make style

This commit is contained in:
Philippe Teuwen 2020-08-13 12:25:04 +02:00
commit 4ed57c7c4d
57 changed files with 878 additions and 878 deletions

View file

@ -113,7 +113,7 @@ static uint8_t bits2byte(uint8_t *bits, int length) {
byte |= bits[i];
if (i != length-1)
if (i != length - 1)
byte <<= 1;
}
@ -145,17 +145,17 @@ static void save_word(int pos, uint8_t bits[EM4X50_TAG_WORD]) {
// data and row parities
for (int i = 0; i < 4; i++) {
tag.sectors[pos][i] = bits2byte(&bits[9*i],8);
row_parity[i] = bits[9*i+8];
tag.sectors[pos][i] = bits2byte(&bits[9 * i], 8);
row_parity[i] = bits[9 * i + 8];
}
tag.sectors[pos][4] = bits2byte(row_parity,4);
tag.sectors[pos][4] = bits2byte(row_parity, 4);
// column parities
for (int i = 0; i < 8; i++)
col_parity[i] = bits[36+i];
col_parity[i] = bits[36 + i];
tag.sectors[pos][5] = bits2byte(col_parity,8);
tag.sectors[pos][5] = bits2byte(col_parity, 8);
// stop bit
tag.sectors[pos][6] = bits[44];
@ -311,13 +311,13 @@ static int get_next_bit(void) {
}
static uint32_t get_pulse_length(void) {
// iterates pulse length (low -> high -> low)
uint8_t sample = 0;
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
while (sample > gLow)
sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
@ -333,20 +333,20 @@ static uint32_t get_pulse_length(void) {
}
static bool check_pulse_length(uint32_t pl, int length) {
// check if pulse length <pl> corresponds to given length <length>
if ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) &
(pl <= T0 * (length + EM4X50_TAG_TOLERANCE)))
(pl <= T0 * (length + EM4X50_TAG_TOLERANCE)))
return true;
else
return false;
}
static void em4x50_send_bit(int bit) {
// send single bit according to EM4x50 application note and datasheet
// reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
@ -361,13 +361,13 @@ static void em4x50_send_bit(int bit) {
// half of bit period
HIGH(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD);
// disable modulation for second half of bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
} else {
// bit = "1" means disable modulation for full bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
@ -377,20 +377,20 @@ static void em4x50_send_bit(int bit) {
static void em4x50_send_byte(uint8_t byte) {
// send byte (without parity)
for (int i = 0; i < 8; i++)
em4x50_send_bit((byte >> (7-i)) & 1);
em4x50_send_bit((byte >> (7 - i)) & 1);
}
static void em4x50_send_byte_with_parity(uint8_t byte) {
// send byte followed by its (equal) parity bit
int parity = 0, bit = 0;
for (int i = 0; i < 8; i++) {
bit = (byte >> (7-i)) & 1;
bit = (byte >> (7 - i)) & 1;
em4x50_send_bit(bit);
parity ^= bit;
}
@ -399,12 +399,12 @@ static void em4x50_send_byte_with_parity(uint8_t byte) {
}
static void em4x50_send_word(const uint8_t bytes[4]) {
// send 32 bit word with parity bits according to EM4x50 datasheet
for (int i = 0; i < 4; i++)
em4x50_send_byte_with_parity(bytes[i]);
// send column parities
em4x50_send_byte(bytes[0] ^ bytes[1] ^ bytes[2] ^ bytes[3]);
@ -413,70 +413,70 @@ static void em4x50_send_word(const uint8_t bytes[4]) {
}
static bool find_single_listen_window(void) {
// find single listen window
int cnt_pulses = 0;
while (cnt_pulses < EM4X50_T_WAITING_FOR_SNGLLIW) {
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// listen window found
return true;
}
} else {
cnt_pulses++;
}
}
return false;
}
static bool find_double_listen_window(bool bcommand) {
// find two successive listen windows that indicate the beginning of
// data transmission
// double listen window to be detected within 1600 pulses -> worst case
// reason: first detectable double listen window after 34 words
// -> 34 words + 34 single listen windows -> about 1600 pulses
int cnt_pulses = 0;
while (cnt_pulses < EM4X50_T_WAITING_FOR_DBLLIW) {
// identification of listen window is done via evaluation of
// pulse lengths
if (check_pulse_length(get_pulse_length(), 3 * EM4X50_T_TAG_FULL_PERIOD)) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// first listen window found
if (bcommand) {
// data transmission from card has to be stopped, because
// a commamd shall be issued
// unfortunately the posititon in listen window (where
// command request has to be sent) has gone, so if a
// second window follows - sync on this to issue a command
// skip the next bit...
wait_timer(FPGA_TIMER_0, T0 * EM4X50_T_TAG_FULL_PERIOD);
// ...and check if the following bit does make sense
// (if not it is the correct position within the second
// listen window)
if (get_next_bit() == EM4X50_BIT_OTHER) {
// send RM for request mode
em4x50_send_bit(0);
em4x50_send_bit(0);
@ -498,47 +498,47 @@ static bool find_double_listen_window(bool bcommand) {
cnt_pulses++;
}
}
return false;
}
static bool find_em4x50_tag(void) {
// function is used to check wether a tag on the proxmark is an
// EM4x50 tag or not -> speed up "lf search" process
return (find_single_listen_window());
}
static bool request_receive_mode(void) {
// To issue a command we have to find a listen window first.
// Because identification and sychronization at the same time is not
// possible when using pulse lengths a double listen window is used.
bool bcommand = true;
return find_double_listen_window(bcommand);
}
static bool check_ack(bool bliw) {
// returns true if signal structue corresponds to ACK, anything else is
// counted as NAK (-> false)
// Only relevant for pasword writing function:
// If <bliw> is true then within the single listen window right after the
// ack signal a RM request has to be sent.
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 4 * EM4X50_T_TAG_FULL_PERIOD) {
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// The received signal is either ACK or NAK.
if (check_pulse_length(get_pulse_length(), 2 * EM4X50_T_TAG_FULL_PERIOD)) {
// Now the signal must be ACK.
if (!bliw) {
@ -546,17 +546,17 @@ static bool check_ack(bool bliw) {
return true;
} else {
// send RM request after ack signal
// wait for 2 bits (remaining "bit" of ACK signal + first
// "bit" of listen window)
wait_timer(FPGA_TIMER_0, T0 * 2 * EM4X50_T_TAG_FULL_PERIOD);
// check for listen window (if first bit cannot be inerpreted
// as a valid bit it must belong to a listen window)
if (get_next_bit() == EM4X50_BIT_OTHER) {
// send RM for request mode
em4x50_send_bit(0);
em4x50_send_bit(0);
@ -565,7 +565,7 @@ static bool check_ack(bool bliw) {
}
}
} else {
// It's NAK -> stop searching
break;
}
@ -580,7 +580,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// decodes one word by evaluating pulse lengths and previous bit;
// word must have 45 bits in total:
// 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit
bool bbitchange = false;
int i = 0;
uint32_t pl = 0;
@ -599,7 +599,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
bbitchange = true;
} else {
// pulse length = 2.5
bits[0] = 0;
bits[1] = 1;
@ -609,35 +609,35 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// identify remaining bits based on pulse lengths
// between two listen windows only pulse lengths of 1, 1.5 and 2 are possible
while (true) {
i++;
pl = get_pulse_length();
if (check_pulse_length(pl, EM4X50_T_TAG_FULL_PERIOD)) {
// pulse length = 1 -> keep former bit value
bits[i] = bits[i-1];
bits[i] = bits[i - 1];
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_HALF_PERIOD)) {
// pulse length = 1.5 -> decision on bit change
if (bbitchange) {
// if number of pulse lengths with 1.5 periods is even -> add bit
bits[i] = (bits[i-1] == 1) ? 1 : 0;
bits[i] = (bits[i - 1] == 1) ? 1 : 0;
// pulse length of 1.5 changes bit value
bits[i+1] = (bits[i] == 1) ? 0 : 1;
bits[i + 1] = (bits[i] == 1) ? 0 : 1;
i++;
// next time add only one bit
bbitchange = false;
} else {
bits[i] = (bits[i-1] == 1) ? 0 : 1;
bits[i] = (bits[i - 1] == 1) ? 0 : 1;
// next time two bits have to be added
bbitchange = true;
}
@ -646,7 +646,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// pulse length of 2 means: adding 2 bits "01"
bits[i] = 0;
bits[i+1] = 1;
bits[i + 1] = 1;
i++;
} else if (check_pulse_length(pl, 3 * EM4X50_T_TAG_FULL_PERIOD)) {
@ -654,7 +654,7 @@ static int get_word_from_bitstream(uint8_t bits[EM4X50_TAG_WORD]) {
// pulse length of 3 indicates listen window -> clear last
// bit (= 0) and return
return --i;
}
}
}
@ -667,8 +667,8 @@ static bool login(uint8_t password[4]) {
// simple login to EM4x50,
// used in operations that require authentication
if (request_receive_mode ()) {
if (request_receive_mode()) {
// send login command
em4x50_send_byte_with_parity(EM4X50_COMMAND_LOGIN);
@ -679,12 +679,12 @@ static bool login(uint8_t password[4]) {
// check if ACK is returned
if (check_ack(false))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
@ -695,18 +695,18 @@ static bool login(uint8_t password[4]) {
static bool reset(void) {
// resets EM4x50 tag (used by write function)
if (request_receive_mode ()) {
if (request_receive_mode()) {
// send login command
em4x50_send_byte_with_parity(EM4X50_COMMAND_RESET);
if (check_ack(false))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
@ -717,10 +717,10 @@ static bool reset(void) {
//==============================================================================
static bool standard_read(int *now) {
// reads data that tag transmits when exposed to reader field
// (standard read mode); number of read words is saved in <now>
int fwr = *now;
uint8_t bits[EM4X50_TAG_WORD] = {0};
@ -733,23 +733,23 @@ static bool standard_read(int *now) {
// number of detected words
*now -= fwr;
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("didn't find a listen window");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("didn't find a listen window");
}
return false;
}
static bool selective_read(uint8_t addresses[4]) {
// reads from "first word read" (fwr = addresses[3]) to "last word read"
// (lwr = addresses[2])
// result is verified by "standard read mode"
int fwr = addresses[3]; // first word read
int lwr = addresses[2]; // last word read
int now = fwr; // number of words
@ -764,26 +764,26 @@ static bool selective_read(uint8_t addresses[4]) {
// look for ACK sequence
if (check_ack(false))
// save and verify via standard read mode (compare number of words)
if (standard_read(&now))
if (now == (lwr - fwr + 1))
return true;
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
void em4x50_info(em4x50_data_t *etd) {
// collects as much information as possible via selective read mode
// if no password is given -> try with standard password "0x00000000"
// otherwise continue without login
bool bsuccess = false, blogin = false;
uint8_t status = 0;
uint8_t addresses[] = {0x00, 0x00, 0x21, 0x00}; // fwr = 0, lwr = 33
@ -801,28 +801,28 @@ void em4x50_info(em4x50_data_t *etd) {
blogin = login(etd->password);
} else {
// if no password is given, try to login with "0x00000000"
blogin = login(password);
}
bsuccess = selective_read(addresses);
}
status = (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
}
void em4x50_read(em4x50_data_t *etd) {
// reads in two different ways:
// - using "selective read mode" -> bidirectional communication
// - using "standard read mode" -> unidirectional communication (read
// data that tag transmits "voluntarily")
bool bsuccess = false, blogin = false;
int now = 0;
uint8_t status = 0;
@ -830,32 +830,32 @@ void em4x50_read(em4x50_data_t *etd) {
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
if (etd->addr_given) {
// selective read mode
// try to login with given password
if (etd->pwd_given)
blogin = login(etd->password);
// only one word has to be read -> first word read = last word read
addresses[2] = addresses[3] = etd->address;
bsuccess = selective_read(addresses);
} else {
// standard read mode
bsuccess = standard_read(&now);
}
}
status = (now << 2) + (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
}
@ -867,7 +867,7 @@ void em4x50_read(em4x50_data_t *etd) {
static bool write(uint8_t word[4], uint8_t address) {
// writes <word> to specified <address>
if (request_receive_mode()) {
// send write command
@ -893,8 +893,8 @@ static bool write(uint8_t word[4], uint8_t address) {
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
@ -903,7 +903,7 @@ static bool write(uint8_t word[4], uint8_t address) {
static bool write_password(uint8_t password[4], uint8_t new_password[4]) {
// changes password from <password> to <new_password>
if (request_receive_mode()) {
// send write password command
@ -932,36 +932,36 @@ static bool write_password(uint8_t password[4], uint8_t new_password[4]) {
}
} else {
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
if (DBGLEVEL >= DBG_DEBUG)
Dbprintf("error in command request");
}
return false;
}
void em4x50_write(em4x50_data_t *etd) {
// write operation process for EM4x50 tag,
// single word is written to given address, verified by selective read operation
bool bsuccess = false, blogin = false;
uint8_t status = 0;
uint8_t word[4] = {0x00, 0x00, 0x00, 0x00};
uint8_t addresses[4] = {0x00, 0x00, 0x00, 0x00};
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// reorder word according to datasheet
msb2lsb_word(etd->word);
// if password is given try to login first
if (etd->pwd_given)
blogin = login(etd->password);
// write word to given address
if (write(etd->word, etd->address)) {
@ -982,7 +982,7 @@ void em4x50_write(em4x50_data_t *etd) {
word[2] = tag.sectors[etd->address][2];
word[3] = tag.sectors[etd->address][3];
msb2lsb_word(word);
bsuccess = true;
for (int i = 0; i < 4; i++)
bsuccess &= (word[i] == etd->word[i]) ? true : false;
@ -993,20 +993,20 @@ void em4x50_write(em4x50_data_t *etd) {
}
status = (bsuccess << 1) + blogin;
lf_finalize();
reply_ng(CMD_ACK, status, (uint8_t *)tag.sectors, 238);
}
void em4x50_write_password(em4x50_data_t *etd) {
// sinmple change of password
bool bsuccess = false;
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
@ -1021,19 +1021,19 @@ void em4x50_write_password(em4x50_data_t *etd) {
}
void em4x50_wipe(em4x50_data_t *etd) {
// set all data of EM4x50 tag to 0x0 including password
bool bsuccess = false;
uint8_t zero[4] = {0, 0, 0, 0};
uint8_t addresses[4] = {0, 0, EM4X50_NO_WORDS - 3, 1};
init_tag();
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login first
if (login(etd->password)) {
@ -1058,9 +1058,9 @@ void em4x50_wipe(em4x50_data_t *etd) {
bsuccess &= (tag.sectors[i][j] == 0) ? true : false;
}
if (bsuccess) {
// so far everything is fine
// last task: reset password
if (login(etd->password))