;
if (adc_val == 0) {
rising_edge = false;
return periods;
}
if (periods == max) return 0;
}
if (periods == max) return 0;
}
}
*/
*/
return 0;
}

View file

@ -1245,7 +1245,7 @@ int lf_hid_watch(int findone, uint32_t *high, uint32_t *low) {
while (BUTTON_PRESS() == false) {
WDT_HIT();
// cancel w usb command.
if (interval == 4000) {
if (data_available()) {
@ -1262,7 +1262,7 @@ int lf_hid_watch(int findone, uint32_t *high, uint32_t *low) {
// FSK demodulator
// 50 * 128 * 2 - big enough to catch 2 sequences of largest format
size = MIN(12800, BigBuf_max_traceLen());
int idx = HIDdemodFSK(dest, &size, &hi2, &hi, &lo, &dummyIdx);
if (idx < 0) continue;
@ -1354,7 +1354,7 @@ int lf_awid_watch(int findone, uint32_t *high, uint32_t *low) {
while (BUTTON_PRESS() == false) {
WDT_HIT();
// cancel w usb command.
if (interval == 4000) {
if (data_available()) {
@ -1535,7 +1535,7 @@ int lf_io_watch(int findone, uint32_t *high, uint32_t *low) {
while (BUTTON_PRESS() == false) {
WDT_HIT();
// cancel w usb command.
if (interval == 4000) {
if (data_available()) {
@ -2601,12 +2601,12 @@ void Cotag(uint32_t arg0) {
BigBuf_Clear_ext(false);
//send COTAG start pulse
/*
ON(740) OFF(2035)
ON(3330) OFF(2035)
ON(740) OFF(2035)
ON(1000)
*/
/*
ON(740) OFF(2035)
ON(3330) OFF(2035)
ON(740) OFF(2035)
ON(1000)
*/
ON(800) OFF(2200)
ON(3600) OFF(2200)

View file

@ -171,7 +171,7 @@ void logSample(uint8_t sample, uint8_t decimation, uint8_t bits_per_sample, bool
// keep track of total gather samples regardless how many was discarded.
if (samples.counter-- == 0) return;
if (bits_per_sample == 0) bits_per_sample = 1;
if (bits_per_sample == 0) bits_per_sample = 1;
if (bits_per_sample > 8) bits_per_sample = 8;
if (decimation == 0) decimation = 1;
@ -323,7 +323,7 @@ uint32_t DoAcquisition(uint8_t decimation, uint8_t bits_per_sample, bool avg, in
if (samples.total_saved >= sample_size) break;
}
}
if (checked == -1 && verbose) {
Dbprintf("lf sampling aborted");
}
@ -414,14 +414,14 @@ void doT55x7Acquisition(size_t sample_size) {
bool lowFound = false;
uint16_t checker = 0;
if (DBGLEVEL >= DBG_DEBUG) {
Dbprintf("doT55x7Acquisition - after init");
print_stack_usage();
}
while (skipCnt < 1000 && (i < bufsize)) {
if (BUTTON_PRESS())
break;
@ -493,17 +493,17 @@ void doCotagAcquisition() {
dest[0] = 0;
uint8_t firsthigh = 0, firstlow = 0;
uint16_t i = 0, noise_counter = 0;
if (DBGLEVEL >= DBG_DEBUG) {
Dbprintf("doCotagAcquisition - after init");
print_stack_usage();
}
while ((i < bufsize) && (noise_counter < (COTAG_T1 << 1))) {
if (BUTTON_PRESS())
break;
WDT_HIT();
if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {
@ -557,15 +557,15 @@ uint32_t doCotagAcquisitionManchester(void) {
uint8_t curr = 0, prev = 0;
uint16_t sample_counter = 0, period = 0;
uint16_t noise_counter = 0;
if (DBGLEVEL >= DBG_DEBUG) {
Dbprintf("doCotagAcquisitionManchester - after init");
print_stack_usage();
}
while ((sample_counter < bufsize) && (noise_counter < (COTAG_T1 << 1))) {
if (BUTTON_PRESS())
if (BUTTON_PRESS())
break;
WDT_HIT();

View file

@ -483,9 +483,9 @@ int rdv40_spiffs_read_as_symlink(char *filename, uint8_t *dst, uint32_t size, RD
if (DBGLEVEL > 1) Dbprintf("Symlink destination is : " _YELLOW_("%s"), linkdest);
read_from_spiffs((char *)linkdest, (uint8_t *)dst, size);
)
}
read_from_spiffs((char *)linkdest, (uint8_t *)dst, size);
)
}
// BEWARE ! This function is DESTRUCTIVE as it will UPDATE an existing symlink
// Since it creates a .lnk extension file it may be minor to mistake the order of arguments
@ -516,18 +516,18 @@ int rdv40_spiffs_make_symlink(char *linkdest, char *filename, RDV40SpiFFSSafetyL
int rdv40_spiffs_read_as_filetype(char *filename, uint8_t *dst, uint32_t size, RDV40SpiFFSSafetyLevel level) {
RDV40_SPIFFS_SAFE_FUNCTION(
RDV40SpiFFSFileType filetype = filetype_in_spiffs((char *)filename);
switch (filetype) {
case RDV40_SPIFFS_FILETYPE_REAL:
rdv40_spiffs_read((char *)filename, (uint8_t *)dst, size, level);
break;
case RDV40_SPIFFS_FILETYPE_SYMLINK:
rdv40_spiffs_read_as_symlink((char *)filename, (uint8_t *)dst, size, level);
break;
case RDV40_SPIFFS_FILETYPE_BOTH:
case RDV40_SPIFFS_FILETYPE_UNKNOWN:
default:
switch (filetype) {
case RDV40_SPIFFS_FILETYPE_REAL:
rdv40_spiffs_read((char *)filename, (uint8_t *)dst, size, level);
break;
case RDV40_SPIFFS_FILETYPE_SYMLINK:
rdv40_spiffs_read_as_symlink((char *)filename, (uint8_t *)dst, size, level);
break;
case RDV40_SPIFFS_FILETYPE_BOTH:
case RDV40_SPIFFS_FILETYPE_UNKNOWN:
default:
;
}
}
)
}
@ -617,7 +617,7 @@ void rdv40_spiffs_safe_wipe(void) {
while ((pe = SPIFFS_readdir(&d, pe))) {
if (rdv40_spiffs_is_symlink((const char *)pe->name)) {
char linkdest[SPIFFS_OBJ_NAME_LEN];
read_from_spiffs((char *)pe->name, (uint8_t *)linkdest, SPIFFS_OBJ_NAME_LEN);

View file

@ -63,7 +63,7 @@ static void CodeThinfilmAsTag(const uint8_t *cmd, uint16_t len) {
tosend_reset();
tosend_t *ts = get_tosend();
for (uint16_t i = 0; i < len; i++) {
uint8_t b = cmd[i];
for (uint8_t j = 0; j < 8; j++) {

View file

@ -157,20 +157,20 @@ void StartCountSspClk(void) {
// synchronize the counter with the ssp_frame signal.
// Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present
//
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 1st ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 2nd ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 1st ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 2nd ssp_clk after start of frame
if ((AT91C_BASE_SSC->SSC_RFMR & SSC_FRAME_MODE_BITS_IN_WORD(32)) == SSC_FRAME_MODE_BITS_IN_WORD(16)) { // 16bit frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 3rd ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 4th ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 5th ssp_clk after start of frame
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 6th ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 3rd ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 4th ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 5th ssp_clk after start of frame
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low;
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 6th ssp_clk after start of frame
}
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame

View file

@ -86,7 +86,7 @@ jint Console(JNIEnv *env, jobject instance, jstring cmd_) {
PrintAndLogEx(NORMAL, "");
char *cmd = (char *) ((*env)->GetStringUTFChars(env, cmd_, 0));
char *cmd = (char *)((*env)->GetStringUTFChars(env, cmd_, 0));
int ret = CommandReceived(cmd);
if (ret == 99) {
// exit / quit
@ -102,7 +102,7 @@ jint Console(JNIEnv *env, jobject instance, jstring cmd_) {
* Is client running!
* */
jboolean IsClientRunning(JNIEnv *env, jobject instance) {
return (jboolean) ((jboolean) conn.run);
return (jboolean)((jboolean) conn.run);
}
/*
@ -114,7 +114,7 @@ jboolean TestPm3(JNIEnv *env, jobject instance) {
return false;
}
bool ret = (TestProxmark() == PM3_SUCCESS);
return (jboolean) (ret);
return (jboolean)(ret);
}
/*
@ -141,18 +141,18 @@ JNIEXPORT jint JNI_OnLoad(JavaVM *vm, void *reserved) {
}
jclass clz_test = (*jniEnv)->FindClass(jniEnv, "cn/rrg/devices/Proxmark3RRGRdv4");
JNINativeMethod methods[] = {
{"startExecute", "(Ljava/lang/String;)I", (void *) Console},
{"stopExecute", "()V", (void *) ClosePm3},
{"isExecuting", "()Z", (void *) IsClientRunning}
{"startExecute", "(Ljava/lang/String;)I", (void *) Console},
{"stopExecute", "()V", (void *) ClosePm3},
{"isExecuting", "()Z", (void *) IsClientRunning}
};
JNINativeMethod methods1[] = {
{"testPm3", "()Z", (void *) TestPm3},
{"closePm3", "()V", ClosePm3}
{"testPm3", "()Z", (void *) TestPm3},
{"closePm3", "()V", ClosePm3}
};
if ((*jniEnv)->RegisterNatives(jniEnv, clazz, methods, sizeof(methods) / sizeof(methods[0])) !=
JNI_OK) {
JNI_OK) {
return -1;
}
@ -164,4 +164,4 @@ JNIEXPORT jint JNI_OnLoad(JavaVM *vm, void *reserved) {
(*jniEnv)->DeleteLocalRef(jniEnv, clazz);
(*jniEnv)->DeleteLocalRef(jniEnv, clz_test);
return JNI_VERSION_1_4;
}
}

View file

@ -2317,7 +2317,7 @@ static int CmdDataNDEF(const char *Cmd) {
"Samples:\n"
_YELLOW_("\tdata ndef -d 9101085402656e48656c6c6f5101085402656e576f726c64\n")
_YELLOW_("\tdata ndef -d 0103d020240203e02c040300fe\n")
);
);
void *argtable[] = {
arg_param_begin,

View file

@ -339,7 +339,7 @@ static int CmdFlashMemSpiFFSDump(const char *Cmd) {
saveFile(filename, ".bin", dump, len);
if (eml) {
uint8_t eml_len = 16;
if (strstr(filename, "class") != NULL)
eml_len = 8;
else if (strstr(filename, "mfu") != NULL)
@ -421,12 +421,12 @@ out:
}
static int CmdFlashMemSpiFFSWipe(const char *Cmd) {
char ctmp = tolower(param_getchar(Cmd, 0));
if (ctmp == 'h') {
return usage_flashmemspiffs_wipe();
}
PrintAndLogEx(INFO, "Wiping all files from SPIFFS FileSystem");
PacketResponseNG resp;
clearCommandBuffer();

View file

@ -285,16 +285,16 @@ int CmdHFSniff(const char *Cmd) {
uint16_t len;
} PACKED;
struct r *retval = (struct r *)resp.data.asBytes;
PrintAndLogEx(INFO, "HF sniff (%u samples)", retval->len);
PrintAndLogEx(HINT, "Use `" _YELLOW_("data hpf") "` to remove offset");
PrintAndLogEx(HINT, "Use `" _YELLOW_("data plot") "` to view");
PrintAndLogEx(HINT, "Use `" _YELLOW_("data save") "` to save");
// download bigbuf_malloc:d.
// download bigbuf_malloc:d.
// it reserve memory from the higher end.
// At the moment, sniff takes all free memory in bigbuff. If this changes,
// At the moment, sniff takes all free memory in bigbuff. If this changes,
// we can't start from beginning idx 0 but from that hi-to-start-of-allocated.
uint32_t start = pm3_capabilities.bigbuf_size - retval->len;
int res = getSamplesEx(start, start, false);

View file

@ -384,8 +384,8 @@ static inline uint32_t countones(uint64_t a) {
#endif
}
const char * card_types[] = {
const char *card_types[] = {
"PicoPass 16K / 16", // 000
"PicoPass 32K with current book 16K / 16", // 001
"Unknown Card Type!", // 010
@ -435,7 +435,7 @@ static void fuse_config(const picopass_hdr *hdr) {
else
PrintAndLogEx(SUCCESS, "Coding: " _YELLOW_("ISO 14443-B only"));
}
uint8_t pagemap = get_pagemap(hdr);
switch (pagemap) {
case 0x0:
@ -458,25 +458,25 @@ static void fuse_config(const picopass_hdr *hdr) {
PrintAndLogEx(INFO, " RA: Read access not enabled");
PrintAndLogEx(INFO,
"App limit " _YELLOW_("0x%02X") ", OTP " _YELLOW_("0x%02X%02X") ", Block write lock " _YELLOW_("0x%02X")
, hdr->conf.app_limit
, hdr->conf.otp[1]
, hdr->conf.otp[0]
, hdr->conf.block_writelock
);
"App limit " _YELLOW_("0x%02X") ", OTP " _YELLOW_("0x%02X%02X") ", Block write lock " _YELLOW_("0x%02X")
, hdr->conf.app_limit
, hdr->conf.otp[1]
, hdr->conf.otp[0]
, hdr->conf.block_writelock
);
PrintAndLogEx(INFO,
" Chip " _YELLOW_("0x%02X") ", Mem " _YELLOW_("0x%02X") ", EAS " _YELLOW_("0x%02X") ", Fuses " _YELLOW_("0x%02X")
, hdr->conf.chip_config
, hdr->conf.mem_config
, hdr->conf.eas
, hdr->conf.fuses
);
" Chip " _YELLOW_("0x%02X") ", Mem " _YELLOW_("0x%02X") ", EAS " _YELLOW_("0x%02X") ", Fuses " _YELLOW_("0x%02X")
, hdr->conf.chip_config
, hdr->conf.mem_config
, hdr->conf.eas
, hdr->conf.fuses
);
}
static void getMemConfig(uint8_t mem_cfg, uint8_t chip_cfg, uint8_t *app_areas, uint8_t *kb) {
// How to determine chip type
// How to determine chip type
// mem-bit 7 = 16K
// mem-bit 7 = 16K
// mem-bit 5 = Book
// mem-bit 4 = 2K
// chip-bit 4 = Multi App
@ -532,7 +532,7 @@ static void mem_app_config(const picopass_hdr *hdr) {
uint8_t pagemap = get_pagemap(hdr);
PrintAndLogEx(INFO, "------ " _CYAN_("Memory") " ------");
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(INFO, " %u KBits (%u bytes)", kb, app2_limit * 8);
PrintAndLogEx(INFO, " Tag has not App Areas");
@ -540,7 +540,7 @@ static void mem_app_config(const picopass_hdr *hdr) {
}
PrintAndLogEx(INFO, " %u KBits/%u App Areas (%u bytes)", kb, app_areas, (app2_limit + 1) * 8);
PrintAndLogEx(INFO, " AA1 blocks %u { 0x06 - 0x%02X (06 - %02d) }", app1_limit , app1_limit + 5, app1_limit + 5);
PrintAndLogEx(INFO, " AA1 blocks %u { 0x06 - 0x%02X (06 - %02d) }", app1_limit, app1_limit + 5, app1_limit + 5);
PrintAndLogEx(INFO, " AA2 blocks %u { 0x%02X - 0x%02X (%02d - %02d) }", app2_limit - app1_limit, app1_limit + 5 + 1, app2_limit, app1_limit + 5 + 1, app2_limit);
PrintAndLogEx(INFO, "------ " _CYAN_("KeyAccess") " ------");
@ -592,18 +592,18 @@ static int CmdHFiClassSniff(const char *Cmd) {
"Usage:\n"
_YELLOW_("\thf iclass sniff") "\n"
_YELLOW_("\thf iclass sniff -j") " -> jam e-purse updates\n"
);
void* argtable[] = {
);
void *argtable[] = {
arg_param_begin,
arg_lit0("j", "jam", "Jam (prevent) e-purse updates"),
arg_param_end
};
CLIExecWithReturn(ctx, Cmd, argtable, true);
CLIExecWithReturn(ctx, Cmd, argtable, true);
bool jam_epurse_update = arg_get_lit(ctx, 1);
CLIParserFree(ctx);
const uint8_t update_epurse_sequence[2] = {0x87, 0x02};
struct {
@ -611,17 +611,17 @@ static int CmdHFiClassSniff(const char *Cmd) {
uint8_t jam_search_string[2];
} PACKED payload;
if (jam_epurse_update) {
if (jam_epurse_update) {
payload.jam_search_len = sizeof(update_epurse_sequence);
memcpy(payload.jam_search_string, update_epurse_sequence, sizeof(payload.jam_search_string));
}
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_SNIFF, (uint8_t *)&payload, sizeof(payload));
WaitForResponse(CMD_HF_ICLASS_SNIFF, &resp);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass list") "` to look at the collected trace");
PrintAndLogEx(HINT, "Try `" _YELLOW_("trace save h") "` to save tracelog for later analysing");
return PM3_SUCCESS;
@ -790,7 +790,7 @@ static int CmdHFiClassSim(const char *Cmd) {
}
saveFile("iclass_mac_attack_keyroll_B", ".bin", dump, datalen);
free(dump);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass loclass h") "` to recover elite key");
break;
}
@ -801,7 +801,7 @@ static int CmdHFiClassSim(const char *Cmd) {
uint8_t numberOfCSNs = 0;
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_SIMULATE, sim_type, numberOfCSNs, 1, CSN, 8);
if (sim_type == ICLASS_SIM_MODE_FULL)
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass esave h") "` to save the emulator memory to file");
break;
@ -819,7 +819,7 @@ int read_iclass_csn(bool loop, bool verbose) {
uint32_t flags = (FLAG_ICLASS_READER_INIT | FLAG_ICLASS_READER_CLEARTRACE);
int res = PM3_SUCCESS;
while (kbd_enter_pressed() == false) {
while (kbd_enter_pressed() == false) {
clearCommandBuffer();
SendCommandMIX(CMD_HF_ICLASS_READER, flags, 0, 0, NULL, 0);
@ -840,17 +840,17 @@ int read_iclass_csn(bool loop, bool verbose) {
}
picopass_hdr *hdr = (picopass_hdr *)resp.data.asBytes;
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, " CSN: " _GREEN_("%s"), sprint_hex(hdr->csn, sizeof(hdr->csn)));
PrintAndLogEx(SUCCESS, " Config: " _GREEN_("%s"), sprint_hex((uint8_t *)&hdr->conf, sizeof(hdr->conf)));
if (loop == false)
break;
}
}
DropField();
DropField();
return res;
}
@ -858,7 +858,7 @@ static int CmdHFiClassReader(const char *Cmd) {
char cmdp = tolower(param_getchar(Cmd, 0));
if (cmdp == 'h') return usage_hf_iclass_reader();
bool loop_read = (cmdp == '1') ? false : true;
return read_iclass_csn(loop_read, true);
}
@ -919,7 +919,7 @@ static int CmdHFiClassReader_Replay(const char *Cmd) {
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_REPLAY, (uint8_t *)&payload, sizeof(payload));
SendCommandNG(CMD_HF_ICLASS_REPLAY, (uint8_t *)&payload, sizeof(payload));
while (true) {
printf(".");
@ -980,7 +980,7 @@ static int CmdHFiClassReader_Replay(const char *Cmd) {
saveFile(filename, ".bin", tag_data, bytes_got);
saveFileEML(filename, tag_data, bytes_got, 8);
saveFileJSON(filename, jsfIclass, tag_data, bytes_got, NULL);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass decrypt") "` to decrypt dump file");
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass view") "` to view dump file");
PrintAndLogEx(NORMAL, "");
@ -1157,9 +1157,9 @@ static int CmdHFiClassESave(const char *Cmd) {
saveFileEML(filename, dump, bytes, 8);
saveFileJSON(filename, jsfIclass, dump, bytes, NULL);
free(dump);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass readtagfile ") "` to view dump file");
return PM3_SUCCESS;
return PM3_SUCCESS;
}
static int CmdHFiClassDecrypt(const char *Cmd) {
@ -1351,7 +1351,7 @@ static int CmdHFiClassDecrypt(const char *Cmd) {
} else {
PrintAndLogEx(INFO, "No credential found.");
}
// decode block 9
if (memcmp(decrypted + (8 * 9), empty, 8) != 0) {
@ -1363,9 +1363,9 @@ static int CmdHFiClassDecrypt(const char *Cmd) {
uint8_t pinsize = 0;
if (use_sc) {
pinsize = GetPinSize(decrypted + (8 * 6));
if (pinsize > 0) {
uint64_t pin = bytes_to_num(decrypted + (8 * 9), 5);
char tmp[17] = {0};
sprintf(tmp, "%."PRIu64, BCD2DEC(pin));
@ -1502,17 +1502,17 @@ static bool select_only(uint8_t *CSN, uint8_t *CCNR, bool verbose) {
}
static bool select_and_auth(uint8_t *KEY, uint8_t *MAC, uint8_t *div_key, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
iclass_auth_req_t payload = {
.use_raw = rawkey,
.use_elite = elite,
.use_credit_key = use_credit_key
};
memcpy(payload.key, KEY, 8);
SendCommandNG(CMD_HF_ICLASS_AUTH, (uint8_t*)&payload, sizeof(payload));
SendCommandNG(CMD_HF_ICLASS_AUTH, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
clearCommandBuffer();
clearCommandBuffer();
if (WaitForResponseTimeout(CMD_HF_ICLASS_AUTH, &resp, 2000) == 0) {
if (verbose) PrintAndLogEx(WARNING, "Command execute timeout");
return false;
@ -1529,14 +1529,14 @@ static bool select_and_auth(uint8_t *KEY, uint8_t *MAC, uint8_t *div_key, bool u
if (verbose) PrintAndLogEx(FAILED, "authentication error");
return false;
}
if (div_key)
memcpy(div_key, packet->div_key, sizeof(packet->div_key));
if (MAC)
memcpy(MAC, packet->mac, sizeof(packet->mac));
if (verbose)
if (verbose)
PrintAndLogEx(SUCCESS, "authing with %s: %s", rawkey ? "raw key" : "diversified key", sprint_hex(div_key, 8));
return true;
@ -1658,7 +1658,7 @@ static int CmdHFiClassDump(const char *Cmd) {
uint8_t pagemap = get_pagemap(hdr);
if (readStatus & (FLAG_ICLASS_CSN | FLAG_ICLASS_CONF | FLAG_ICLASS_CC)) {
memcpy(tag_data, hdr, 24);
uint8_t type = get_mem_config(hdr);
@ -1667,22 +1667,22 @@ static int CmdHFiClassDump(const char *Cmd) {
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(INFO, "Card in non-secure page mode detected");
app_limit1 = card_app2_limit[type];
app_limit2 = 0;
} else {
app_limit1 = hdr->conf.app_limit;
app_limit2 = card_app2_limit[type];
}
} else {
PrintAndLogEx(FAILED, "failed to read block 0,1,2");
DropField();
return PM3_ESOFT;
return PM3_ESOFT;
}
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(INFO, "Dumping all available memory, block 3 - %u (0x%02x)",app_limit1 , app_limit1);
PrintAndLogEx(INFO, "Dumping all available memory, block 3 - %u (0x%02x)", app_limit1, app_limit1);
if (auth) {
PrintAndLogEx(INFO, "No keys needed, ignoring user supplied key");
}
@ -1703,7 +1703,7 @@ static int CmdHFiClassDump(const char *Cmd) {
.end_block = app_limit1,
};
memcpy(payload.req.key, KEY, 8);
// tags configured for NON SECURE PAGE, acts different
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
payload.start_block = 3;
@ -1711,9 +1711,9 @@ static int CmdHFiClassDump(const char *Cmd) {
} else {
payload.start_block = 6;
}
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_DUMP, (uint8_t*)&payload, sizeof(payload));
SendCommandNG(CMD_HF_ICLASS_DUMP, (uint8_t *)&payload, sizeof(payload));
while (true) {
printf(".");
@ -1757,20 +1757,20 @@ static int CmdHFiClassDump(const char *Cmd) {
return PM3_ETIMEOUT;
}
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
// all memory available
memcpy(tag_data + (8 * 3), tempbuf + (8 * 3), (blocks_read * 8) );
memcpy(tag_data + (8 * 3), tempbuf + (8 * 3), (blocks_read * 8));
} else {
// div key KD
memcpy(tag_data + (8 * 3), tempbuf + (8 * 3), 8);
// AIA data
memcpy(tag_data + (8 * 5), tempbuf + (8 * 5), 8);
// AA1 data
memcpy(tag_data + (8 * 6), tempbuf + (8 * 6), (blocks_read * 8) );
memcpy(tag_data + (8 * 6), tempbuf + (8 * 6), (blocks_read * 8));
}
uint16_t bytes_got = (app_limit1 + 1) * 8;
// try AA2 Kc, Credit
bool aa2_success = false;
@ -1778,14 +1778,14 @@ static int CmdHFiClassDump(const char *Cmd) {
// AA2 authenticate credit key
memcpy(payload.req.key, CreditKEY, 8);
payload.req.use_credit_key = true;
payload.start_block = app_limit1 + 1;
payload.end_block = app_limit2;
payload.req.do_auth = true;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_DUMP, (uint8_t*)&payload, sizeof(payload));
SendCommandNG(CMD_HF_ICLASS_DUMP, (uint8_t *)&payload, sizeof(payload));
while (true) {
printf(".");
@ -1825,20 +1825,20 @@ static int CmdHFiClassDump(const char *Cmd) {
PrintAndLogEx(WARNING, "command execution time out");
goto write_dump;
}
// div key KC
memcpy(tag_data + (8 * 4), tempbuf + (8 * 4), 8);
// AA2 data
memcpy(tag_data + (8 * (app_limit1 + 1)), tempbuf + (8 * (app_limit1 + 1)), (blocks_read * 8) );
memcpy(tag_data + (8 * (app_limit1 + 1)), tempbuf + (8 * (app_limit1 + 1)), (blocks_read * 8));
bytes_got = (blocks_read * 8);
aa2_success = true;
}
write_dump:
if (have_credit_key && pagemap != 0x01 && aa2_success == false)
PrintAndLogEx(INFO, "Reading AA2 failed. dumping AA1 data to file");
@ -1859,7 +1859,7 @@ write_dump:
saveFile(filename, ".bin", tag_data, bytes_got);
saveFileEML(filename, tag_data, bytes_got, 8);
saveFileJSON(filename, jsfIclass, tag_data, bytes_got, NULL);
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass decrypt") "` to decrypt dump file");
PrintAndLogEx(HINT, "Try `" _YELLOW_("hf iclass view") "` to view dump file");
PrintAndLogEx(NORMAL, "");
@ -1867,55 +1867,55 @@ write_dump:
}
static int iclass_write_block(uint8_t blockno, uint8_t *bldata, uint8_t *KEY, bool use_credit_key, bool elite, bool rawkey, bool verbose) {
/*
uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
if (select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose) == false) {
return PM3_ESOFT;
}
/*
uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
if (select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose) == false) {
return PM3_ESOFT;
}
calc_wb_mac(blockno, bldata, div_key, MAC);
calc_wb_mac(blockno, bldata, div_key, MAC);
struct p {
struct p {
uint8_t blockno;
uint8_t data[12];
} PACKED payload;
payload.blockno = blockno;
memcpy(payload.data, bldata, 8);
memcpy(payload.data + 8, MAC, 4);
//
typedef struct {
uint8_t key[8];
bool use_raw;
bool use_elite;
bool use_credit_key;
bool send_reply;
bool do_auth;
uint8_t blockno;
uint8_t data[12];
} PACKED payload;
payload.blockno = blockno;
} PACKED iclass_auth_req_t;
memcpy(payload.data, bldata, 8);
memcpy(payload.data + 8, MAC, 4);
//
typedef struct {
uint8_t key[8];
bool use_raw;
bool use_elite;
bool use_credit_key;
bool send_reply;
bool do_auth;
uint8_t blockno;
} PACKED iclass_auth_req_t;
// iCLASS write block request data structure
typedef struct {
iclass_auth_req_t req;
uint8_t data[8];
} PACKED iclass_writeblock_req_t;
// iCLASS write block request data structure
typedef struct {
iclass_auth_req_t req;
uint8_t data[8];
} PACKED iclass_writeblock_req_t;
*/
iclass_writeblock_req_t payload = {
*/
iclass_writeblock_req_t payload = {
.req.use_raw = rawkey,
.req.use_elite = elite,
.req.use_credit_key = use_credit_key,
.req.blockno = blockno,
.req.send_reply = true,
.req.do_auth = true,
.req.do_auth = true,
};
memcpy(payload.req.key, KEY, 8);
memcpy(payload.data, bldata, sizeof(payload.data));
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_WRITEBL, (uint8_t *)&payload, sizeof(payload));
PacketResponseNG resp;
@ -2230,26 +2230,26 @@ static int CmdHFiClassRestore(const char *Cmd) {
}
static int iclass_read_block(uint8_t *KEY, uint8_t blockno, uint8_t keyType, bool elite, bool rawkey, bool verbose, bool auth, uint8_t *out) {
iclass_auth_req_t payload = {
.use_raw = rawkey,
.use_elite = elite,
.use_credit_key = (keyType == 0x18),
.blockno = blockno,
.send_reply = true,
.do_auth = auth,
.do_auth = auth,
};
memcpy(payload.key, KEY, 8);
PacketResponseNG resp;
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_READBL, (uint8_t*)&payload, sizeof(payload));
clearCommandBuffer();
SendCommandNG(CMD_HF_ICLASS_READBL, (uint8_t *)&payload, sizeof(payload));
if (WaitForResponseTimeout(CMD_HF_ICLASS_READBL, &resp, 2000) == false) {
if (verbose) PrintAndLogEx(WARNING, "Command execute timeout");
return PM3_ETIMEOUT;
}
if (resp.status != PM3_SUCCESS) {
if (verbose) PrintAndLogEx(ERR, "failed to communicate with card");
return PM3_EWRONGANSWER;
@ -2355,24 +2355,24 @@ static int CmdHFiClass_ReadBlock(const char *Cmd) {
if (auth == false && verbose) {
PrintAndLogEx(WARNING, "warning: no authentication used with read. Typical for cards configured toin `non-secure page`");
}
uint8_t data[8] = {0};
int res = iclass_read_block(KEY, blockno, keyType, elite, rawkey, verbose, auth, data);
if (res != PM3_SUCCESS)
return res;
if (blockno < 6 || blockno > 7)
return PM3_SUCCESS;
if (memcmp(data, empty, 8) == 0)
return PM3_SUCCESS;
bool use_sc = IsCryptoHelperPresent(verbose);
if (use_sc == false)
if (use_sc == false)
return PM3_SUCCESS;
// crypto helper available.
PrintAndLogEx(INFO, "----------------------------- " _CYAN_("cardhelper") " -----------------------------");
@ -2415,7 +2415,7 @@ static int CmdHFiClass_ReadBlock(const char *Cmd) {
i &= 0x3C;
PrintAndLogEx(SUCCESS, " bin : %s", binstr + i);
PrintAndLogEx(INFO, "");
PrintAndLogEx(INFO, "");
PrintAndLogEx(INFO, "------------------------------ " _CYAN_("wiegand") " -------------------------------");
wiegand_message_t packed = initialize_message_object(top, mid, bot);
HIDTryUnpack(&packed, true);
@ -2465,8 +2465,8 @@ void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t e
picopass_hdr *hdr = (picopass_hdr *)iclass_dump;
// picopass_ns_hdr *ns_hdr = (picopass_ns_hdr *)iclass_dump;
// uint8_t pagemap = get_pagemap(hdr);
// if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) { }
// if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) { }
uint8_t lock = hdr->conf.block_writelock;
// is chip in ReadOnly (RO)
@ -2505,11 +2505,11 @@ void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t e
PrintAndLogEx(INFO, "------+----+-------------------------+----------");
while (i <= endblock) {
uint8_t *blk = iclass_dump + (i * 8);
bool bl_lock = false;
if ( ro == false ) {
switch(i) {
case 12: {
if (ro == false) {
switch (i) {
case 12: {
bl_lock = ((lock & 0x40) == 0);
break;
}
@ -2541,7 +2541,7 @@ void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t e
} else {
bl_lock = true;
}
PrintAndLogEx(INFO, " %c |0x%02X| %s", (bl_lock) ? 'x' : ' ', i, sprint_hex_ascii(blk, 8));
i++;
}
@ -2600,7 +2600,7 @@ static int CmdHFiClassView(const char *Cmd) {
PrintAndLogEx(INFO, "Printing blocks from");
PrintAndLogEx(INFO, "start " _YELLOW_("0x%02x") " end " _YELLOW_("0x%02x"), (startblock == 0) ? 6 : startblock, endblock);
}
print_picopass_header((picopass_hdr *) dump);
print_picopass_info((picopass_hdr *) dump);
@ -2666,7 +2666,7 @@ static int CmdHFiClassCalcNewKey(const char *Cmd) {
bool elite = false;
bool errors = false;
uint8_t cmdp = 0;
while (param_getchar(Cmd, cmdp) != 0x00 && !errors) {
switch (tolower(param_getchar(Cmd, cmdp))) {
case 'h':
@ -2737,7 +2737,7 @@ static int CmdHFiClassCalcNewKey(const char *Cmd) {
}
HFiClassCalcNewKey(CSN, OLDKEY, NEWKEY, xor_div_key, elite, old_elite, true);
return PM3_SUCCESS;
}
@ -3045,7 +3045,7 @@ static int CmdHFiClassCheckKeys(const char *Cmd) {
clearCommandBuffer();
SendCommandOLD(CMD_HF_ICLASS_CHKKEYS, flags, keys, 0, pre + key_offset, 4 * keys);
PacketResponseNG resp;
bool looped = false;
while (!WaitForResponseTimeout(CMD_HF_ICLASS_CHKKEYS, &resp, 2000)) {
timeout++;
@ -3252,7 +3252,7 @@ static int CmdHFiClassLookUp(const char *Cmd) {
// binsearch
item = (iclass_prekey_t *) bsearch(&lookup, prekey, keycount, sizeof(iclass_prekey_t), cmp_uint32);
if (item != NULL) {
PrintAndLogEx(SUCCESS, "Found valid key " _GREEN_("%s"), sprint_hex(item->key, 8));
add_key(item->key);
@ -3453,15 +3453,15 @@ static command_t CommandTable[] = {
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("recovery") " ---------------------"},
{"chk", CmdHFiClassCheckKeys, AlwaysAvailable, "[options..] Check keys"},
{"loclass", CmdHFiClass_loclass, AlwaysAvailable, "[options..] Use loclass to perform bruteforce reader attack"},
{"lookup", CmdHFiClassLookUp, AlwaysAvailable, "[options..] Uses authentication trace to check for key in dictionary file"},
{"lookup", CmdHFiClassLookUp, AlwaysAvailable, "[options..] Uses authentication trace to check for key in dictionary file"},
{"replay", CmdHFiClassReader_Replay, IfPm3Iclass, "<mac> Read Picopass / iCLASS tag via replay attack"},
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("simulation") " ---------------------"},
{"sim", CmdHFiClassSim, IfPm3Iclass, "[options..] Simulate iCLASS tag"},
{"eload", CmdHFiClassELoad, IfPm3Iclass, "[f <fn> ] Load Picopass / iCLASS dump file into emulator memory"},
{"esave", CmdHFiClassESave, IfPm3Iclass, "[f <fn> ] Save emulator memory to file"},
{"esave", CmdHFiClassESave, IfPm3Iclass, "[f <fn> ] Save emulator memory to file"},
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("utils") " ---------------------"},
{"-----------", CmdHelp, AlwaysAvailable, "--------------------- " _CYAN_("utils") " ---------------------"},
{"calcnewkey", CmdHFiClassCalcNewKey, AlwaysAvailable, "[options..] Calc diversified keys (blocks 3 & 4) to write new keys"},
{"encrypt", CmdHFiClassEncryptBlk, AlwaysAvailable, "[options..] Encrypt given block data"},
{"decrypt", CmdHFiClassDecrypt, AlwaysAvailable, "[options..] Decrypt given block data or tag dump file" },
@ -3484,16 +3484,16 @@ int CmdHFiClass(const char *Cmd) {
}
//static void test_credential_type(void) {
// need AA1 key
// Block 5 -> tells if its a legacy or SIO, also tells which key to use.
// tech | blocks used | desc | num of payloads
// -------+-----------------------+-----------------------------------+------
// legacy | 6,7,8,9 | AA!, Access control payload | 1
// SE | 6,7,8,9,10,11,12 | AA1, Secure identity object (SIO) | 1
// SR | 6,7,8,9, | AA1, Access control payload | 2
// | 10,11,12,13,14,15,16 | AA1, Secure identity object (SIO) |
// SEOS | | |
// need AA1 key
// Block 5 -> tells if its a legacy or SIO, also tells which key to use.
// tech | blocks used | desc | num of payloads
// -------+-----------------------+-----------------------------------+------
// legacy | 6,7,8,9 | AA!, Access control payload | 1
// SE | 6,7,8,9,10,11,12 | AA1, Secure identity object (SIO) | 1
// SR | 6,7,8,9, | AA1, Access control payload | 2
// | 10,11,12,13,14,15,16 | AA1, Secure identity object (SIO) |
// SEOS | | |
//}
int info_iclass(void) {
@ -3528,32 +3528,32 @@ int info_iclass(void) {
if (readStatus & FLAG_ICLASS_CONF) {
PrintAndLogEx(SUCCESS, " Config: %s (Card configuration)", sprint_hex((uint8_t *)&hdr->conf, sizeof(hdr->conf)));
}
// page mapping. If fuse0|1 == 0x01, card is in non-secure mode, with CSN, CONF, AIA as top 3 blocks.
// page9 in http://www.proxmark.org/files/Documents/13.56%20MHz%20-%20iClass/DS%20Picopass%202KS%20V1-0.pdf
uint8_t pagemap = get_pagemap(hdr);
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) {
PrintAndLogEx(SUCCESS, " AIA: %s (Application Issuer area)", sprint_hex(ns_hdr->app_issuer_area, sizeof(ns_hdr->app_issuer_area)));
} else {
} else {
if (readStatus & FLAG_ICLASS_CC) {
PrintAndLogEx(SUCCESS, "E-purse: %s (Card challenge, CC)", sprint_hex(hdr->epurse, sizeof(hdr->epurse)));
}
PrintAndLogEx(SUCCESS, " Kd: %s (Debit key, hidden)", sprint_hex(hdr->key_d, sizeof(hdr->key_d)));
PrintAndLogEx(SUCCESS, " Kc: %s (Credit key, hidden)", sprint_hex(hdr->key_c, sizeof(hdr->key_c)));
if (readStatus & FLAG_ICLASS_AIA) {
PrintAndLogEx(SUCCESS, " AIA: %s (Application Issuer area)", sprint_hex(hdr->app_issuer_area, sizeof(hdr->app_issuer_area)));
}
}
}
if (readStatus & FLAG_ICLASS_CONF) {
print_picopass_info(hdr);
print_picopass_info(hdr);
}
PrintAndLogEx(INFO, "------ " _CYAN_("Fingerprint") " ------");
uint8_t aia[8];
if (pagemap == PICOPASS_NON_SECURE_PAGEMODE)
memcpy(aia, ns_hdr->app_issuer_area, sizeof(aia));
@ -3565,7 +3565,7 @@ int info_iclass(void) {
bool legacy = (memcmp(aia, "\xff\xff\xff\xff\xff\xff\xff\xff", 8) == 0);
bool se_enabled = (memcmp(aia, "\xff\xff\xff\x00\x06\xff\xff\xff", 8) == 0);
if (isHidRange) {
PrintAndLogEx(SUCCESS, "CSN is in HID range");
if (legacy)

View file

@ -1720,7 +1720,7 @@ static int CmdHF14AMfNestedHard(const char *Cmd) {
}
cmdp++;
break;
}
}
case 't':
tests = param_get32ex(Cmd, cmdp + 1, 100, 10);
if (!param_gethex(Cmd, cmdp + 2, trgkey, 12)) {
@ -1858,8 +1858,8 @@ static int CmdHF14AMfNestedHard(const char *Cmd) {
trgKeyType ? 'B' : 'A',
trgkey[0], trgkey[1], trgkey[2], trgkey[3], trgkey[4], trgkey[5],
know_target_key ? "" : " (not set)"
);
PrintAndLogEx(INFO , "File action: %s, Slow: %s, Tests: %d ",
);
PrintAndLogEx(INFO, "File action: %s, Slow: %s, Tests: %d ",
nonce_file_write ? "write" : nonce_file_read ? "read" : "none",
slow ? "Yes" : "No",
tests);
@ -1867,7 +1867,7 @@ static int CmdHF14AMfNestedHard(const char *Cmd) {
uint64_t foundkey = 0;
int16_t isOK = mfnestedhard(blockNo, keyType, key, trgBlockNo, trgKeyType, know_target_key ? trgkey : NULL, nonce_file_read, nonce_file_write, slow, tests, &foundkey, filename);
if (tests == 0)
if (tests == 0)
DropField();
if (isOK) {

View file

@ -1864,7 +1864,7 @@ static int getKeySettings(uint8_t *aid) {
// KEY Settings - AMK
uint8_t num_keys = 0;
uint8_t key_setting = 0;
mifare_des_authalgo_t algo=MFDES_ALGO_DES;
mifare_des_authalgo_t algo = MFDES_ALGO_DES;
res = key_setting_to_algo(aid, &key_setting, &algo, &num_keys);
if (res == PM3_SUCCESS) {
@ -1916,7 +1916,7 @@ static int getKeySettings(uint8_t *aid) {
// KEY Settings - AMK
uint8_t num_keys = 0;
uint8_t key_setting = 0;
mifare_des_authalgo_t algo=MFDES_ALGO_DES;
mifare_des_authalgo_t algo = MFDES_ALGO_DES;
res = key_setting_to_algo(aid, &key_setting, &algo, &num_keys);
if (res == PM3_SUCCESS) {
desfire_print_keysetting(key_setting, num_keys, algo);
@ -2669,7 +2669,7 @@ static int CmdHF14ADesReadData(const char *Cmd) {
if (res_flen) {
PrintAndLogEx(ERR, "File size input error");
return PM3_EINVARG;
return PM3_EINVARG;
}
swap24(filesize);
@ -2859,7 +2859,7 @@ static int CmdHF14ADesWriteData(const char *Cmd) {
// with 2char hex, 512bytes could be input.
// Instead large binary inputs should be BINARY files and written to card.
int dlength = 512;
uint8_t data[512] = {0};
uint8_t data[512] = {0};
int res_data = CLIParamHexToBuf(arg_get_str(ctx, 3), data, 512, &dlength);
int type = arg_get_int(ctx, 4);
@ -3767,12 +3767,12 @@ static int CmdHF14ADesChangeKey(const char *Cmd) {
uint8_t key[24] = {0};
int keylen = 0;
int res_klen = CLIParamHexToBuf(arg_get_str(ctx, 3), key, 24, &keylen);
uint8_t newcmdAuthAlgo = arg_get_int_def(ctx, 4, 0);
uint8_t newkey[24] = {0};
int newkeylen = 0;
int res_newklen = CLIParamHexToBuf(arg_get_str(ctx, 5), newkey, 24, &newkeylen);
uint8_t aesversion = arg_get_int_def(ctx, 6, 0);
CLIParserFree(ctx);
@ -4535,7 +4535,7 @@ static int CmdHF14aDesNDEF(const char *Cmd) {
if (res == PM3_SUCCESS) {
uint32_t len = le24toh(fdata.length);
NDEFDecodeAndPrint(data, datalen, verbose);
} else {
PrintAndLogEx(ERR, "Couldn't read value. Error %d", res);
res = handler_desfire_select_application(aid);

View file

@ -1206,7 +1206,7 @@ static bool CheckChipType(bool getDeviceData) {
PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf t55xx`") " commands");
retval = true;
}
// check for em4x50 chips
if (detect_4x50_block()) {
PrintAndLogEx(SUCCESS, "Chipset detection: " _GREEN_("EM4x50"));
@ -1293,7 +1293,7 @@ int CmdLFfind(const char *Cmd) {
if (demodParadox() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Paradox ID") " found!"); goto out;}
if (demodNexWatch() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("NexWatch ID") " found!"); goto out;}
if (demodIndala() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Indala ID") " found!"); goto out;}
if (demodEM410x() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("EM410x ID") " found!"); goto out;}
if (demodFDX() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("FDX-B ID") " found!"); goto out;}
if (demodGuard() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Guardall G-Prox II ID") " found!"); goto out; }
@ -1310,7 +1310,7 @@ int CmdLFfind(const char *Cmd) {
if (demodSecurakey() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Securakey ID") " found!"); goto out;}
if (demodViking() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Viking ID") " found!"); goto out;}
if (demodGallagher() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("GALLAGHER ID") " found!"); goto out;}
// if (demodTI() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Texas Instrument ID") " found!"); goto out;}
//if (demodFermax() == PM3_SUCCESS) { PrintAndLogEx(SUCCESS, "\nValid " _GREEN_("Fermax ID") " found!"); goto out;}

View file

@ -111,7 +111,7 @@ static int usage_lf_em410x_brute(void) {
PrintAndLogEx(NORMAL, "Examples:");
PrintAndLogEx(NORMAL, _YELLOW_(" lf em 410x_brute ids.txt"));
PrintAndLogEx(NORMAL, _YELLOW_(" lf em 410x_brute ids.txt c 32"));
PrintAndLogEx(NORMAL, _YELLOW_( " lf em 410x_brute ids.txt d 3000"));
PrintAndLogEx(NORMAL, _YELLOW_(" lf em 410x_brute ids.txt d 3000"));
PrintAndLogEx(NORMAL, _YELLOW_(" lf em 410x_brute ids.txt d 3000 c 32"));
return PM3_SUCCESS;
}
@ -408,7 +408,7 @@ int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) {
static int CmdEM410xWatch(const char *Cmd) {
uint8_t c = tolower(param_getchar(Cmd, 0));
if (c == 'h') return usage_lf_em410x_watch();
PrintAndLogEx(SUCCESS, "Watching for EM410x cards - place tag on antenna");
PrintAndLogEx(INFO, "Press pm3-button to stop reading cards");
clearCommandBuffer();
@ -639,7 +639,7 @@ static int CmdEM410xWrite(const char *Cmd) {
} else if (card == 0) {
PrintAndLogEx(SUCCESS, "Writing %s tag with UID 0x%010" PRIx64 "(clock rate: %d)", _GREEN_("T5555"), id, clock1);
}
struct {
uint8_t card;
uint8_t clock;
@ -657,7 +657,7 @@ static int CmdEM410xWrite(const char *Cmd) {
PacketResponseNG resp;
WaitForResponse(CMD_LF_EM410X_WRITE, &resp);
switch(resp.status) {
switch (resp.status) {
case PM3_SUCCESS: {
PrintAndLogEx(SUCCESS, "Done");
PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf em 410x_read`") " to verify");

View file

@ -114,8 +114,8 @@ static void prepare_result(const uint8_t *byte, int fwr, int lwr, em4x50_word_t
c[j] = 0;
for (int j = 0; j < 4; j++) {
words[i].byte[j] = byte[i*7+j];
words[i].row_parity[j] = (byte[i*7+4] >> (3-j)) & 1;
words[i].byte[j] = byte[i * 7 + j];
words[i].row_parity[j] = (byte[i * 7 + 4] >> (3 - j)) & 1;
// collect parities
p = 0;
@ -126,7 +126,7 @@ static void prepare_result(const uint8_t *byte, int fwr, int lwr, em4x50_word_t
p ^= (words[i].byte[j] >> k) & 1;
// column parity
c[k] ^= (words[i].byte[j] >> (7-k)) & 1;
c[k] ^= (words[i].byte[j] >> (7 - k)) & 1;
}
// check row parities
@ -137,17 +137,17 @@ static void prepare_result(const uint8_t *byte, int fwr, int lwr, em4x50_word_t
}
// check column parities
words[i].col_parity = byte[i*7+5];
words[i].col_parity = byte[i * 7 + 5];
for (int j = 0; j < 8; j++) {
words[i].cparity[j] = (((words[i].col_parity >> (7-j)) & 1) == c[j]) ? true : false;
words[i].cparity[j] = (((words[i].col_parity >> (7 - j)) & 1) == c[j]) ? true : false;
if (!words[i].cparity[j])
words[i].parity = false;
words[i].parity = false;
}
// check stop bit
words[i].stopbit = byte[i*7+6] & 1;
words[i].stopbit = byte[i * 7 + 6] & 1;
if (words[i].stopbit == 1)
words[i].stopparity = false;
@ -166,7 +166,7 @@ static void print_result(const em4x50_word_t *words, int fwr, int lwr) {
for (int i = fwr; i <= lwr; i++) {
char s[50] = {0};
switch(i) {
switch (i) {
case EM4X50_DEVICE_PASSWORD:
sprintf(s, _YELLOW_("password, write only"));
break;
@ -191,13 +191,13 @@ static void print_result(const em4x50_word_t *words, int fwr, int lwr) {
for (int j = 3; j >= 0; j--) {
sprintf(r + strlen(r), "%02x ", reflect8(words[i].byte[j]));
}
PrintAndLogEx(INFO, " %2i | " _GREEN_("%s") "| %s| %s",
i,
sprint_hex(words[i].byte, 4),
r,
s
);
i,
sprint_hex(words[i].byte, 4),
r,
s
);
}
PrintAndLogEx(INFO, "----+-------------+-------------+--------------------");
}
@ -226,14 +226,14 @@ static void print_info_result(uint8_t *data, bool verbose) {
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, _YELLOW_("EM4x50 data:"));
print_result(words, 0, EM4X50_NO_WORDS - 1);
// configuration section
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "---- " _CYAN_("Configuration") " ----");
PrintAndLogEx(INFO, "first word read %3i", fwr);
PrintAndLogEx(INFO, "last word read %3i", lwr);
PrintAndLogEx(INFO, "password check %3s", (bpwc) ? _RED_("on"): _GREEN_("off"));
PrintAndLogEx(INFO, "password check %3s", (bpwc) ? _RED_("on") : _GREEN_("off"));
PrintAndLogEx(INFO, "read after write %3s", (braw) ? "on" : "off");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "--------- " _CYAN_("Protection") " ---------");
@ -288,9 +288,9 @@ int CmdEM4x50Info(const char *Cmd) {
case 'p':
if (param_gethex(Cmd, cmdp + 1, etd.password, 8)) {
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
etd.pwd_given = true;
cmdp += 2;
break;
@ -308,8 +308,8 @@ int CmdEM4x50Info(const char *Cmd) {
}
// validation
if (errors)
return usage_lf_em4x50_info();
if (errors)
return usage_lf_em4x50_info();
clearCommandBuffer();
SendCommandNG(CMD_LF_EM4X50_INFO, (uint8_t *)&etd, sizeof(etd));
@ -346,17 +346,17 @@ int CmdEM4x50Write(const char *Cmd) {
}
case 'p': {
if (param_gethex(Cmd, cmdp + 1, etd.password, 8)) {
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
etd.pwd_given = true;
cmdp += 2;
break;
}
case 'w': {
if (param_gethex(Cmd, cmdp + 1, etd.word, 8)) {
PrintAndLogEx(FAILED, "\n word has to be 8 hex symbols\n");
return PM3_EINVARG;
PrintAndLogEx(FAILED, "\n word has to be 8 hex symbols\n");
return PM3_EINVARG;
}
bword = true;
cmdp += 2;
@ -383,7 +383,7 @@ int CmdEM4x50Write(const char *Cmd) {
}
if (errors || !bword || !baddr)
return usage_lf_em4x50_write();
return usage_lf_em4x50_write();
clearCommandBuffer();
SendCommandNG(CMD_LF_EM4X50_WRITE, (uint8_t *)&etd, sizeof(etd));
@ -428,7 +428,7 @@ static void print_write_password_result(PacketResponseNG *resp, const em4x50_dat
sprintf(pstring, "\n writing new password " _GREEN_("ok"));
strcat(string, pstring);
PrintAndLogEx(NORMAL,"%s\n", string);
PrintAndLogEx(NORMAL, "%s\n", string);
}
int CmdEM4x50WritePassword(const char *Cmd) {
@ -452,8 +452,8 @@ int CmdEM4x50WritePassword(const char *Cmd) {
case 'p':
if (param_gethex(Cmd, cmdp + 1, etd.password, 8)) {
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
bpwd = true;
etd.pwd_given = true;
@ -462,9 +462,9 @@ int CmdEM4x50WritePassword(const char *Cmd) {
case 'n':
if (param_gethex(Cmd, cmdp + 1, etd.new_password, 8)) {
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
bnpwd = true;
etd.newpwd_given = true;
cmdp += 2;
@ -478,7 +478,7 @@ int CmdEM4x50WritePassword(const char *Cmd) {
}
if (errors || !bpwd || !bnpwd)
return usage_lf_em4x50_write_password();
return usage_lf_em4x50_write_password();
clearCommandBuffer();
SendCommandNG(CMD_LF_EM4X50_WRITE_PASSWORD, (uint8_t *)&etd, sizeof(etd));
@ -493,7 +493,7 @@ int CmdEM4x50WritePassword(const char *Cmd) {
if (success)
print_write_password_result(&resp, &etd);
else
PrintAndLogEx(NORMAL,"\nwriting password " _RED_("failed") "\n");
PrintAndLogEx(NORMAL, "\nwriting password " _RED_("failed") "\n");
return (success) ? PM3_SUCCESS : PM3_ESOFT;
}
@ -583,9 +583,9 @@ int CmdEM4x50Read(const char *Cmd) {
}
case 'p': {
if (param_gethex(Cmd, cmdp + 1, etd.password, 8)) {
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
etd.pwd_given = true;
cmdp += 2;
break;
@ -599,7 +599,7 @@ int CmdEM4x50Read(const char *Cmd) {
}
if (errors || strlen(Cmd) == 0 || etd.addr_given == false)
return usage_lf_em4x50_read();
return usage_lf_em4x50_read();
return em4x50_read(&etd, NULL, true);
}
@ -627,9 +627,9 @@ int CmdEM4x50Dump(const char *Cmd) {
break;
case 'p': {
if (param_gethex(Cmd, cmdp + 1, etd.password, 8)) {
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
PrintAndLogEx(FAILED, "\n password has to be 8 hex symbols\n");
return PM3_EINVARG;
}
etd.pwd_given = true;
cmdp += 2;
break;
@ -642,8 +642,8 @@ int CmdEM4x50Dump(const char *Cmd) {
}
// validation
if (errors)
return usage_lf_em4x50_dump();
if (errors)
return usage_lf_em4x50_dump();
PrintAndLogEx(INFO, "reading EM4x50 tag");
clearCommandBuffer();
@ -675,8 +675,8 @@ int CmdEM4x50Dump(const char *Cmd) {
}
uint8_t data[EM4X50_NO_WORDS * 4] = {0};
for (int i=0; i < EM4X50_NO_WORDS; i++) {
memcpy(data + (i*4), words[i].byte, 4);
for (int i = 0; i < EM4X50_NO_WORDS; i++) {
memcpy(data + (i * 4), words[i].byte, 4);
}
// saveFileEML will add .eml extension to filename
@ -704,8 +704,8 @@ int CmdEM4x50Wipe(const char *Cmd) {
case 'p':
if (param_gethex(Cmd, cmdp + 1, etd.password, 8)) {
PrintAndLogEx(FAILED, "\npassword has to be 8 hex symbols\n");
return PM3_EINVARG;
PrintAndLogEx(FAILED, "\npassword has to be 8 hex symbols\n");
return PM3_EINVARG;
}
bpwd = true;
cmdp += 2;
@ -719,12 +719,12 @@ int CmdEM4x50Wipe(const char *Cmd) {
}
if (errors || !bpwd)
return usage_lf_em4x50_wipe();
return usage_lf_em4x50_wipe();
clearCommandBuffer();
SendCommandNG(CMD_LF_EM4X50_WIPE, (uint8_t *)&etd, sizeof(etd));
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2*TIMEOUT)) {
if (!WaitForResponseTimeout(CMD_ACK, &resp, 2 * TIMEOUT)) {
PrintAndLogEx(WARNING, "\ntimeout while waiting for reply.\n");
return PM3_ETIMEOUT;
}
@ -732,9 +732,9 @@ int CmdEM4x50Wipe(const char *Cmd) {
// print response
bool isOK = resp.status;
if (isOK) {
PrintAndLogEx(SUCCESS,"\nwiping data " _GREEN_("ok") "\n");
PrintAndLogEx(SUCCESS, "\nwiping data " _GREEN_("ok") "\n");
} else {
PrintAndLogEx(FAILED,"\nwiping data " _RED_("failed") "\n");
PrintAndLogEx(FAILED, "\nwiping data " _RED_("failed") "\n");
return PM3_ESOFT;
}

View file

@ -246,10 +246,10 @@ static int CmdHIDDemod(const char *Cmd) {
}
if (fmtLen == 32 && (lo & 0x40000000)) { //if 32 bit and Kastle bit set
PrintAndLogEx(SUCCESS,
"HID Prox (Kastle format) - " _GREEN_("%x%08x (%u)") " - len: " _GREEN_("32") " bit CC: " _GREEN_("%u") " FC: " _GREEN_("%u") " Card: " _GREEN_("%u"), hi, lo, (lo >> 1) & 0xFFFF, cc, fc, cardnum);
"HID Prox (Kastle format) - " _GREEN_("%x%08x (%u)") " - len: " _GREEN_("32") " bit CC: " _GREEN_("%u") " FC: " _GREEN_("%u") " Card: " _GREEN_("%u"), hi, lo, (lo >> 1) & 0xFFFF, cc, fc, cardnum);
} else {
PrintAndLogEx(SUCCESS,
"HID Prox - " _GREEN_("%x%08x (%u)") " - len: " _GREEN_("%u") " bit - OEM: " _GREEN_("%03u") " FC: " _GREEN_("%u")" Card: " _GREEN_("%u"),
PrintAndLogEx(SUCCESS,
"HID Prox - " _GREEN_("%x%08x (%u)") " - len: " _GREEN_("%u") " bit - OEM: " _GREEN_("%03u") " FC: " _GREEN_("%u")" Card: " _GREEN_("%u"),
hi, lo, cardnum, fmtLen, oem, fc, cardnum);
}
}
@ -276,7 +276,7 @@ static int CmdHIDWatch(const char *Cmd) {
PrintAndLogEx(SUCCESS, "Watching for HID Prox cards - place tag on antenna");
PrintAndLogEx(INFO, "Press pm3-button to stop reading cards");
clearCommandBuffer();
SendCommandNG(CMD_LF_HID_WATCH, NULL, 0);
SendCommandNG(CMD_LF_HID_WATCH, NULL, 0);
PacketResponseNG resp;
WaitForResponse(CMD_LF_HID_WATCH, &resp);
PrintAndLogEx(INFO, "Done");

View file

@ -738,7 +738,7 @@ void annotateHitag1(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize, bool
}
void annotateHitag2(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize, bool is_response) {
// iceman: live decrypt of trace?
if (is_response) {
@ -774,18 +774,18 @@ void annotateHitag2(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize, bool
}
if (cmdsize == 9) {
snprintf(exp, size, "Nr Ar Is response");
return;
snprintf(exp, size, "Nr Ar Is response");
return;
}
} else {
if (cmdsize == 9) {
snprintf(exp, size, "Nr Ar");
return;
snprintf(exp, size, "Nr Ar");
return;
}
}
}
}
void annotateHitagS(char *exp, size_t size, uint8_t *cmd, uint8_t cmdsize, bool is_reader) {

View file

@ -54,7 +54,7 @@ static int usage_lf_indala_demod(void) {
PrintAndLogEx(NORMAL, _YELLOW_(" lf indala demod 32") " = demod a Indala tag from GraphBuffer using a clock of RF/32");
PrintAndLogEx(NORMAL, _YELLOW_(" lf indala demod 32 1") " = demod a Indala tag from GraphBuffer using a clock of RF/32 and inverting data");
PrintAndLogEx(NORMAL, _YELLOW_(" lf indala demod 64 1 0") " = demod a Indala tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors");
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(NORMAL, "");
return PM3_SUCCESS;
}

View file

@ -172,7 +172,7 @@ static int CmdIOProxDemod(const char *Cmd) {
char crc_str[36] = {0};
if (crc == calccrc) {
snprintf(crc_str, sizeof(crc_str), "(" _GREEN_("ok") ")" );
snprintf(crc_str, sizeof(crc_str), "(" _GREEN_("ok") ")");
} else {
snprintf(crc_str, sizeof(crc_str), "(" _RED_("fail") ") 0x%02X != 0x%02X", crc, calccrc);
retval = PM3_ESOFT;

View file

@ -190,7 +190,7 @@ int demodKeri(void) {
Might be a hash of FC & CN to generate Internal ID
*/
PrintAndLogEx(SUCCESS, "KERI - Internal ID: " _GREEN_("%u") ", Raw: %08X%08X" , ID, raw1, raw2);
PrintAndLogEx(SUCCESS, "KERI - Internal ID: " _GREEN_("%u") ", Raw: %08X%08X", ID, raw1, raw2);
/*
Descramble Data.
*/

View file

@ -35,7 +35,7 @@ static int CmdMotorolaDemod(const char *Cmd) {
}
int demodMotorola(void) {
//PSK1
if (PSKDemod("32 1", true) != PM3_SUCCESS) {
PrintAndLogEx(DEBUG, "DEBUG: Error - Motorola: PSK Demod failed");
@ -118,7 +118,7 @@ int demodMotorola(void) {
checksum |= DemodBuffer[62] << 1; // b2
checksum |= DemodBuffer[63] << 0; // b1
PrintAndLogEx(SUCCESS, "Motorola - fmt: " _GREEN_("26") " FC: " _GREEN_("%u") " Card: " _GREEN_("%u") ", Raw: %08X%08X", fc, csn, raw1, raw2);
PrintAndLogEx(DEBUG, "checksum: " _GREEN_("%1d%1d"), checksum >> 1 & 0x01, checksum & 0x01);
return PM3_SUCCESS;

View file

@ -250,7 +250,7 @@ int demodNexWatch(void) {
} else {
PrintAndLogEx(DEBUG, " parity : %s (0x%X != 0x%X)", _RED_("fail"), parity, calc_parity);
}
PrintAndLogEx(DEBUG, " checksum : %s (0x%02X)", (m_idx < ARRAYLEN(items)) ? _GREEN_("ok") : _RED_("fail"), chk);
PrintAndLogEx(INFO, " Raw : " _YELLOW_("%"PRIX32"%"PRIX32"%"PRIX32), raw1, raw2, raw3);

View file

@ -88,7 +88,7 @@ static int demodbuf_to_pacid(uint8_t *src, const size_t src_size, uint8_t *dst,
}
// overwrite checksum byte with null terminator
dst[dataLength - 1] = 0;
dst[dataLength - 1] = 0;
return PM3_SUCCESS;
}

View file

@ -64,7 +64,7 @@ const uint8_t paradox_lut[] = {
0x9F, 0xED, 0x7D, 0x59, 0x22, 0x84, 0x21, 0x4E,
0x39, 0x48, 0x12, 0x88, 0x53, 0xDE, 0xBB, 0xE4,
0xB4, 0x2D, 0x4D, 0x55, 0xCA, 0xBE, 0xA3, 0xE2
};
};
// FC:108, Card01827
// 00000000 01101100 00000111 00100011
// hex(0xED xor 0x7D xor 0x22 xor 0x84 xor 0xDE xor 0xBB xor 0xE4 xor 0x4D xor 0xA3 xor 0xE2 xor 0x47) 0xFC
@ -132,7 +132,7 @@ int demodParadox(void) {
// not manchester data
if (bits[i] == bits[i + 1]) {
PrintAndLogEx(WARNING, "Error Manchester at %u", i);
PrintAndLogEx(WARNING, "Error Manchester at %u", i);
error++;
}
@ -144,7 +144,7 @@ int demodParadox(void) {
lo |= 1; // 10
}
}
setDemodBuff(bits, size, idx);
setClockGrid(50, wave_idx + (idx * 50));
@ -163,11 +163,11 @@ int demodParadox(void) {
// checksum?
uint8_t calc_chksum = 0x47;
uint8_t pos = 0;
for(uint8_t i = 0; i < 8; i++ ) {
uint8_t ice = rawhex[i+1];
for(uint8_t j = 0x80; j > 0; j >>= 2) {
for (uint8_t i = 0; i < 8; i++) {
uint8_t ice = rawhex[i + 1];
for (uint8_t j = 0x80; j > 0; j >>= 2) {
if (ice & j) {
calc_chksum ^= paradox_lut[pos];
}
@ -178,7 +178,7 @@ int demodParadox(void) {
uint32_t crc = CRC8Maxim(rawhex + 1, 8);
PrintAndLogEx(DEBUG, " FSK/MAN raw : %s", sprint_hex(rawhex, sizeof(rawhex)));
PrintAndLogEx(DEBUG, " raw : %s = (maxim crc8) %02x == %02x", sprint_hex(rawhex + 1, 8), crc, calc_chksum);
// PrintAndLogEx(DEBUG, " OTHER sample CRC-8/MAXIM : 55 55 69 A5 55 6A 59 5A = FC");
// PrintAndLogEx(DEBUG, " OTHER sample CRC-8/MAXIM : 55 55 69 A5 55 6A 59 5A = FC");
uint32_t rawLo = bytebits_to_byte(bits + idx + 64, 32);
uint32_t rawHi = bytebits_to_byte(bits + idx + 32, 32);

View file

@ -1359,8 +1359,8 @@ bool testKnownConfigBlock(uint32_t block0) {
case T55X7_NEDAP_128_CONFIG_BLOCK:
case T55X7_VISA2000_CONFIG_BLOCK:
case T55X7_SECURAKEY_CONFIG_BLOCK:
case T55X7_PAC_CONFIG_BLOCK:
case T55X7_VERICHIP_CONFIG_BLOCK:
case T55X7_PAC_CONFIG_BLOCK:
case T55X7_VERICHIP_CONFIG_BLOCK:
case T55X7_KERI_CONFIG_BLOCK:
case T55X7_NEXWATCH_CONFIG_BLOCK:
case T55X7_JABLOTRON_CONFIG_BLOCK:
@ -2109,7 +2109,7 @@ static void printT5x7KnownBlock0(uint32_t b0) {
break;
case T55X7_NEXWATCH_CONFIG_BLOCK:
snprintf(s + strlen(s), sizeof(s) - strlen(s), "NexWatch, Quadrakey ");
break;
break;
default:
break;
}

View file

@ -38,7 +38,7 @@
// and it should actually be "10000" (16)
// #define T55X7_FDXB_CONFIG_BLOCK 0x903F8080 // BiPhase, fdx-b - xtended mode, BiPhase ('57), data rate 32, 4 data blocks
#define T55X7_FDXB_CONFIG_BLOCK 0x903F0082 // BiPhase, fdx-b - xtended mode, BiPhase ('50), invert data, data rate 32, 4 data blocks
#define T55X7_FDXB_2_CONFIG_BLOCK 0x00098080 //
#define T55X7_FDXB_2_CONFIG_BLOCK 0x00098080 //
#define T55X7_HID_26_CONFIG_BLOCK 0x00107060 // FSK2a, hid 26 bit - compat mode, data rate 50, 3 data blocks
#define T55X7_PARADOX_CONFIG_BLOCK 0x00107060 // FSK2a, hid 26 bit - compat mode, data rate 50, 3 data blocks

View file

@ -249,7 +249,7 @@ static int CmdPref(const char *Cmd) {
static command_t CommandTable[] = {
{"--------",CmdHelp, AlwaysAvailable, "----------------------- " _CYAN_("Technology") " -----------------------"},
{"--------", CmdHelp, AlwaysAvailable, "----------------------- " _CYAN_("Technology") " -----------------------"},
{"analyse", CmdAnalyse, AlwaysAvailable, "{ Analyse utils... }"},
{"data", CmdData, AlwaysAvailable, "{ Plot window / data buffer manipulation... }"},
@ -264,7 +264,7 @@ static command_t CommandTable[] = {
{"trace", CmdTrace, AlwaysAvailable, "{ Trace manipulation... }"},
{"usart", CmdUsart, IfPm3FpcUsartFromUsb, "{ USART commands... }"},
{"wiegand", CmdWiegand, AlwaysAvailable, "{ Wiegand format manipulation... }"},
{"--------",CmdHelp, AlwaysAvailable, "----------------------- " _CYAN_("General") " -----------------------"},
{"--------", CmdHelp, AlwaysAvailable, "----------------------- " _CYAN_("General") " -----------------------"},
{"auto", CmdAuto, IfPm3Present, "Automated detection process for unknown tags"},
{"help", CmdHelp, AlwaysAvailable, "This help. Use " _YELLOW_("'<command> help'") " for details of a particular command."},
{"hints", CmdHints, AlwaysAvailable, "Turn hints on / off"},

View file

@ -467,7 +467,7 @@ static int CmdSmartRaw(const char *Cmd) {
uint8_t flags = SC_LOG;
if (active || active_select) {
flags |= (SC_CONNECT | SC_CLEARLOG);
if (active_select)
flags |= SC_SELECT;

View file

@ -206,10 +206,10 @@ static uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *tr
return traceLen;
}
// adjust for different time scales
if (protocol == ICLASS || protocol == ISO_15693) {
duration *= 32;
}
// adjust for different time scales
if (protocol == ICLASS || protocol == ISO_15693) {
duration *= 32;
}
uint8_t *frame = hdr->frame;
@ -275,10 +275,10 @@ static uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *tr
if (data_len == 0) {
if (protocol == ICLASS && duration == 2048) {
sprintf(line[0], "<SOF>");
} else if (protocol == ISO_15693 && duration == 512) {
sprintf(line[0], "<EOF>");
} else {
sprintf(line[0], "<SOF>");
} else if (protocol == ISO_15693 && duration == 512) {
sprintf(line[0], "<EOF>");
} else {
sprintf(line[0], "<empty trace - possible error>");
}
}
@ -334,11 +334,11 @@ static uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *tr
uint32_t previous_end_of_transmission_timestamp = 0;
if (prev_eot) {
if (*prev_eot) {
previous_end_of_transmission_timestamp = *prev_eot;
} else {
previous_end_of_transmission_timestamp = hdr->timestamp;
}
if (*prev_eot) {
previous_end_of_transmission_timestamp = *prev_eot;
} else {
previous_end_of_transmission_timestamp = hdr->timestamp;
}
}
end_of_transmission_timestamp = hdr->timestamp + duration;
@ -355,7 +355,7 @@ static uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *tr
if (protocol == FELICA)
annotateFelica(explanation, sizeof(explanation), frame, data_len);
if (protocol == PROTO_HITAG1) {
annotateHitag1(explanation, sizeof(explanation), frame, data_len, hdr->isResponse);
}
@ -405,38 +405,38 @@ static uint16_t printTraceLine(uint16_t tracepos, uint16_t traceLen, uint8_t *tr
if (j == 0) {
uint32_t time1 = hdr->timestamp - first_hdr->timestamp;
uint32_t time2 = end_of_transmission_timestamp - first_hdr->timestamp;
if (prev_eot) {
time1 = hdr->timestamp - previous_end_of_transmission_timestamp;
time2 = duration;
}
uint32_t time2 = end_of_transmission_timestamp - first_hdr->timestamp;
if (prev_eot) {
time1 = hdr->timestamp - previous_end_of_transmission_timestamp;
time2 = duration;
}
if (use_us) {
PrintAndLogEx(NORMAL, " %10.1f | %10.1f | %s |%-72s | %s| %s",
(float)time1/13.56,
(float)time2/13.56,
(hdr->isResponse ? "Tag" : _YELLOW_("Rdr")),
line[j],
(j == num_lines - 1) ? crc : " ",
(j == num_lines - 1) ? explanation : ""
);
(float)time1 / 13.56,
(float)time2 / 13.56,
(hdr->isResponse ? "Tag" : _YELLOW_("Rdr")),
line[j],
(j == num_lines - 1) ? crc : " ",
(j == num_lines - 1) ? explanation : ""
);
} else {
PrintAndLogEx(NORMAL, " %10u | %10u | %s |%-72s | %s| %s",
(hdr->timestamp - first_hdr->timestamp),
(end_of_transmission_timestamp - first_hdr->timestamp),
(hdr->isResponse ? "Tag" : _YELLOW_("Rdr")),
line[j],
(j == num_lines - 1) ? crc : " ",
(j == num_lines - 1) ? explanation : ""
);
(hdr->timestamp - first_hdr->timestamp),
(end_of_transmission_timestamp - first_hdr->timestamp),
(hdr->isResponse ? "Tag" : _YELLOW_("Rdr")),
line[j],
(j == num_lines - 1) ? crc : " ",
(j == num_lines - 1) ? explanation : ""
);
}
} else {
PrintAndLogEx(NORMAL, " | | |%-72s | %s| %s",
line[j],
(j == num_lines - 1) ? crc : " ",
(j == num_lines - 1) ? explanation : ""
);
line[j],
(j == num_lines - 1) ? crc : " ",
(j == num_lines - 1) ? explanation : ""
);
}
}
@ -683,11 +683,11 @@ int CmdTraceList(const char *Cmd) {
}
} else {
if (use_relative) {
if (use_relative) {
PrintAndLogEx(INFO, _YELLOW_("gap") " = time between transfers. " _YELLOW_("duration") " = duration of data transfer. " _YELLOW_("src") " = source of transfer");
} else {
} else {
PrintAndLogEx(INFO, _YELLOW_("start") " = start of start frame " _YELLOW_("end") " = end of frame. " _YELLOW_("src") " = source of transfer");
}
}
if (protocol == ISO_14443A || protocol == PROTO_MIFARE || protocol == MFDES || protocol == TOPAZ || protocol == LTO) {
if (use_us)
@ -736,9 +736,9 @@ int CmdTraceList(const char *Cmd) {
PrintAndLogEx(NORMAL, "");
if (use_relative) {
PrintAndLogEx(NORMAL, " Gap | Duration | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation");
} else {
if (use_relative) {
PrintAndLogEx(NORMAL, " Gap | Duration | Src | Data (! denotes parity error, ' denotes short bytes) | CRC | Annotation");
} else {
PrintAndLogEx(NORMAL, " Start | End | Src | Data (! denotes parity error) | CRC | Annotation");
}
PrintAndLogEx(NORMAL, "------------+------------+-----+-------------------------------------------------------------------------+-----+--------------------");

View file

@ -497,7 +497,7 @@ int NDEFDecodeAndPrint(uint8_t *ndef, size_t ndefLen, bool verbose) {
uint16_t len = ndefTLVGetLength(&ndef[indx], &indx);
PrintAndLogEx(SUCCESS, "--- " _CYAN_("NDEF Message") " ---");
if (len == 0) {
PrintAndLogEx(SUCCESS, "Found NDEF message w zero length");
PrintAndLogEx(SUCCESS, "Found NDEF message w zero length");
} else {
PrintAndLogEx(SUCCESS, "Found NDEF message (%d bytes)", len);
@ -505,7 +505,7 @@ int NDEFDecodeAndPrint(uint8_t *ndef, size_t ndefLen, bool verbose) {
if (res != PM3_SUCCESS)
return res;
}
indx += len;
break;
}

View file

@ -909,7 +909,7 @@ static int CmdPrefShow(const char *Cmd) {
if (session.preferences_loaded) {
char *fn = prefGetFilename();
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(INFO, "Using "_YELLOW_("%s"), fn);
PrintAndLogEx(INFO, "Using "_YELLOW_("%s"), fn);
free(fn);
} else {
PrintAndLogEx(ERR, "Preferences not loaded");

View file

@ -100,8 +100,8 @@ uint8_t GetPinSize(uint8_t *src) {
uint8_t c[] = {0x96, CARD_INS_PINSIZE, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
memcpy(c + 5, src, 8);
ExchangeAPDUSC(true, c, sizeof(c), false, true, resp, sizeof(resp), &resp_len);
if ( resp[resp_len - 2] == 0x90 && resp[resp_len - 1] == 0x00) {
if (resp[resp_len - 2] == 0x90 && resp[resp_len - 1] == 0x00) {
return resp[8];
}
return 0;

View file

@ -68,7 +68,7 @@ uint8_t reflect8(uint8_t b) {
}
// Reverse the bits in a byte with 4 operations (64-bit multiply, no division):
// Reverse the bits in a byte with 4 operations (64-bit multiply, no division):
/*
uint8_t reflect8(uint8_t b) {
return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;

View file

@ -207,7 +207,7 @@ hi_get_trace gt(
// 110 -- unused
// 111 -- FPGA_MAJOR_MODE_OFF
// 000 001 010 011 100 101 110 111
// 000 001 010 011 100 101 110 111
mux8 mux_ssp_clk (major_mode, ssp_clk, hr_ssp_clk, hs_ssp_clk, 1'b0, he_ssp_clk, hfl_ssp_clk, gt_ssp_clk, 1'b0, 1'b0);
mux8 mux_ssp_din (major_mode, ssp_din, hr_ssp_din, hs_ssp_din, 1'b0, he_ssp_din, hfl_ssp_din, gt_ssp_din, 1'b0, 1'b0);
mux8 mux_ssp_frame (major_mode, ssp_frame, hr_ssp_frame, hs_ssp_frame, 1'b0, he_ssp_frame, hfl_ssp_frame, gt_ssp_frame, 1'b0, 1'b0);

View file

@ -219,7 +219,7 @@ hi_get_trace gt(
// 110 -- unused
// 111 -- FPGA_MAJOR_MODE_OFF
// 000 001 010 011 100 101 110 111
// 000 001 010 011 100 101 110 111
mux8 mux_ssp_clk (major_mode, ssp_clk, hr_ssp_clk, hs_ssp_clk, hisn_ssp_clk, he_ssp_clk, hfl_ssp_clk, gt_ssp_clk, 1'b0, 1'b0);
mux8 mux_ssp_din (major_mode, ssp_din, hr_ssp_din, hs_ssp_din, hisn_ssp_din, he_ssp_din, hfl_ssp_din, gt_ssp_din, 1'b0, 1'b0);

View file

@ -176,7 +176,7 @@ reg [3:0] mod_detect_reset_time;
always @(negedge adc_clk)
begin
if (mod_type == `FPGA_HF_ISO14443A_READER_LISTEN)
if (mod_type == `FPGA_HF_ISO14443A_READER_LISTEN)
// (our) reader signal changes at negedge_cnt[3:0]=9, tag response expected to start n*16+4 ticks later, further delayed by
// 3 ticks ADC conversion. The maximum filter output (edge detected) will be detected after subcarrier zero crossing (+7 ticks).
// To allow some timing variances, we want to have the maximum filter outputs well within the detection window, i.e.
@ -516,7 +516,7 @@ begin
if(negedge_cnt[3:0] == 4'd0)
begin
// What do we communicate to the ARM
if(mod_type == `FPGA_HF_ISO14443A_TAGSIM_LISTEN)
if(mod_type == `FPGA_HF_ISO14443A_TAGSIM_LISTEN)
sendbit = after_hysteresis;
else if(mod_type == `FPGA_HF_ISO14443A_TAGSIM_MOD)
/* if(fdt_counter > 11'd772) sendbit = mod_sig_coil; // huh?
@ -550,7 +550,7 @@ wire sub_carrier;
assign sub_carrier = ~sub_carrier_cnt[3];
// in FPGA_HF_ISO14443A_READER_MOD: drop carrier for mod_sig_coil==1 (pause); in FPGA_HF_ISO14443A_READER_LISTEN: carrier always on; in other modes: carrier always off
assign pwr_hi = (ck_1356meg & (((mod_type == `FPGA_HF_ISO14443A_READER_MOD) & ~mod_sig_coil) || (mod_type == `FPGA_HF_ISO14443A_READER_LISTEN)));
assign pwr_hi = (ck_1356meg & (((mod_type == `FPGA_HF_ISO14443A_READER_MOD) & ~mod_sig_coil) || (mod_type == `FPGA_HF_ISO14443A_READER_LISTEN)));
// Enable HF antenna drivers:

View file

@ -59,7 +59,7 @@ reg [5:0] corr_i_cnt;
always @(negedge adc_clk)
begin
corr_i_cnt <= corr_i_cnt + 1;
end
end
// A couple of registers in which to accumulate the correlations. From the 64 samples
@ -67,7 +67,7 @@ end
// be safe to assume that a tag will not be able to modulate the carrier signal by more than 25%.
// 32 * 255 * 0,25 = 2040, which can be held in 11 bits. Add 1 bit for sign.
// Temporary we might need more bits. For the 212kHz subcarrier we could possible add 32 times the
// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits.
// maximum signal value before a first subtraction would occur. 32 * 255 = 8160 can be held in 13 bits.
// Add one bit for sign -> need 14 bit registers but final result will fit into 12 bits.
reg signed [13:0] corr_i_accum;
reg signed [13:0] corr_q_accum;
@ -87,12 +87,12 @@ begin
abs_ci <= corr_i_accum;
else
abs_ci <= -corr_i_accum;
if (corr_q_accum[13] == 1'b0)
abs_cq <= corr_q_accum;
else
abs_cq <= -corr_q_accum;
if (abs_ci > abs_cq)
begin
max_ci_cq <= abs_ci;
@ -120,7 +120,7 @@ begin
subcarrier_I = ~corr_i_cnt[3];
subcarrier_Q = ~(corr_i_cnt[3] ^ corr_i_cnt[2]);
end
else if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_212_KHZ)
else if (subcarrier_frequency == `FPGA_HF_READER_SUBCARRIER_212_KHZ)
begin
subcarrier_I = ~corr_i_cnt[5];
subcarrier_Q = ~(corr_i_cnt[5] ^ corr_i_cnt[4]);
@ -146,12 +146,12 @@ begin
// send amplitude plus 2 bits reader signal
corr_i_out <= corr_amplitude[13:6];
corr_q_out <= {corr_amplitude[5:0], after_hysteresis_prev_prev, after_hysteresis_prev};
end
end
else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ)
begin
// Send 7 most significant bits of in phase tag signal (signed), plus 1 bit reader signal
if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
corr_i_out <= {corr_i_accum[11:5], after_hysteresis_prev_prev};
else // truncate to maximum value
if (corr_i_accum[13] == 1'b0)
@ -160,7 +160,7 @@ begin
corr_i_out <= {7'b1000000, after_hysteresis_prev_prev};
// Send 7 most significant bits of quadrature phase tag signal (signed), plus 1 bit reader signal
if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
corr_q_out <= {corr_q_accum[11:5], after_hysteresis_prev};
else // truncate to maximum value
if (corr_q_accum[13] == 1'b0)
@ -173,12 +173,12 @@ begin
// send amplitude
corr_i_out <= {2'b00, corr_amplitude[13:8]};
corr_q_out <= corr_amplitude[7:0];
end
end
else if (minor_mode == `FPGA_HF_READER_MODE_RECEIVE_IQ)
begin
// Send 8 bits of in phase tag signal
if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111)
corr_i_out <= corr_i_accum[11:4];
else // truncate to maximum value
if (corr_i_accum[13] == 1'b0)
@ -187,7 +187,7 @@ begin
corr_i_out <= 8'b10000000;
// Send 8 bits of quadrature phase tag signal
if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
if (corr_q_accum[13:11] == 3'b000 || corr_q_accum[13:11] == 3'b111)
corr_q_out <= corr_q_accum[11:4];
else // truncate to maximum value
if (corr_q_accum[13] == 1'b0)
@ -199,7 +199,7 @@ begin
// for each Q/I pair report two reader signal samples when sniffing. Store the 1st.
after_hysteresis_prev_prev <= after_hysteresis;
// Initialize next correlation.
// Initialize next correlation.
// Both I and Q reference signals are high when corr_i_nct == 0. Therefore need to accumulate.
corr_i_accum <= $signed({1'b0, adc_d});
corr_q_accum <= $signed({1'b0, adc_d});
@ -223,7 +223,7 @@ begin
// Then the result from last time is serialized and send out to the ARM.
// We get one report each cycle, and each report is 16 bits, so the
// ssp_clk should be the adc_clk divided by 64/16 = 4.
// ssp_clk should be the adc_clk divided by 64/16 = 4.
// ssp_clk frequency = 13,56MHz / 4 = 3.39MHz
if (corr_i_cnt[1:0] == 2'b00)
@ -307,7 +307,7 @@ begin
pwr_hi = ck_1356meg & jam_signal;
pwr_oe4 = 1'b0;
end
else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ
else if (minor_mode == `FPGA_HF_READER_MODE_SNIFF_IQ
|| minor_mode == `FPGA_HF_READER_MODE_SNIFF_AMPLITUDE
|| minor_mode == `FPGA_HF_READER_MODE_SNIFF_PHASE)
begin // all off
@ -319,7 +319,7 @@ begin
pwr_hi = ck_1356meg;
pwr_oe4 = 1'b0;
end
end
end
// always on
assign pwr_oe1 = 1'b0;

View file

@ -42,7 +42,7 @@ assign pwr_lo = 1'b0; // LF antenna connected to GND
assign pwr_oe2 = 1'b0;
assign adc_clk = ck_1356meg;
assign dbg = ssp_frame;
assign dbg = ssp_frame;
// The comparator with hysteresis on the output from the peak detector.
reg after_hysteresis;
@ -67,7 +67,7 @@ begin
else
begin
has_been_low_for <= has_been_low_for + 1;
end
end
end
end
@ -95,7 +95,7 @@ begin
end
// Produce the byte framing signal; the phase of this signal
// Produce the byte framing signal; the phase of this signal
// is arbitrary, because it's just a bit stream in this module.
reg ssp_frame;
always @(negedge adc_clk)

View file

@ -51,7 +51,7 @@ static int zlib_compress(FILE *infile[], uint8_t num_infiles, FILE *outfile) {
fprintf(stderr,
"Input files too big (total > %li bytes). These are probably not PM3 FPGA config files.\n"
, num_infiles * FPGA_CONFIG_SIZE
);
);
for (uint16_t j = 0; j < num_infiles; j++) {
fclose(infile[j]);

View file

@ -702,4 +702,4 @@ D232A3D1
7F8185C6
00000000
00000000
00000000
00000000