extracted load keys and mfc tag memory based on @didierA and @alejandro12120 PR.

This commit is contained in:
iceman1001 2023-03-30 22:40:26 +02:00
commit 4d28c852ac

View file

@ -38,15 +38,22 @@
#include "wiegand_formats.h" #include "wiegand_formats.h"
#include "wiegand_formatutils.h" #include "wiegand_formatutils.h"
#define MIFARE_4K_MAXBLOCK 256 #define MIFARE_4K_MAXBLOCK 256
#define MIFARE_2K_MAXBLOCK 128 #define MIFARE_2K_MAXBLOCK 128
#define MIFARE_1K_MAXBLOCK 64 #define MIFARE_1K_MAXBLOCK 64
#define MIFARE_MINI_MAXBLOCK 20 #define MIFARE_MINI_MAXBLOCK 20
#define MIFARE_MINI_MAXSECTOR 5 #define MIFARE_4K_MAXSECTOR 40
#define MIFARE_1K_MAXSECTOR 16 #define MIFARE_2K_MAXSECTOR 32
#define MIFARE_2K_MAXSECTOR 32 #define MIFARE_1K_MAXSECTOR 16
#define MIFARE_4K_MAXSECTOR 40 #define MIFARE_MINI_MAXSECTOR 5
#define MIFARE_4K_MAX_BYTES 4096
#define MIFARE_2K_MAX_BYTES 2048
#define MIFARE_1K_MAX_BYTES 1024
#define MIFARE_MINI_MAX_BYTES 320
#define MIFARE_KEY_SIZE 6
static int CmdHelp(const char *Cmd); static int CmdHelp(const char *Cmd);
@ -319,9 +326,9 @@ static int mf_print_keys(uint16_t n, uint8_t *d) {
for (uint16_t i = 0; i < n; i++) { for (uint16_t i = 0; i < n; i++) {
if (mfIsSectorTrailer(i)) { if (mfIsSectorTrailer(i)) {
e_sector[mfSectorNum(i)].foundKey[0] = 1; e_sector[mfSectorNum(i)].foundKey[0] = 1;
e_sector[mfSectorNum(i)].Key[0] = bytes_to_num(d + (i * MFBLOCK_SIZE), 6); e_sector[mfSectorNum(i)].Key[0] = bytes_to_num(d + (i * MFBLOCK_SIZE), MIFARE_KEY_SIZE);
e_sector[mfSectorNum(i)].foundKey[1] = 1; e_sector[mfSectorNum(i)].foundKey[1] = 1;
e_sector[mfSectorNum(i)].Key[1] = bytes_to_num(d + (i * MFBLOCK_SIZE) + 10, 6); e_sector[mfSectorNum(i)].Key[1] = bytes_to_num(d + (i * MFBLOCK_SIZE) + 10, MIFARE_KEY_SIZE);
} }
} }
printKeyTable(sectors, e_sector); printKeyTable(sectors, e_sector);
@ -441,6 +448,191 @@ static int mf_analyse_st_block(uint8_t blockno, uint8_t *block, bool force){
return PM3_SUCCESS; return PM3_SUCCESS;
} }
/* Reads data from tag
* @param card: (output) card info
* @param carddata: (output) card data
* @param numSectors: size of the card
* @param keyFileName: filename containing keys or NULL.
*/
static int mfc_read_tag(iso14a_card_select_t *card, uint8_t *carddata, uint8_t numSectors, char *keyfn){
// Select card to get UID/UIDLEN/ATQA/SAK information
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT, 0, 0, NULL, 0);
PacketResponseNG resp;
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500) == false) {
PrintAndLogEx(WARNING, "iso14443a card select timeout");
return PM3_ETIMEOUT;
}
uint64_t select_status = resp.oldarg[0];
if (select_status == 0) {
PrintAndLogEx(WARNING, "iso14443a card select failed");
return PM3_SUCCESS;
}
// store card info
memcpy(card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t));
char *fptr = NULL;
if (keyfn == NULL || keyfn[0] == '\0') {
fptr = GenerateFilename("hf-mf-", "-key.bin");
if (fptr == NULL)
return PM3_ESOFT;
keyfn = fptr ;
}
PrintAndLogEx(INFO, "Using... %s", keyfn);
size_t alen = 0, blen = 0;
uint8_t *keyA, *keyB;
if (loadFileBinaryKey(keyfn, "", (void**)&keyA, (void**)&keyB, &alen, &blen) != PM3_SUCCESS) {
free(fptr);
return PM3_ESOFT;
}
PrintAndLogEx(INFO, "Reading sector access bits...");
PrintAndLogEx(INFO, "." NOLF);
uint8_t rights[40][4] = {0};
mf_readblock_t payload;
uint8_t current_key;
for (uint8_t sectorNo = 0; sectorNo < numSectors; sectorNo++) {
current_key = MF_KEY_A;
for (uint8_t tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) {
PrintAndLogEx(NORMAL, "." NOLF);
fflush(stdout);
payload.blockno = mfFirstBlockOfSector(sectorNo) + mfNumBlocksPerSector(sectorNo) - 1;
payload.keytype = current_key;
memcpy(payload.key, (current_key == MF_KEY_A) ? keyA + (sectorNo * MIFARE_KEY_SIZE) : keyB + (sectorNo * MIFARE_KEY_SIZE), MIFARE_KEY_SIZE);
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
if (WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) {
uint8_t *data = resp.data.asBytes;
if (resp.status == PM3_SUCCESS) {
rights[sectorNo][0] = ((data[7] & 0x10) >> 2) | ((data[8] & 0x1) << 1) | ((data[8] & 0x10) >> 4); // C1C2C3 for data area 0
rights[sectorNo][1] = ((data[7] & 0x20) >> 3) | ((data[8] & 0x2) << 0) | ((data[8] & 0x20) >> 5); // C1C2C3 for data area 1
rights[sectorNo][2] = ((data[7] & 0x40) >> 4) | ((data[8] & 0x4) >> 1) | ((data[8] & 0x40) >> 6); // C1C2C3 for data area 2
rights[sectorNo][3] = ((data[7] & 0x80) >> 5) | ((data[8] & 0x8) >> 2) | ((data[8] & 0x80) >> 7); // C1C2C3 for sector trailer
break;
} else if (tries == (MIFARE_SECTOR_RETRY / 2)) { // after half unsuccessful tries, give key B a go
PrintAndLogEx(WARNING, "\ntrying with key B instead...");
current_key = MF_KEY_B;
PrintAndLogEx(INFO, "." NOLF);
} else if (tries == (MIFARE_SECTOR_RETRY - 1)) { // on last try set defaults
PrintAndLogEx(FAILED, "\ncould not get access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
} else {
PrintAndLogEx(FAILED, "\ncommand execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
}
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, "Finished reading sector access bits");
PrintAndLogEx(INFO, "Dumping all blocks from card...");
for (uint8_t sectorNo = 0; sectorNo < numSectors; sectorNo++) {
for (uint8_t blockNo = 0; blockNo < mfNumBlocksPerSector(sectorNo); blockNo++) {
bool received = false;
current_key = MF_KEY_A;
uint8_t data_area = (sectorNo < 32) ? blockNo : blockNo / 5;
if (rights[sectorNo][data_area] == 0x07) { // no key would work
PrintAndLogEx(WARNING, "access rights do not allow reading of sector %2d block %3d, skipping", sectorNo, blockNo);
continue;
}
for (uint8_t tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) {
if (mfIsSectorTrailer(blockNo)) {
// sector trailer. At least the Access Conditions can always be read with key A.
payload.blockno = mfFirstBlockOfSector(sectorNo) + blockNo;
payload.keytype = current_key;
memcpy(payload.key, (current_key == MF_KEY_A) ? keyA + (sectorNo * MIFARE_KEY_SIZE) : keyB + (sectorNo * MIFARE_KEY_SIZE), MIFARE_KEY_SIZE);
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500);
} else {
// data block. Check if it can be read with key A or key B
if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) {
// only key B would work
payload.blockno = mfFirstBlockOfSector(sectorNo) + blockNo;
payload.keytype = MF_KEY_B;
memcpy(payload.key, keyB + (sectorNo * MIFARE_KEY_SIZE), MIFARE_KEY_SIZE);
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500);
} else {
// key A would work
payload.blockno = mfFirstBlockOfSector(sectorNo) + blockNo;
payload.keytype = current_key;
memcpy(payload.key, (current_key == MF_KEY_A) ? keyA + (sectorNo * MIFARE_KEY_SIZE) : keyB + (sectorNo * MIFARE_KEY_SIZE), MIFARE_KEY_SIZE);
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500);
}
}
if (received) {
if (resp.status == PM3_SUCCESS) {
// break the re-try loop
break;
}
if ((current_key == MF_KEY_A) && (tries == (MIFARE_SECTOR_RETRY / 2))) {
// Half the tries failed with key A. Swap for key B
current_key = MF_KEY_B;
// clear out keyA since it failed.
memset(keyA + (sectorNo * MIFARE_KEY_SIZE), 0x00, MIFARE_KEY_SIZE);
}
}
}
if (received) {
if (resp.status == PM3_SUCCESS) {
uint8_t *data = resp.data.asBytes;
if (mfIsSectorTrailer(blockNo)) {
// sector trailer. Fill in the keys.
memcpy(data , keyA + (sectorNo * MIFARE_KEY_SIZE), MIFARE_KEY_SIZE);
memcpy(data + 10, keyB + (sectorNo * MIFARE_KEY_SIZE), MIFARE_KEY_SIZE);
}
memcpy(carddata + (MFBLOCK_SIZE * (mfFirstBlockOfSector(sectorNo) + blockNo)), data, MFBLOCK_SIZE);
PrintAndLogEx(SUCCESS, "successfully read block %2d of sector %2d.", blockNo, sectorNo);
} else {
PrintAndLogEx(FAILED, "could not read block %2d of sector %2d", blockNo, sectorNo);
}
} else {
PrintAndLogEx(WARNING, "command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo);
}
}
}
free(fptr);
free(keyA);
free(keyB);
PrintAndLogEx(SUCCESS, "\nSucceeded in dumping all blocks");
return PM3_SUCCESS ;
}
static int CmdHF14AMfAcl(const char *Cmd) { static int CmdHF14AMfAcl(const char *Cmd) {
CLIParserContext *ctx; CLIParserContext *ctx;
CLIParserInit(&ctx, "hf mf acl", CLIParserInit(&ctx, "hf mf acl",
@ -820,6 +1012,7 @@ static int CmdHF14AMfDump(const char *Cmd) {
arg_lit0(NULL, "1k", "MIFARE Classic 1k / S50 (def)"), arg_lit0(NULL, "1k", "MIFARE Classic 1k / S50 (def)"),
arg_lit0(NULL, "2k", "MIFARE Classic/Plus 2k"), arg_lit0(NULL, "2k", "MIFARE Classic/Plus 2k"),
arg_lit0(NULL, "4k", "MIFARE Classic 4k / S70"), arg_lit0(NULL, "4k", "MIFARE Classic 4k / S70"),
arg_lit0(NULL, "ns", "no save to file"),
arg_param_end arg_param_end
}; };
CLIExecWithReturn(ctx, Cmd, argtable, true); CLIExecWithReturn(ctx, Cmd, argtable, true);
@ -836,7 +1029,7 @@ static int CmdHF14AMfDump(const char *Cmd) {
bool m1 = arg_get_lit(ctx, 4); bool m1 = arg_get_lit(ctx, 4);
bool m2 = arg_get_lit(ctx, 5); bool m2 = arg_get_lit(ctx, 5);
bool m4 = arg_get_lit(ctx, 6); bool m4 = arg_get_lit(ctx, 6);
bool nosave = arg_get_lit(ctx, 7);
CLIParserFree(ctx); CLIParserFree(ctx);
uint64_t t1 = msclock(); uint64_t t1 = msclock();
@ -850,244 +1043,68 @@ static int CmdHF14AMfDump(const char *Cmd) {
} }
uint8_t numSectors = MIFARE_1K_MAXSECTOR; uint8_t numSectors = MIFARE_1K_MAXSECTOR;
uint16_t bytes = MIFARE_1K_MAX_BYTES;
if (m0) { if (m0) {
numSectors = MIFARE_MINI_MAXSECTOR; numSectors = MIFARE_MINI_MAXSECTOR;
bytes = MIFARE_MINI_MAX_BYTES;
} else if (m1) { } else if (m1) {
numSectors = MIFARE_1K_MAXSECTOR; numSectors = MIFARE_1K_MAXSECTOR;
bytes = MIFARE_1K_MAX_BYTES;
} else if (m2) { } else if (m2) {
numSectors = MIFARE_2K_MAXSECTOR; numSectors = MIFARE_2K_MAXSECTOR;
} else if (m4) { bytes = MIFARE_2K_MAX_BYTES;
} else if (m4) {
numSectors = MIFARE_4K_MAXSECTOR; numSectors = MIFARE_4K_MAXSECTOR;
bytes = MIFARE_4K_MAX_BYTES;
} else { } else {
PrintAndLogEx(WARNING, "Please specify a MIFARE Type"); PrintAndLogEx(WARNING, "Please specify a MIFARE Type");
return PM3_EINVARG; return PM3_EINVARG;
} }
uint8_t sectorNo, blockNo; // read card
uint8_t keyA[40][6]; iso14a_card_select_t card ;
uint8_t keyB[40][6]; uint8_t *mem = calloc(MIFARE_4K_MAXBLOCK * MFBLOCK_SIZE, sizeof(uint8_t));
uint8_t rights[40][4]; if (mem == NULL) {
uint8_t carddata[256][16]; PrintAndLogEx(ERR, "failed to allocate memory");
return PM3_EMALLOC;
FILE *f;
PacketResponseNG resp;
char *fptr;
// Select card to get UID/UIDLEN/ATQA/SAK information
clearCommandBuffer();
SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT, 0, 0, NULL, 0);
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500) == false) {
PrintAndLogEx(WARNING, "iso14443a card select timeout");
return PM3_ETIMEOUT;
} }
int res = mfc_read_tag(&card, mem, numSectors, keyFilename);
uint64_t select_status = resp.oldarg[0]; if (res != PM3_SUCCESS) {
if (select_status == 0) { free(mem);
PrintAndLogEx(WARNING, "iso14443a card select failed"); return res;
return PM3_SUCCESS;
}
// store card info
iso14a_card_select_t card;
memcpy(&card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t));
if (keyFilename[0] == 0x00) {
fptr = GenerateFilename("hf-mf-", "-key.bin");
if (fptr == NULL)
return PM3_ESOFT;
strncpy(keyFilename, fptr, sizeof(keyFilename) - 1);
free(fptr);
}
if ((f = fopen(keyFilename, "rb")) == NULL) {
PrintAndLogEx(WARNING, "Could not find file " _YELLOW_("%s"), keyFilename);
return PM3_EFILE;
}
PrintAndLogEx(INFO, "Using `" _YELLOW_("%s") "`", keyFilename);
// Read keys A from file
size_t bytes_read;
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
bytes_read = fread(keyA[sectorNo], 1, MFKEY_SIZE, f);
if (bytes_read != MFKEY_SIZE) {
PrintAndLogEx(ERR, "File reading error.");
fclose(f);
return PM3_EFILE;
}
}
// Read keys B from file
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
bytes_read = fread(keyB[sectorNo], 1, MFKEY_SIZE, f);
if (bytes_read != MFKEY_SIZE) {
PrintAndLogEx(ERR, "File reading error.");
fclose(f);
return PM3_EFILE;
}
}
fclose(f);
PrintAndLogEx(INFO, "Reading sector access bits...");
PrintAndLogEx(INFO, "." NOLF);
uint8_t tries;
mf_readblock_t payload;
uint8_t current_key;
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
current_key = MF_KEY_A;
for (tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) {
PrintAndLogEx(NORMAL, "." NOLF);
fflush(stdout);
payload.blockno = mfFirstBlockOfSector(sectorNo) + mfNumBlocksPerSector(sectorNo) - 1;
payload.keytype = current_key;
memcpy(payload.key, current_key == MF_KEY_A ? keyA[sectorNo] : keyB[sectorNo], sizeof(payload.key));
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
if (WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) {
uint8_t *data = resp.data.asBytes;
if (resp.status == PM3_SUCCESS) {
rights[sectorNo][0] = ((data[7] & 0x10) >> 2) | ((data[8] & 0x1) << 1) | ((data[8] & 0x10) >> 4); // C1C2C3 for data area 0
rights[sectorNo][1] = ((data[7] & 0x20) >> 3) | ((data[8] & 0x2) << 0) | ((data[8] & 0x20) >> 5); // C1C2C3 for data area 1
rights[sectorNo][2] = ((data[7] & 0x40) >> 4) | ((data[8] & 0x4) >> 1) | ((data[8] & 0x40) >> 6); // C1C2C3 for data area 2
rights[sectorNo][3] = ((data[7] & 0x80) >> 5) | ((data[8] & 0x8) >> 2) | ((data[8] & 0x80) >> 7); // C1C2C3 for sector trailer
break;
} else if (tries == (MIFARE_SECTOR_RETRY / 2)) { // after half unsuccessful tries, give key B a go
PrintAndLogEx(WARNING, "\ntrying with key B instead...");
current_key = MF_KEY_B;
PrintAndLogEx(INFO, "." NOLF);
} else if (tries == (MIFARE_SECTOR_RETRY - 1)) { // on last try set defaults
PrintAndLogEx(FAILED, "\ncould not get access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
} else {
PrintAndLogEx(FAILED, "\ncommand execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo);
rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00;
rights[sectorNo][3] = 0x01;
}
}
}
PrintAndLogEx(NORMAL, "");
PrintAndLogEx(SUCCESS, "Finished reading sector access bits");
PrintAndLogEx(INFO, "Dumping all blocks from card...");
for (sectorNo = 0; sectorNo < numSectors; sectorNo++) {
for (blockNo = 0; blockNo < mfNumBlocksPerSector(sectorNo); blockNo++) {
bool received = false;
current_key = MF_KEY_A;
uint8_t data_area = (sectorNo < 32) ? blockNo : blockNo / 5;
if (rights[sectorNo][data_area] == 0x07) { // no key would work
PrintAndLogEx(WARNING, "access rights do not allow reading of sector %2d block %3d, skipping", sectorNo, blockNo);
continue;
}
for (tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) {
if (blockNo == mfNumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A.
payload.blockno = mfFirstBlockOfSector(sectorNo) + blockNo;
payload.keytype = current_key;
memcpy(payload.key, current_key == MF_KEY_A ? keyA[sectorNo] : keyB[sectorNo], sizeof(payload.key));
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500);
} else { // data block. Check if it can be read with key A or key B
if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work
payload.blockno = mfFirstBlockOfSector(sectorNo) + blockNo;
payload.keytype = MF_KEY_B;
memcpy(payload.key, keyB[sectorNo], sizeof(payload.key));
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500);
} else { // key A would work
payload.blockno = mfFirstBlockOfSector(sectorNo) + blockNo;
payload.keytype = current_key;
memcpy(payload.key, current_key == MF_KEY_A ? keyA[sectorNo] : keyB[sectorNo], sizeof(payload.key));
clearCommandBuffer();
SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t));
received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500);
}
}
if (received) {
if (resp.status == PM3_SUCCESS) {
// break the re-try loop
break;
}
if ((current_key == MF_KEY_A) && (tries == (MIFARE_SECTOR_RETRY / 2))) {
// Half the tries failed with key A. Swap for key B
current_key = MF_KEY_B;
// clear out keyA since it failed.
memset(keyA[sectorNo], 0x00, sizeof(keyA[sectorNo]));
}
}
}
if (received) {
uint8_t *data = resp.data.asBytes;
if (blockNo == mfNumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys.
data[0] = (keyA[sectorNo][0]);
data[1] = (keyA[sectorNo][1]);
data[2] = (keyA[sectorNo][2]);
data[3] = (keyA[sectorNo][3]);
data[4] = (keyA[sectorNo][4]);
data[5] = (keyA[sectorNo][5]);
data[10] = (keyB[sectorNo][0]);
data[11] = (keyB[sectorNo][1]);
data[12] = (keyB[sectorNo][2]);
data[13] = (keyB[sectorNo][3]);
data[14] = (keyB[sectorNo][4]);
data[15] = (keyB[sectorNo][5]);
}
if (resp.status == PM3_SUCCESS) {
memcpy(carddata[mfFirstBlockOfSector(sectorNo) + blockNo], data, 16);
PrintAndLogEx(SUCCESS, "successfully read block %2d of sector %2d.", blockNo, sectorNo);
} else {
PrintAndLogEx(FAILED, "could not read block %2d of sector %2d", blockNo, sectorNo);
}
} else {
PrintAndLogEx(WARNING, "command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo);
}
}
} }
PrintAndLogEx(SUCCESS, "time: %" PRIu64 " seconds\n", (msclock() - t1) / 1000); PrintAndLogEx(SUCCESS, "time: %" PRIu64 " seconds\n", (msclock() - t1) / 1000);
PrintAndLogEx(SUCCESS, "\nSucceeded in dumping all blocks"); // Skip saving card data to file
if (nosave) {
PrintAndLogEx(INFO, "Called with no save option");
free(mem);
return PM3_SUCCESS;
}
// Save to file
if (strlen(dataFilename) < 1) { if (strlen(dataFilename) < 1) {
fptr = GenerateFilename("hf-mf-", "-dump"); char *fptr = GenerateFilename("hf-mf-", "-dump");
if (fptr == NULL) if (fptr == NULL) {
free(mem);
return PM3_ESOFT; return PM3_ESOFT;
}
strcpy(dataFilename, fptr); strcpy(dataFilename, fptr);
free(fptr); free(fptr);
} }
uint16_t bytes = 16 * (mfFirstBlockOfSector(numSectors - 1) + mfNumBlocksPerSector(numSectors - 1)); saveFile(dataFilename, ".bin", mem, bytes);
saveFileEML(dataFilename, mem, bytes, MFBLOCK_SIZE);
saveFile(dataFilename, ".bin", (uint8_t *)carddata, bytes);
saveFileEML(dataFilename, (uint8_t *)carddata, bytes, MFBLOCK_SIZE);
iso14a_mf_extdump_t xdump; iso14a_mf_extdump_t xdump;
xdump.card_info = card; xdump.card_info = card;
xdump.dump = (uint8_t *)carddata; xdump.dump = mem;
xdump.dumplen = bytes; xdump.dumplen = bytes;
saveFileJSON(dataFilename, jsfCardMemory, (uint8_t *)&xdump, sizeof(xdump), NULL); saveFileJSON(dataFilename, jsfCardMemory, (uint8_t *)&xdump, sizeof(xdump), NULL);
free(mem);
return PM3_SUCCESS; return PM3_SUCCESS;
} }
@ -6892,11 +6909,11 @@ static int CmdHF14AMfView(const char *Cmd) {
} }
uint16_t block_cnt = MIN(MIFARE_1K_MAXBLOCK, (bytes_read / MFBLOCK_SIZE)); uint16_t block_cnt = MIN(MIFARE_1K_MAXBLOCK, (bytes_read / MFBLOCK_SIZE));
if (bytes_read == 320) if (bytes_read == MIFARE_MINI_MAX_BYTES)
block_cnt = MIFARE_MINI_MAXBLOCK; block_cnt = MIFARE_MINI_MAXBLOCK;
else if (bytes_read == 2048) else if (bytes_read == MIFARE_2K_MAX_BYTES)
block_cnt = MIFARE_2K_MAXBLOCK; block_cnt = MIFARE_2K_MAXBLOCK;
else if (bytes_read == 4096) else if (bytes_read == MIFARE_4K_MAX_BYTES)
block_cnt = MIFARE_4K_MAXBLOCK; block_cnt = MIFARE_4K_MAXBLOCK;
if (verbose) { if (verbose) {