Merge pull request #43 from matrix/master

Improved Mifare Plus Atack (hf mf hardnested)
This commit is contained in:
Iceman 2016-10-21 01:49:39 +02:00 committed by GitHub
commit 3c528f5fda
3 changed files with 165 additions and 77 deletions

1
.gitignore vendored
View file

@ -15,6 +15,7 @@
*.moc.cpp *.moc.cpp
*.z *.z
*.exe *.exe
*.dsym
hardnested_stats.txt hardnested_stats.txt
proxmark proxmark
proxmark3 proxmark3

View file

@ -37,7 +37,9 @@
#include <assert.h> #include <assert.h>
#define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull
#define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster
#define MIN_NONCES_REQUIRED 4000 // 4000-5000 could be good
#define NONCES_TRIGGER 2500 // every 2500 nonces check if we can crack the key
#define END_OF_LIST_MARKER 0xFFFFFFFF #define END_OF_LIST_MARKER 0xFFFFFFFF
@ -132,6 +134,17 @@ static partial_indexed_statelist_t partial_statelist[17];
static partial_indexed_statelist_t statelist_bitflip; static partial_indexed_statelist_t statelist_bitflip;
static statelist_t *candidates = NULL; static statelist_t *candidates = NULL;
bool thread_check_started = false;
bool thread_check_done = false;
bool cracking = false;
bool field_off = false;
pthread_t thread_check;
static void* check_thread();
static bool generate_candidates(uint16_t, uint16_t);
static bool brute_force(void);
static int add_nonce(uint32_t nonce_enc, uint8_t par_enc) static int add_nonce(uint32_t nonce_enc, uint8_t par_enc)
{ {
uint8_t first_byte = nonce_enc >> 24; uint8_t first_byte = nonce_enc >> 24;
@ -756,7 +769,6 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
{ {
clock_t time1 = clock(); clock_t time1 = clock();
bool initialize = true; bool initialize = true;
bool field_off = false;
bool finished = false; bool finished = false;
bool filter_flip_checked = false; bool filter_flip_checked = false;
uint32_t flags = 0; uint32_t flags = 0;
@ -764,14 +776,25 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
uint32_t total_num_nonces = 0; uint32_t total_num_nonces = 0;
uint32_t next_fivehundred = 500; uint32_t next_fivehundred = 500;
uint32_t total_added_nonces = 0; uint32_t total_added_nonces = 0;
uint32_t idx = 1;
FILE *fnonces = NULL; FILE *fnonces = NULL;
UsbCommand resp; UsbCommand resp;
field_off = false;
cracking = false;
thread_check_started = false;
thread_check_done = false;
printf("Acquiring nonces...\n"); printf("Acquiring nonces...\n");
clearCommandBuffer(); clearCommandBuffer();
do { do {
if (cracking) {
sleep(3);
continue;
}
flags = 0; flags = 0;
flags |= initialize ? 0x0001 : 0; flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0; flags |= slow ? 0x0002 : 0;
@ -817,7 +840,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
//printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
if (nonce_file_write) { if (nonce_file_write && fnonces) {
fwrite(bufp, 1, 9, fnonces); fwrite(bufp, 1, 9, fnonces);
} }
@ -827,12 +850,13 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
total_num_nonces += num_acquired_nonces; total_num_nonces += num_acquired_nonces;
} }
if (first_byte_num == 256 ) { if (first_byte_num == 256 && !field_off) {
// printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum);
if (!filter_flip_checked) { if (!filter_flip_checked) {
Check_for_FilterFlipProperties(); Check_for_FilterFlipProperties();
filter_flip_checked = true; filter_flip_checked = true;
} }
num_good_first_bytes = estimate_second_byte_sum(); num_good_first_bytes = estimate_second_byte_sum();
if (total_num_nonces > next_fivehundred) { if (total_num_nonces > next_fivehundred) {
next_fivehundred = (total_num_nonces/500+1) * 500; next_fivehundred = (total_num_nonces/500+1) * 500;
@ -842,18 +866,39 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
CONFIDENCE_THRESHOLD * 100.0, CONFIDENCE_THRESHOLD * 100.0,
num_good_first_bytes); num_good_first_bytes);
} }
if (num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
field_off = true; // switch off field with next SendCommand and then finish if (thread_check_started) {
if (thread_check_done) {
pthread_join (thread_check, 0);
thread_check_started = thread_check_done = false;
}
} else {
if (total_added_nonces >= MIN_NONCES_REQUIRED)
{
num_good_first_bytes = estimate_second_byte_sum();
if (total_added_nonces > (NONCES_TRIGGER*idx) || num_good_first_bytes >= GOOD_BYTES_REQUIRED) {
pthread_create (&thread_check, NULL, check_thread, NULL);
thread_check_started = true;
idx++;
}
}
} }
} }
if (!initialize) { if (!initialize) {
if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) {
fclose(fnonces); if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
fclose(fnonces);
fnonces = NULL;
}
return 1; return 1;
} }
if (resp.arg[0]) { if (resp.arg[0]) {
fclose(fnonces); if (fnonces) { // fix segfault on proxmark3 v1 when reset button is pressed
fclose(fnonces);
fnonces = NULL;
}
return resp.arg[0]; // error during nested_hard return resp.arg[0]; // error during nested_hard
} }
} }
@ -862,9 +907,9 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
} while (!finished); } while (!finished);
if (nonce_file_write && fnonces) {
if (nonce_file_write) {
fclose(fnonces); fclose(fnonces);
fnonces = NULL;
} }
time1 = clock() - time1; time1 = clock() - time1;
@ -881,7 +926,8 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
static int init_partial_statelists(void) static int init_partial_statelists(void)
{ {
const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 };
const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 };
const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 };
printf("Allocating memory for partial statelists...\n"); printf("Allocating memory for partial statelists...\n");
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
@ -1215,7 +1261,7 @@ static statelist_t *add_more_candidates(statelist_t *current_candidates)
return new_candidates; return new_candidates;
} }
static void TestIfKeyExists(uint64_t key) static bool TestIfKeyExists(uint64_t key)
{ {
struct Crypto1State *pcs; struct Crypto1State *pcs;
pcs = crypto1_create(key); pcs = crypto1_create(key);
@ -1256,7 +1302,7 @@ static void TestIfKeyExists(uint64_t key)
fprintf(fstats, "1\n"); fprintf(fstats, "1\n");
} }
crypto1_destroy(pcs); crypto1_destroy(pcs);
return; return true;
} }
} }
@ -1265,9 +1311,11 @@ static void TestIfKeyExists(uint64_t key)
fprintf(fstats, "0\n"); fprintf(fstats, "0\n");
} }
crypto1_destroy(pcs); crypto1_destroy(pcs);
return false;
} }
static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8) static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
{ {
printf("Generating crypto1 state candidates... \n"); printf("Generating crypto1 state candidates... \n");
@ -1281,6 +1329,9 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
} }
} }
} }
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0)); printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2.0));
init_statelist_cache(); init_statelist_cache();
@ -1325,19 +1376,25 @@ static void generate_candidates(uint16_t sum_a0, uint16_t sum_a8)
} }
} }
maximum_states = 0; maximum_states = 0;
for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) { for (statelist_t *sl = candidates; sl != NULL; sl = sl->next) {
maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE];
} }
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, log(maximum_states)/log(2.0));
if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
float kcalc = log(maximum_states)/log(2.0);
printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc);
if (write_stats) { if (write_stats) {
if (maximum_states != 0) { if (maximum_states != 0) {
fprintf(fstats, "%1.1f;", log(maximum_states)/log(2.0)); fprintf(fstats, "%1.1f;", kcalc);
} else { } else {
fprintf(fstats, "%1.1f;", 0.0); fprintf(fstats, "%1.1f;", 0.0);
} }
} }
if (kcalc < 39.00f) return true;
return false;
} }
static void free_candidates_memory(statelist_t *sl) static void free_candidates_memory(statelist_t *sl)
@ -1607,6 +1664,26 @@ out:
return key; return key;
} }
static void* check_thread()
{
num_good_first_bytes = estimate_second_byte_sum();
clock_t time1 = clock();
cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
time1 = clock() - time1;
if ( time1 > 0 ) PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
if (known_target_key != -1) brute_force();
if (cracking) {
field_off = brute_force(); // switch off field with next SendCommand and then finish
cracking = false;
}
thread_check_done = true;
return (void *) NULL;
}
static void* crack_states_thread(void* x){ static void* crack_states_thread(void* x){
const size_t thread_id = (size_t)x; const size_t thread_id = (size_t)x;
size_t current_bucket = thread_id; size_t current_bucket = thread_id;
@ -1630,73 +1707,80 @@ static void* crack_states_thread(void* x){
return NULL; return NULL;
} }
static void brute_force(void) static bool brute_force(void)
{ {
bool ret = false;
if (known_target_key != -1) { if (known_target_key != -1) {
PrintAndLog("Looking for known target key in remaining key space..."); PrintAndLog("Looking for known target key in remaining key space...");
TestIfKeyExists(known_target_key); ret = TestIfKeyExists(known_target_key);
} else { } else {
PrintAndLog("Brute force phase starting."); if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf)
time_t start, end;
time(&start); PrintAndLog("Brute force phase starting.");
keys_found = 0; time_t start, end;
time(&start);
keys_found = 0;
foundkey = 0; foundkey = 0;
crypto1_bs_init(); crypto1_bs_init();
PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES); PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES);
PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24)); PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02x...", best_first_bytes[0]^(cuid>>24));
// convert to 32 bit little-endian // convert to 32 bit little-endian
crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8); crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8);
PrintAndLog("Bitslicing nonces..."); PrintAndLog("Bitslicing nonces...");
for(size_t tests = 0; tests < NONCE_TESTS; tests++){ for(size_t tests = 0; tests < NONCE_TESTS; tests++){
uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc; uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc;
uint8_t test_parity = brute_force_nonces[tests]->par_enc; uint8_t test_parity = brute_force_nonces[tests]->par_enc;
// pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine
crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32); crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32);
// convert to 32 bit little-endian // convert to 32 bit little-endian
crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4); crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4);
} }
total_states_tested = 0; total_states_tested = 0;
// count number of states to go // count number of states to go
bucket_count = 0; bucket_count = 0;
for (statelist_t *p = candidates; p != NULL; p = p->next) { for (statelist_t *p = candidates; p != NULL; p = p->next) {
buckets[bucket_count] = p; buckets[bucket_count] = p;
bucket_count++; bucket_count++;
} }
#ifndef __WIN32 #ifndef __WIN32
thread_count = sysconf(_SC_NPROCESSORS_CONF); thread_count = sysconf(_SC_NPROCESSORS_CONF);
if ( thread_count < 1) if ( thread_count < 1)
thread_count = 1; thread_count = 1;
#endif /* _WIN32 */ #endif /* _WIN32 */
pthread_t threads[thread_count]; pthread_t threads[thread_count];
// enumerate states using all hardware threads, each thread handles one bucket // enumerate states using all hardware threads, each thread handles one bucket
PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states); PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states);
for(size_t i = 0; i < thread_count; i++){ for(size_t i = 0; i < thread_count; i++){
pthread_create(&threads[i], NULL, crack_states_thread, (void*) i); pthread_create(&threads[i], NULL, crack_states_thread, (void*) i);
} }
for(size_t i = 0; i < thread_count; i++){ for(size_t i = 0; i < thread_count; i++){
pthread_join(threads[i], 0); pthread_join(threads[i], 0);
} }
time(&end); time(&end);
double elapsed_time = difftime(end, start); double elapsed_time = difftime(end, start);
if(keys_found){ if (keys_found && TestIfKeyExists(foundkey)) {
PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time); PrintAndLog("Success! Tested %"PRIu32" states, found %u keys after %.f seconds", total_states_tested, keys_found, elapsed_time);
PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey); PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey);
} else { ret = true;
} else {
PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time); PrintAndLog("Fail! Tested %"PRIu32" states, in %.f seconds", total_states_tested, elapsed_time);
} }
// reset this counter for the next call
nonces_to_bruteforce = 0; // reset this counter for the next call
nonces_to_bruteforce = 0;
} }
return ret;
} }
int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests) int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests)
@ -1737,6 +1821,7 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
candidates = NULL; candidates = NULL;
} }
fclose(fstats); fclose(fstats);
fstats = NULL;
} else { } else {
init_nonce_memory(); init_nonce_memory();
if (nonce_file_read) { // use pre-acquired data from file nonces.bin if (nonce_file_read) { // use pre-acquired data from file nonces.bin
@ -1767,15 +1852,16 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
// best_first_bytes[7], // best_first_bytes[7],
// best_first_bytes[8], // best_first_bytes[8],
// best_first_bytes[9] ); // best_first_bytes[9] );
PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
clock_t time1 = clock(); //PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes);
generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
time1 = clock() - time1;
if ( time1 > 0 )
PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
brute_force(); //clock_t time1 = clock();
//generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess);
//time1 = clock() - time1;
//if ( time1 > 0 )
//PrintAndLog("Time for generating key candidates list: %1.0f seconds", ((float)time1)/CLOCKS_PER_SEC);
//brute_force();
free_nonces_memory(); free_nonces_memory();
free_statelist_cache(); free_statelist_cache();

View file

@ -167,9 +167,10 @@ static void *main_loop(void *targ) {
// this one should pick up all non-null cmd... // this one should pick up all non-null cmd...
// why is there a // why is there a
if (cmd) { if (cmd) {
if (strlen(cmd) > 0) {
while(cmd[strlen(cmd) - 1] == ' ') while(cmd[strlen(cmd) - 1] == ' ')
cmd[strlen(cmd) - 1] = 0x00; cmd[strlen(cmd) - 1] = 0x00;
}
if (cmd[0] != 0x00) { if (cmd[0] != 0x00) {
int ret = CommandReceived(cmd); int ret = CommandReceived(cmd);