hardnested - text output adaptation

This commit is contained in:
iceman1001 2021-11-28 21:20:13 +01:00
commit 287a99d186
2 changed files with 105 additions and 106 deletions

View file

@ -75,7 +75,7 @@ THE SOFTWARE.
//#define WRITE_BENCH_FILE //#define WRITE_BENCH_FILE
// debugging options // debugging options
#define DEBUG_KEY_ELIMINATION #define DEBUG_KEY_ELIMINATION 1
// #define DEBUG_BRUTE_FORCE // #define DEBUG_BRUTE_FORCE
typedef enum { typedef enum {
@ -173,7 +173,7 @@ crack_states_thread(void *x) {
char progress_text[80]; char progress_text[80];
char keystr[19]; char keystr[19];
sprintf(keystr, "%012" PRIx64 " ", key); sprintf(keystr, "%012" PRIX64 " ", key);
sprintf(progress_text, "Brute force phase completed. Key found: " _GREEN_("%s"), keystr); sprintf(progress_text, "Brute force phase completed. Key found: " _GREEN_("%s"), keystr);
hardnested_print_progress(thread_arg->num_acquired_nonces, progress_text, 0.0, 0); hardnested_print_progress(thread_arg->num_acquired_nonces, progress_text, 0.0, 0);
break; break;

View file

@ -106,14 +106,15 @@ static void print_progress_header(void) {
char progress_text[80]; char progress_text[80];
char instr_set[12] = ""; char instr_set[12] = "";
get_SIMD_instruction_set(instr_set); get_SIMD_instruction_set(instr_set);
sprintf(progress_text, "Start using %d threads and %s SIMD core", num_CPUs(), instr_set); sprintf(progress_text, "Start using " _YELLOW_("%d") " threads and " _YELLOW_("%s") " SIMD core", num_CPUs(), instr_set);
PrintAndLogEx(NORMAL, "\n\n");
PrintAndLogEx(NORMAL, " time | #nonces | Activity | expected to brute force");
PrintAndLogEx(NORMAL, " | | | #states | time ");
PrintAndLogEx(NORMAL, "------------------------------------------------------------------------------------------------------");
PrintAndLogEx(NORMAL, " 0 | 0 | %-55s | |", progress_text);
}
PrintAndLogEx(INFO, "Hardnested attack starting...");
PrintAndLogEx(INFO, "---------+---------+---------------------------------------------------------+-----------------+-------");
PrintAndLogEx(INFO, " | | | Expected to brute force");
PrintAndLogEx(INFO, " Time | #nonces | Activity | #states | time ");
PrintAndLogEx(INFO, "---------+---------+---------------------------------------------------------+-----------------+-------");
PrintAndLogEx(INFO, " 0 | 0 | %-73s | |", progress_text);
}
void hardnested_print_progress(uint32_t nonces, const char *activity, float brute_force, uint64_t min_diff_print_time) { void hardnested_print_progress(uint32_t nonces, const char *activity, float brute_force, uint64_t min_diff_print_time) {
static uint64_t last_print_time = 0; static uint64_t last_print_time = 0;
@ -131,7 +132,7 @@ void hardnested_print_progress(uint32_t nonces, const char *activity, float brut
} else { } else {
sprintf(brute_force_time_string, "%2.0fd", brute_force_time / (60 * 60 * 24)); sprintf(brute_force_time_string, "%2.0fd", brute_force_time / (60 * 60 * 24));
} }
PrintAndLogEx(NORMAL, " %7.0f | %7u | %-55s | %15.0f | %5s", (float)total_time / 1000.0, nonces, activity, brute_force, brute_force_time_string); PrintAndLogEx(INFO, " %7.0f | %7u | %-55s | %15.0f | %5s", (float)total_time / 1000.0, nonces, activity, brute_force, brute_force_time_string);
} }
} }
@ -311,10 +312,10 @@ static void init_bitflip_bitarrays(void) {
bitflip_bitarrays[odd_even][bitflip] = bitset; bitflip_bitarrays[odd_even][bitflip] = bitset;
count_bitflip_bitarrays[odd_even][bitflip] = count; count_bitflip_bitarrays[odd_even][bitflip] = count;
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
PrintAndLogEx(NORMAL, "(%03" PRIx16 " %s:%5.1f%%) ", bitflip, odd_even ? "odd " : "even", (float)count / (1 << 24) * 100.0); PrintAndLogEx(INFO, "(%03" PRIx16 " %s:%5.1f%%) ", bitflip, odd_even ? "odd " : "even", (float)count / (1 << 24) * 100.0);
line++; line++;
if (line == 8) { if (line == 8) {
PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(NORMAL, "");
line = 0; line = 0;
} }
#endif #endif
@ -347,16 +348,16 @@ static void init_bitflip_bitarrays(void) {
} }
qsort(all_effective_bitflip, num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); qsort(all_effective_bitflip, num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays);
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
PrintAndLogEx(NORMAL, "\n1st byte effective bitflips (%d): \n", num_1st_byte_effective_bitflips); PrintAndLogEx(INFO, "1st byte effective bitflips (%d): ", num_1st_byte_effective_bitflips);
for (uint16_t i = 0; i < num_1st_byte_effective_bitflips; i++) { for (uint16_t i = 0; i < num_1st_byte_effective_bitflips; i++) {
PrintAndLogEx(NORMAL, "%03x ", all_effective_bitflip[i]); PrintAndLogEx(INFO, "%03x ", all_effective_bitflip[i]);
} }
#endif #endif
qsort(all_effective_bitflip + num_1st_byte_effective_bitflips, num_all_effective_bitflips - num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays); qsort(all_effective_bitflip + num_1st_byte_effective_bitflips, num_all_effective_bitflips - num_1st_byte_effective_bitflips, sizeof(uint16_t), compare_count_bitflip_bitarrays);
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
PrintAndLogEx(NORMAL, "\n2nd byte effective bitflips (%d): \n", num_all_effective_bitflips - num_1st_byte_effective_bitflips); PrintAndLogEx(INFO, "2nd byte effective bitflips (%d): ", num_all_effective_bitflips - num_1st_byte_effective_bitflips);
for (uint16_t i = num_1st_byte_effective_bitflips; i < num_all_effective_bitflips; i++) { for (uint16_t i = num_1st_byte_effective_bitflips; i < num_all_effective_bitflips; i++) {
PrintAndLogEx(NORMAL, "%03x ", all_effective_bitflip[i]); PrintAndLogEx(INFO, "%03x ", all_effective_bitflip[i]);
} }
#endif #endif
char progress_text[80]; char progress_text[80];
@ -418,7 +419,7 @@ static void init_part_sum_bitarrays(void) {
} }
} }
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
//PrintAndLogEx(NORMAL, "(%d, %" PRIu16 ")...", odd_even, part_sum_a0); //PrintAndLogEx(INFO, "(%d, %" PRIu16 ")...", odd_even, part_sum_a0);
for (uint32_t state = 0; state < (1 << 20); state++) { for (uint32_t state = 0; state < (1 << 20); state++) {
uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2; uint16_t part_sum_a0 = PartialSumProperty(state, odd_even) / 2;
for (uint16_t low_bits = 0; low_bits < 1 << 4; low_bits++) { for (uint16_t low_bits = 0; low_bits < 1 << 4; low_bits++) {
@ -438,7 +439,7 @@ static void init_part_sum_bitarrays(void) {
} }
} }
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
//PrintAndLogEx(NORMAL, "(%d, %" PRIu16 ")...", odd_even, part_sum_a8); //PrintAndLogEx(INFO, "(%d, %" PRIu16 ")...", odd_even, part_sum_a8);
for (uint32_t state = 0; state < (1 << 20); state++) { for (uint32_t state = 0; state < (1 << 20); state++) {
uint16_t part_sum_a8 = PartialSumProperty(state, odd_even) / 2; uint16_t part_sum_a8 = PartialSumProperty(state, odd_even) / 2;
for (uint16_t high_bits = 0; high_bits < 1 << 4; high_bits++) { for (uint16_t high_bits = 0; high_bits < 1 << 4; high_bits++) {
@ -614,7 +615,6 @@ static void free_nonce_list(noncelistentry_t *p) {
} }
} }
static void free_nonces_memory(void) { static void free_nonces_memory(void) {
for (uint16_t i = 0; i < 256; i++) { for (uint16_t i = 0; i < 256; i++) {
free_nonce_list(nonces[i].first); free_nonce_list(nonces[i].first);
@ -625,10 +625,6 @@ static void free_nonces_memory(void) {
} }
} }
static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) { static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) {
// for efficient computation we are using the recursive definition // for efficient computation we are using the recursive definition
// (K-k+1) * (n-k+1) // (K-k+1) * (n-k+1)
@ -676,7 +672,6 @@ static double p_hypergeometric(uint16_t i_K, uint16_t n, uint16_t k) {
} }
} }
static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k) { static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k) {
if (k > sums[i_K]) return 0.0; if (k > sums[i_K]) return 0.0;
@ -689,7 +684,6 @@ static float sum_probability(uint16_t i_K, uint16_t n, uint16_t k) {
return (p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); return (p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k);
} }
static uint32_t part_sum_count[2][NUM_PART_SUMS][NUM_PART_SUMS]; static uint32_t part_sum_count[2][NUM_PART_SUMS][NUM_PART_SUMS];
static void init_allbitflips_array(void) { static void init_allbitflips_array(void) {
@ -804,9 +798,9 @@ static void update_p_K(void) {
float f = estimated_num_states_coarse(sum_a0, sum_a8); float f = estimated_num_states_coarse(sum_a0, sum_a8);
my_p_K[sum_a8_idx] = f / total_count; my_p_K[sum_a8_idx] = f / total_count;
} }
// PrintAndLogEx(NORMAL, "my_p_K = ["); // PrintAndLogEx(INFO, "my_p_K = [");
// for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) { // for (uint8_t sum_a8_idx = 0; sum_a8_idx < NUM_SUMS; sum_a8_idx++) {
// PrintAndLogEx(NORMAL, "%7.4f ", my_p_K[sum_a8_idx]); // PrintAndLogEx(INFO, "%7.4f ", my_p_K[sum_a8_idx]);
// } // }
p_K = my_p_K; p_K = my_p_K;
} }
@ -865,7 +859,7 @@ static float check_smallest_bitflip_bitarrays(void) {
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE]; uint32_t num_odd = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[ODD_STATE];
uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE]; uint32_t num_even = nonces[best_first_byte_smallest_bitarray].num_states_bitarray[EVEN_STATE]; // * (float)nonces[best_first_byte_smallest_bitarray^0x80].num_states_bitarray[EVEN_STATE] / num_all_bitflips_bitarray[EVEN_STATE];
PrintAndLogEx(NORMAL, "0x%02x: %8d * %8d = %12" PRIu64 " (2^%1.1f)\n", best_first_byte_smallest_bitarray, num_odd, num_even, (uint64_t)num_odd * num_even, log((uint64_t)num_odd * num_even) / log(2.0)); PrintAndLogEx(INFO, "0x%02x: %8d * %8d = %12" PRIu64 " (2^%1.1f)\n", best_first_byte_smallest_bitarray, num_odd, num_even, (uint64_t)num_odd * num_even, log((uint64_t)num_odd * num_even) / log(2.0));
#endif #endif
return (float)smallest / 2.0; return (float)smallest / 2.0;
} }
@ -911,11 +905,11 @@ static float sort_best_first_bytes(void) {
// sort based on expected number of states to brute force // sort based on expected number of states to brute force
qsort(best_first_bytes, 256, 1, compare_expected_num_brute_force); qsort(best_first_bytes, 256, 1, compare_expected_num_brute_force);
// PrintAndLogEx(NORMAL, "refine estimations: "); // PrintAndLogEx(INFO, "refine estimations: ");
#define NUM_REFINES 1 #define NUM_REFINES 1
// refine scores for the best: // refine scores for the best:
for (uint16_t i = 0; i < NUM_REFINES; i++) { for (uint16_t i = 0; i < NUM_REFINES; i++) {
// PrintAndLogEx(NORMAL, "%d...", i); // PrintAndLogEx(INFO, "%d...", i);
uint16_t first_byte = best_first_bytes[i]; uint16_t first_byte = best_first_bytes[i];
for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
@ -925,17 +919,17 @@ static float sort_best_first_bytes(void) {
// || nonces[first_byte].sum_a8_guess[2].num_states == 0) { // || nonces[first_byte].sum_a8_guess[2].num_states == 0) {
// if (nonces[first_byte].sum_a8_guess[0].num_states == 0) { // if (nonces[first_byte].sum_a8_guess[0].num_states == 0) {
// nonces[first_byte].sum_a8_guess[0].prob = 0.0; // nonces[first_byte].sum_a8_guess[0].prob = 0.0;
// PrintAndLogEx(NORMAL, "(0x%02x,%d)", first_byte, 0); // PrintAndLogEx(INFO, "(0x%02x,%d)", first_byte, 0);
// } // }
// if (nonces[first_byte].sum_a8_guess[1].num_states == 0) { // if (nonces[first_byte].sum_a8_guess[1].num_states == 0) {
// nonces[first_byte].sum_a8_guess[1].prob = 0.0; // nonces[first_byte].sum_a8_guess[1].prob = 0.0;
// PrintAndLogEx(NORMAL, "(0x%02x,%d)", first_byte, 1); // PrintAndLogEx(INFO, "(0x%02x,%d)", first_byte, 1);
// } // }
// if (nonces[first_byte].sum_a8_guess[2].num_states == 0) { // if (nonces[first_byte].sum_a8_guess[2].num_states == 0) {
// nonces[first_byte].sum_a8_guess[2].prob = 0.0; // nonces[first_byte].sum_a8_guess[2].prob = 0.0;
// PrintAndLogEx(NORMAL, "(0x%02x,%d)", first_byte, 2); // PrintAndLogEx(INFO, "(0x%02x,%d)", first_byte, 2);
// } // }
// PrintAndLogEx(NORMAL, "|"); // PrintAndLogEx(INFO, "|");
// qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess); // qsort(nonces[first_byte].sum_a8_guess, NUM_SUMS, sizeof(guess_sum_a8_t), compare_sum_a8_guess);
// for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) { // for (uint8_t j = 0; j < NUM_SUMS && nonces[first_byte].sum_a8_guess[j].prob > 0.05; j++) {
// nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]); // nonces[first_byte].sum_a8_guess[j].num_states = estimated_num_states(first_byte, sums[first_byte_Sum], sums[nonces[first_byte].sum_a8_guess[j].sum_a8_idx]);
@ -971,7 +965,7 @@ static float sort_best_first_bytes(void) {
} }
} }
if (best_byte != 0) { if (best_byte != 0) {
// PrintAndLogEx(NORMAL, "0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]); // PrintAndLogEx(INFO, "0x%02x <-> 0x%02x", best_first_bytes[0], best_first_bytes[best_byte]);
uint8_t tmp = best_first_bytes[0]; uint8_t tmp = best_first_bytes[0];
best_first_bytes[0] = best_first_bytes[best_byte]; best_first_bytes[0] = best_first_bytes[best_byte];
best_first_bytes[best_byte] = tmp; best_first_bytes[best_byte] = tmp;
@ -1018,7 +1012,7 @@ static float update_reduction_rate(float last, bool init) {
float reduction_rate = -1.0 * dev_xy / dev_x2; // the negative slope of the linear regression float reduction_rate = -1.0 * dev_xy / dev_x2; // the negative slope of the linear regression
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
PrintAndLogEx(NORMAL, "update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last, reduction_rate, brute_force_per_second * (float)sample_period / 1000.0); PrintAndLogEx(INFO, "update_reduction_rate(%1.0f) = %1.0f per sample, brute_force_per_sample = %1.0f\n", last, reduction_rate, brute_force_per_second * (float)sample_period / 1000.0);
#endif #endif
return reduction_rate; return reduction_rate;
} }
@ -1026,7 +1020,7 @@ static float update_reduction_rate(float last, bool init) {
static bool shrink_key_space(float *brute_forces) { static bool shrink_key_space(float *brute_forces) {
#if defined(DEBUG_REDUCTION) #if defined(DEBUG_REDUCTION)
PrintAndLogEx(NORMAL, "shrink_key_space() with stage = 0x%02x\n", hardnested_stage); PrintAndLogEx(INFO, "shrink_key_space() with stage = 0x%02x\n", hardnested_stage);
#endif #endif
float brute_forces1 = check_smallest_bitflip_bitarrays(); float brute_forces1 = check_smallest_bitflip_bitarrays();
float brute_forces2 = (float)(1LL << 47); float brute_forces2 = (float)(1LL << 47);
@ -1072,11 +1066,11 @@ static int read_nonce_file(char *filename) {
num_acquired_nonces = 0; num_acquired_nonces = 0;
if ((fnonces = fopen(filename, "rb")) == NULL) { if ((fnonces = fopen(filename, "rb")) == NULL) {
PrintAndLogEx(WARNING, "Could not open file %s", filename); PrintAndLogEx(WARNING, "Could not open file " _YELLOW_("%s"), filename);
return 1; return 1;
} }
snprintf(progress_text, 80, "Reading nonces from file %s...", filename); snprintf(progress_text, 80, "Reading nonces from file " _YELLOW_("%s"), filename);
hardnested_print_progress(0, progress_text, (float)(1LL << 47), 0); hardnested_print_progress(0, progress_text, (float)(1LL << 47), 0);
size_t bytes_read = fread(read_buf, 1, 6, fnonces); size_t bytes_read = fread(read_buf, 1, 6, fnonces);
if (bytes_read != 6) { if (bytes_read != 6) {
@ -1151,7 +1145,7 @@ __attribute__((force_align_arg_pointer))
uint16_t bitflip = all_effective_bitflip[bitflip_idx]; uint16_t bitflip = all_effective_bitflip[bitflip_idx];
if (time_budget && timeout()) { if (time_budget && timeout()) {
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
PrintAndLogEx(NORMAL, "break at bitflip_idx %d...", bitflip_idx); PrintAndLogEx(INFO, "break at bitflip_idx " _YELLOW_("%d") " ...", bitflip_idx);
#endif #endif
return NULL; return NULL;
} }
@ -1176,7 +1170,7 @@ __attribute__((force_align_arg_pointer))
if (nonces[i].num_states_bitarray[odd_even] != old_count) { if (nonces[i].num_states_bitarray[odd_even] != old_count) {
nonces[i].all_bitflips_dirty[odd_even] = true; nonces[i].all_bitflips_dirty[odd_even] = true;
} }
// PrintAndLogEx(NORMAL, "bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]); // PrintAndLogEx(INFO, "bitflip: %d old: %d, new: %d ", bitflip, old_count, nonces[i].num_states_bitarray[odd_even]);
} }
} }
} }
@ -1193,7 +1187,7 @@ __attribute__((force_align_arg_pointer))
uint16_t bitflip = all_effective_bitflip[bitflip_idx]; uint16_t bitflip = all_effective_bitflip[bitflip_idx];
if (time_budget && timeout()) { if (time_budget && timeout()) {
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
PrintAndLogEx(NORMAL, "break at bitflip_idx %d...", bitflip_idx); PrintAndLogEx(INFO, "break at bitflip_idx " _YELLOW_("%d") " ...", bitflip_idx);
#endif #endif
return NULL; return NULL;
} }
@ -1223,8 +1217,8 @@ __attribute__((force_align_arg_pointer))
} }
} }
} }
// PrintAndLogEx(NORMAL, "states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE])); // PrintAndLogEx(INFO, "states_bitarray[0][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[EVEN_STATE]));
// PrintAndLogEx(NORMAL, "states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE])); // PrintAndLogEx(INFO, "states_bitarray[1][%" PRIu16 "] contains %d ones.\n", i, count_states(nonces[i].states_bitarray[ODD_STATE]));
} }
} }
} }
@ -1267,7 +1261,7 @@ static void check_for_BitFlipProperties(bool time_budget) {
} }
} }
#if defined (DEBUG_REDUCTION) #if defined (DEBUG_REDUCTION)
if (hardnested_stage & CHECK_1ST_BYTES) PrintAndLogEx(NORMAL, "stage 1 not completed yet\n"); if (hardnested_stage & CHECK_1ST_BYTES) PrintAndLogEx(INFO, "stage 1 not completed yet\n");
#endif #endif
} }
@ -1381,7 +1375,7 @@ static void simulate_acquire_nonces(void) {
} while (!acquisition_completed); } while (!acquisition_completed);
time_t end_time = time(NULL); time_t end_time = time(NULL);
// PrintAndLogEx(NORMAL, "Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)", // PrintAndLogEx(INFO, "Acquired a total of %" PRId32" nonces in %1.0f seconds (%1.0f nonces/minute)",
// num_acquired_nonces, // num_acquired_nonces,
// difftime(end_time, time1), // difftime(end_time, time1),
// difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY // difftime(end_time, time1)!=0.0?(float)total_num_nonces*60.0/difftime(end_time, time1):INFINITY
@ -1393,62 +1387,64 @@ static void simulate_acquire_nonces(void) {
static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow, char *filename) { static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow, char *filename) {
last_sample_clock = msclock(); last_sample_clock = msclock();
sample_period = 2000; // initial rough estimate. Will be refined.
bool initialize = true;
bool field_off = false;
hardnested_stage = CHECK_1ST_BYTES; hardnested_stage = CHECK_1ST_BYTES;
bool acquisition_completed = false;
uint8_t write_buf[9];
//uint32_t total_num_nonces = 0;
float brute_force_depth;
bool reported_suma8 = false;
char progress_text[80];
FILE *fnonces = NULL;
PacketResponseNG resp;
num_acquired_nonces = 0; num_acquired_nonces = 0;
clearCommandBuffer(); // initial rough estimate. Will be refined.
sample_period = 2000;
bool initialize = true;
bool field_off = false;
bool acquisition_completed = false;
bool reported_suma8 = false;
float brute_force_depth;
FILE *fnonces = NULL;
PacketResponseNG resp;
uint8_t write_buf[9];
char progress_text[80];
do { do {
if (field_off) {
DropField();
break;
}
uint32_t flags = 0; uint32_t flags = 0;
flags |= initialize ? 0x0001 : 0; flags |= initialize ? 0x0001 : 0;
flags |= slow ? 0x0002 : 0; flags |= slow ? 0x0002 : 0;
flags |= field_off ? 0x0004 : 0; flags |= field_off ? 0x0004 : 0;
clearCommandBuffer(); clearCommandBuffer();
SendCommandMIX(CMD_HF_MIFARE_ACQ_ENCRYPTED_NONCES, blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags, key, 6);
if (field_off) {
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
break;
} else {
SendCommandMIX(CMD_HF_MIFARE_ACQ_ENCRYPTED_NONCES, blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags, key, 6);
}
if (initialize) { if (initialize) {
if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { if (WaitForResponseTimeout(CMD_ACK, &resp, 3000) == false) {
clearCommandBuffer(); DropField();
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
return 1; return 1;
} }
// error during nested_hard // error during nested_hard
if (resp.oldarg[0]) { if (resp.oldarg[0]) {
clearCommandBuffer(); DropField();
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
return resp.oldarg[0]; return resp.oldarg[0];
} }
cuid = resp.oldarg[1]; cuid = resp.oldarg[1];
if (nonce_file_write && fnonces == NULL) { if (nonce_file_write && fnonces == NULL) {
if ((fnonces = fopen(filename, "wb")) == NULL) { if ((fnonces = fopen(filename, "wb")) == NULL) {
PrintAndLogEx(WARNING, "Could not create file %s", filename); PrintAndLogEx(WARNING, "Could not create file " _YELLOW_("%s"), filename);
clearCommandBuffer(); DropField();
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
return 3; return 3;
} }
snprintf(progress_text, 80, "Writing acquired nonces to binary file %s", filename);
snprintf(progress_text, 80, "Writing acquired nonces to binary file " _YELLOW_("%s"), filename);
hardnested_print_progress(0, progress_text, (float)(1LL << 47), 0); hardnested_print_progress(0, progress_text, (float)(1LL << 47), 0);
num_to_bytes(cuid, 4, write_buf); num_to_bytes(cuid, 4, write_buf);
fwrite(write_buf, 1, 4, fnonces); fwrite(write_buf, 1, 4, fnonces);
@ -1458,17 +1454,19 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
} }
} }
if (!initialize) { if (initialize == false) {
uint16_t num_sampled_nonces = resp.oldarg[2]; uint16_t num_sampled_nonces = resp.oldarg[2];
uint8_t *bufp = resp.data.asBytes; uint8_t *bufp = resp.data.asBytes;
for (uint16_t i = 0; i < num_sampled_nonces; i += 2) { for (uint16_t i = 0; i < num_sampled_nonces; i += 2) {
uint32_t nt_enc1 = bytes_to_num(bufp, 4); uint32_t nt_enc1 = bytes_to_num(bufp, 4);
uint32_t nt_enc2 = bytes_to_num(bufp + 4, 4); uint32_t nt_enc2 = bytes_to_num(bufp + 4, 4);
uint8_t par_enc = bytes_to_num(bufp + 8, 1); uint8_t par_enc = bytes_to_num(bufp + 8, 1);
//PrintAndLogEx(NORMAL, "Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); //PrintAndLogEx(INFO, "Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4);
num_acquired_nonces += add_nonce(nt_enc1, par_enc >> 4); num_acquired_nonces += add_nonce(nt_enc1, par_enc >> 4);
//PrintAndLogEx(NORMAL, "Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); //PrintAndLogEx(INFO, "Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f);
num_acquired_nonces += add_nonce(nt_enc2, par_enc & 0x0f); num_acquired_nonces += add_nonce(nt_enc2, par_enc & 0x0f);
if (nonce_file_write) { if (nonce_file_write) {
@ -1511,14 +1509,13 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
field_off = true; // switch off field with next SendCommandOLD and then finish field_off = true; // switch off field with next SendCommandOLD and then finish
} }
if (!initialize) { if (initialize == false) {
if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) { if (WaitForResponseTimeout(CMD_ACK, &resp, 3000) == false) {
if (nonce_file_write) { if (nonce_file_write) {
fclose(fnonces); fclose(fnonces);
} }
clearCommandBuffer(); DropField();
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
return 1; return 1;
} }
@ -1527,8 +1524,7 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
if (nonce_file_write) { if (nonce_file_write) {
fclose(fnonces); fclose(fnonces);
} }
clearCommandBuffer(); DropField();
SendCommandNG(CMD_FPGA_MAJOR_MODE_OFF, NULL, 0);
return resp.oldarg[0]; return resp.oldarg[0];
} }
} }
@ -1538,9 +1534,10 @@ static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_
if (msclock() - last_sample_clock < sample_period) { if (msclock() - last_sample_clock < sample_period) {
sample_period = msclock() - last_sample_clock; sample_period = msclock() - last_sample_clock;
} }
last_sample_clock = msclock(); last_sample_clock = msclock();
} while (!acquisition_completed || field_off); } while (field_off || acquisition_completed == false);
if (nonce_file_write) { if (nonce_file_write) {
fclose(fnonces); fclose(fnonces);
@ -1554,7 +1551,7 @@ static inline bool invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1,
uint_fast8_t j_1_bit_mask = 0x01 << (bit - 1); uint_fast8_t j_1_bit_mask = 0x01 << (bit - 1);
uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit
uint_fast8_t filter_diff = filter(state1 >> (4 - state_bit)) ^ filter(state2 >> (4 - state_bit)); // difference in filter function uint_fast8_t filter_diff = filter(state1 >> (4 - state_bit)) ^ filter(state2 >> (4 - state_bit)); // difference in filter function
uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; uint_fast8_t mask_y12_y13 = (0xc0 >> state_bit);
uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13
uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits
return !all_diff; return !all_diff;
@ -1562,9 +1559,9 @@ static inline bool invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1,
static inline bool invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) { static inline bool invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) {
uint_fast8_t j_bit_mask = 0x01 << bit; uint_fast8_t j_bit_mask = (0x01 << bit);
uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit
uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; uint_fast8_t mask_y13_y16 = (0x48 >> state_bit);
uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16
uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits
return all_diff; return all_diff;
@ -1672,8 +1669,8 @@ static inline bool bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_e
if (!possible) { if (!possible) {
#ifdef DEBUG_KEY_ELIMINATION #ifdef DEBUG_KEY_ELIMINATION
if (!quiet && known_target_key != -1 && state == test_state[odd_even]) { if (!quiet && known_target_key != -1 && state == test_state[odd_even]) {
PrintAndLogEx(INFO, "Initial state lists: %s test state eliminated by bitflip property.", odd_even == EVEN_STATE ? "even" : "odd"); PrintAndLogEx(INFO, "Initial state lists: " _YELLOW_("%s") " test state eliminated by bitflip property.", odd_even == EVEN_STATE ? "even" : "odd");
sprintf(failstr, "Initial %s Byte Bitflip property", odd_even == EVEN_STATE ? "even" : "odd"); sprintf(failstr, "Initial " _YELLOW_("%s") " byte Bitflip property", odd_even == EVEN_STATE ? "even" : "odd");
} }
#endif #endif
return false; return false;
@ -1717,7 +1714,7 @@ static bool all_bitflips_match(uint8_t byte, uint32_t state, odd_even_t odd_even
# ifdef DEBUG_KEY_ELIMINATION # ifdef DEBUG_KEY_ELIMINATION
if (known_target_key != -1 && state == test_state[odd_even]) { if (known_target_key != -1 && state == test_state[odd_even]) {
PrintAndLogEx(NORMAL, "all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", PrintAndLogEx(INFO, "all_bitflips_match() 1st Byte: %s test state (0x%06x): Eliminated. Bytes = %02x, %02x, Common Bits = %d\n",
odd_even == ODD_STATE ? "odd" : "even", odd_even == ODD_STATE ? "odd" : "even",
test_state[odd_even], test_state[odd_even],
byte, byte,
@ -1750,17 +1747,19 @@ static void bitarray_to_list(uint8_t byte, uint32_t *bitarray, uint32_t *state_l
static void add_cached_states(statelist_t *cands, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) { static void add_cached_states(statelist_t *cands, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) {
cands->states[odd_even] = sl_cache[part_sum_a0 / 2][part_sum_a8 / 2][odd_even].sl; cands->states[odd_even] = sl_cache[part_sum_a0 / 2][part_sum_a8 / 2][odd_even].sl;
cands->len[odd_even] = sl_cache[part_sum_a0 / 2][part_sum_a8 / 2][odd_even].len; cands->len[odd_even] = sl_cache[part_sum_a0 / 2][part_sum_a8 / 2][odd_even].len;
return;
} }
static void add_matching_states(statelist_t *cands, uint8_t part_sum_a0, uint8_t part_sum_a8, odd_even_t odd_even) { static void add_matching_states(statelist_t *cands, uint8_t part_sum_a0, uint8_t part_sum_a8, odd_even_t odd_even) {
const uint32_t worstcase_size = 1 << 20; const uint32_t worstcase_size = 1 << 20;
cands->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); cands->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size);
if (cands->states[odd_even] == NULL) { if (cands->states[odd_even] == NULL) {
PrintAndLogEx(ERR, "Out of memory error in add_matching_states() - statelist.\n"); PrintAndLogEx(ERR, "Out of memory error in add_matching_states() - statelist.\n");
exit(4); exit(4);
} }
uint32_t *cands_bitarray = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * worstcase_size); uint32_t *cands_bitarray = (uint32_t *)malloc_bitarray(sizeof(uint32_t) * worstcase_size);
if (cands_bitarray == NULL) { if (cands_bitarray == NULL) {
PrintAndLogEx(ERR, "Out of memory error in add_matching_states() - bitarray.\n"); PrintAndLogEx(ERR, "Out of memory error in add_matching_states() - bitarray.\n");
@ -1909,7 +1908,7 @@ __attribute__((force_align_arg_pointer))
for (uint8_t p = 0; p < NUM_PART_SUMS; p++) { for (uint8_t p = 0; p < NUM_PART_SUMS; p++) {
for (uint8_t q = 0; q < NUM_PART_SUMS; q++) { for (uint8_t q = 0; q < NUM_PART_SUMS; q++) {
if (2 * p * (16 - 2 * q) + (16 - 2 * p) * 2 * q == sum_a0) { if (2 * p * (16 - 2 * q) + (16 - 2 * p) * 2 * q == sum_a0) {
// PrintAndLogEx(NORMAL, "Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", // PrintAndLogEx(INFO, "Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d",
// p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]);
for (uint8_t r = 0; r < NUM_PART_SUMS; r++) { for (uint8_t r = 0; r < NUM_PART_SUMS; r++) {
for (uint8_t s = 0; s < NUM_PART_SUMS; s++) { for (uint8_t s = 0; s < NUM_PART_SUMS; s++) {
@ -1966,20 +1965,20 @@ __attribute__((force_align_arg_pointer))
} }
} }
if (!work_required) { if (work_required == false) {
pthread_mutex_unlock(&statelist_cache_mutex); pthread_mutex_unlock(&statelist_cache_mutex);
pthread_mutex_unlock(&book_of_work_mutex); pthread_mutex_unlock(&book_of_work_mutex);
} else { } else {
// we really need to calculate something // we really need to calculate something
if (even_completed) { // we had one cache hit with non-zero even states if (even_completed) { // we had one cache hit with non-zero even states
// PrintAndLogEx(NORMAL, "Thread #%u: start working on odd states p=%2d, r=%2d...\n", my_thread_number, p, r); // PrintAndLogEx(INFO, "Thread #%u: start working on odd states p=%2d, r=%2d...", my_thread_number, p, r);
sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS; sl_cache[p][r][ODD_STATE].cache_status = WORK_IN_PROGRESS;
pthread_mutex_unlock(&statelist_cache_mutex); pthread_mutex_unlock(&statelist_cache_mutex);
pthread_mutex_unlock(&book_of_work_mutex); pthread_mutex_unlock(&book_of_work_mutex);
add_matching_states(current_candidates, 2 * p, 2 * r, ODD_STATE); add_matching_states(current_candidates, 2 * p, 2 * r, ODD_STATE);
work_required = false; work_required = false;
} else if (odd_completed) { // we had one cache hit with non-zero odd_states } else if (odd_completed) { // we had one cache hit with non-zero odd_states
// PrintAndLogEx(NORMAL, "Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); // PrintAndLogEx(INFO, "Thread #%u: start working on even states q=%2d, s=%2d...", my_thread_number, q, s);
sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS; sl_cache[q][s][EVEN_STATE].cache_status = WORK_IN_PROGRESS;
pthread_mutex_unlock(&statelist_cache_mutex); pthread_mutex_unlock(&statelist_cache_mutex);
pthread_mutex_unlock(&book_of_work_mutex); pthread_mutex_unlock(&book_of_work_mutex);
@ -1996,7 +1995,7 @@ __attribute__((force_align_arg_pointer))
add_matching_states(current_candidates, 2 * p, 2 * r, ODD_STATE); add_matching_states(current_candidates, 2 * p, 2 * r, ODD_STATE);
if (current_candidates->len[ODD_STATE]) { if (current_candidates->len[ODD_STATE]) {
// PrintAndLogEx(NORMAL, "Thread #%u: start working on even states q=%2d, s=%2d...\n", my_thread_number, q, s); // PrintAndLogEx(INFO, "Thread #%u: start working on even states q=%2d, s=%2d...", my_thread_number, q, s);
add_matching_states(current_candidates, 2 * q, 2 * s, EVEN_STATE); add_matching_states(current_candidates, 2 * q, 2 * s, EVEN_STATE);
} else { // no need to calculate even states yet } else { // no need to calculate even states yet
pthread_mutex_lock(&statelist_cache_mutex); pthread_mutex_lock(&statelist_cache_mutex);
@ -2013,16 +2012,16 @@ __attribute__((force_align_arg_pointer))
pthread_mutex_unlock(&book_of_work_mutex); pthread_mutex_unlock(&book_of_work_mutex);
// if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) { // if ((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE]) {
// PrintAndLogEx(NORMAL, "Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", // PrintAndLogEx(INFO, "Candidates for p=%2u, q=%2u, r=%2u, s=%2u: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n",
// 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE], // 2*p, 2*q, 2*r, 2*s, current_candidates->len[ODD_STATE], current_candidates->len[EVEN_STATE],
// (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE], // (uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE],
// log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2)); // log((uint64_t)current_candidates->len[ODD_STATE] * current_candidates->len[EVEN_STATE])/log(2));
// uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE); // uint32_t estimated_odd = estimated_num_states_part_sum(best_first_bytes[0], p, r, ODD_STATE);
// uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE); // uint32_t estimated_even= estimated_num_states_part_sum(best_first_bytes[0], q, s, EVEN_STATE);
// uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even; // uint64_t estimated_total = (uint64_t)estimated_odd * estimated_even;
// PrintAndLogEx(NORMAL, "Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2)); // PrintAndLogEx(INFO, "Estimated: %" PRIu32 " * %" PRIu32 " = %" PRIu64 " (2^%0.1f)\n", estimated_odd, estimated_even, estimated_total, log(estimated_total) / log(2));
// if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) { // if (estimated_odd < current_candidates->len[ODD_STATE] || estimated_even < current_candidates->len[EVEN_STATE]) {
// PrintAndLogEx(NORMAL, "############################################################################ERROR! ESTIMATED < REAL !!!\n"); // PrintAndLogEx(INFO, "############################################################################ERROR! ESTIMATED < REAL !!!\n");
// //exit(2); // //exit(2);
// } // }
// } // }
@ -2127,7 +2126,7 @@ static void Tests(void) {
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
uint32_t *bitset = nonces[best_first_bytes[0]].states_bitarray[odd_even]; uint32_t *bitset = nonces[best_first_bytes[0]].states_bitarray[odd_even];
if (!test_bit24(bitset, test_state[odd_even])) { if (!test_bit24(bitset, test_state[odd_even])) {
PrintAndLogEx(NORMAL, "\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", PrintAndLogEx(WARNING, "BUG: known target key's " _YELLOW_("%s") " state is not member of first nonce byte's ( 0x%02x ) states_bitarray!",
odd_even == EVEN_STATE ? "even" : "odd ", odd_even == EVEN_STATE ? "even" : "odd ",
best_first_bytes[0]); best_first_bytes[0]);
} }
@ -2135,7 +2134,7 @@ static void Tests(void) {
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
uint32_t *bitset = all_bitflips_bitarray[odd_even]; uint32_t *bitset = all_bitflips_bitarray[odd_even];
if (!test_bit24(bitset, test_state[odd_even])) { if (!test_bit24(bitset, test_state[odd_even])) {
PrintAndLogEx(NORMAL, "\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", PrintAndLogEx(WARNING, "BUG: known target key's " _YELLOW_("%s") " state is not member of all_bitflips_bitarray!",
odd_even == EVEN_STATE ? "even" : "odd "); odd_even == EVEN_STATE ? "even" : "odd ");
} }
} }
@ -2149,7 +2148,7 @@ static void Tests2(void) {
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
uint32_t *bitset = nonces[best_first_byte_smallest_bitarray].states_bitarray[odd_even]; uint32_t *bitset = nonces[best_first_byte_smallest_bitarray].states_bitarray[odd_even];
if (!test_bit24(bitset, test_state[odd_even])) { if (!test_bit24(bitset, test_state[odd_even])) {
PrintAndLogEx(NORMAL, "\nBUG: known target key's %s state is not member of first nonce byte's (0x%02x) states_bitarray!\n", PrintAndLogEx(WARNING, "BUG: known target key's " _YELLOW_("%s") " state is not member of first nonce byte's ( 0x%02x ) states_bitarray!",
odd_even == EVEN_STATE ? "even" : "odd ", odd_even == EVEN_STATE ? "even" : "odd ",
best_first_byte_smallest_bitarray); best_first_byte_smallest_bitarray);
} }
@ -2158,7 +2157,7 @@ static void Tests2(void) {
for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) {
uint32_t *bitset = all_bitflips_bitarray[odd_even]; uint32_t *bitset = all_bitflips_bitarray[odd_even];
if (!test_bit24(bitset, test_state[odd_even])) { if (!test_bit24(bitset, test_state[odd_even])) {
PrintAndLogEx(NORMAL, "\nBUG: known target key's %s state is not member of all_bitflips_bitarray!\n", PrintAndLogEx(WARNING, "BUG: known target key's " _YELLOW_("%s") " state is not member of all_bitflips_bitarray!",
odd_even == EVEN_STATE ? "even" : "odd "); odd_even == EVEN_STATE ? "even" : "odd ");
} }
} }
@ -2221,7 +2220,7 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
char instr_set[12] = {0}; char instr_set[12] = {0};
get_SIMD_instruction_set(instr_set); get_SIMD_instruction_set(instr_set);
PrintAndLogEx(SUCCESS, "Using %s SIMD core.", instr_set); PrintAndLogEx(SUCCESS, "Using " _GREEN_("%s") " SIMD core.", instr_set);
// initialize static arrays // initialize static arrays
memset(part_sum_count, 0, sizeof(part_sum_count)); memset(part_sum_count, 0, sizeof(part_sum_count));
@ -2236,7 +2235,7 @@ int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBloc
write_stats = true; write_stats = true;
setlocale(LC_NUMERIC, ""); setlocale(LC_NUMERIC, "");
if ((fstats = fopen("hardnested_stats.txt", "a")) == NULL) { if ((fstats = fopen("hardnested_stats.txt", "a")) == NULL) {
PrintAndLogEx(WARNING, "Could not create/open file hardnested_stats.txt"); PrintAndLogEx(WARNING, "Could not create/open file " _YELLOW_("hardnested_stats.txt"));
return 3; return 3;
} }