This commit is contained in:
iceman1001 2021-04-08 10:44:31 +02:00
commit 27184d7f5b
21 changed files with 334 additions and 334 deletions

View file

@ -77,7 +77,7 @@ void RunMod(void) {
flags |= FLAG_4B_UID_IN_DATA; flags |= FLAG_4B_UID_IN_DATA;
} else if (card.uidlen == 7) { } else if (card.uidlen == 7) {
flags |= FLAG_7B_UID_IN_DATA; flags |= FLAG_7B_UID_IN_DATA;
} else if (card.uidlen == 10){ } else if (card.uidlen == 10) {
flags |= FLAG_10B_UID_IN_DATA; flags |= FLAG_10B_UID_IN_DATA;
} else { } else {
Dbprintf("Unusual UID length, something is wrong. Try again please."); Dbprintf("Unusual UID length, something is wrong. Try again please.");

View file

@ -1746,7 +1746,7 @@ static void PacketReceived(PacketCommandNG *packet) {
break; break;
} }
case CMD_SMART_RAW: { case CMD_SMART_RAW: {
SmartCardRaw((smart_card_raw_t*)packet->data.asBytes); SmartCardRaw((smart_card_raw_t *)packet->data.asBytes);
break; break;
} }
case CMD_SMART_UPLOAD: { case CMD_SMART_UPLOAD: {

View file

@ -998,311 +998,311 @@ void SniffHitag2(void) {
DbpString("Starting Hitag2 sniffing"); DbpString("Starting Hitag2 sniffing");
LED_D_ON(); LED_D_ON();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
BigBuf_free(); BigBuf_free();
BigBuf_Clear_ext(false); BigBuf_Clear_ext(false);
clear_trace(); clear_trace();
set_tracing(true); set_tracing(true);
/* /*
lf_init(false, false); lf_init(false, false);
// no logging of the raw signal // no logging of the raw signal
g_logging = lf_get_reader_modulation(); g_logging = lf_get_reader_modulation();
uint32_t total_count = 0; uint32_t total_count = 0;
uint8_t rx[20 * 8 * 2]; uint8_t rx[20 * 8 * 2];
while (BUTTON_PRESS() == false) { while (BUTTON_PRESS() == false) {
lf_reset_counter(); lf_reset_counter();
WDT_HIT(); WDT_HIT();
size_t periods = 0; size_t periods = 0;
uint16_t rxlen = 0; uint16_t rxlen = 0;
memset(rx, 0x00, sizeof(rx)); memset(rx, 0x00, sizeof(rx));
// Use the current modulation state as starting point // Use the current modulation state as starting point
uint8_t mod_state = lf_get_reader_modulation(); uint8_t mod_state = lf_get_reader_modulation();
while (rxlen < sizeof(rx)) { while (rxlen < sizeof(rx)) {
periods = lf_count_edge_periods(64); periods = lf_count_edge_periods(64);
// Evaluate the number of periods before the next edge // Evaluate the number of periods before the next edge
if (periods >= 24 && periods < 64) { if (periods >= 24 && periods < 64) {
// Detected two sequential equal bits and a modulation switch // Detected two sequential equal bits and a modulation switch
// NRZ modulation: (11 => --|) or (11 __|) // NRZ modulation: (11 => --|) or (11 __|)
rx[rxlen++] = mod_state; rx[rxlen++] = mod_state;
rx[rxlen++] = mod_state; rx[rxlen++] = mod_state;
// toggle tag modulation state // toggle tag modulation state
mod_state ^= 1; mod_state ^= 1;
} else if (periods > 0 && periods < 24) { } else if (periods > 0 && periods < 24) {
// Detected one bit and a modulation switch // Detected one bit and a modulation switch
// NRZ modulation: (1 => -|) or (0 _|) // NRZ modulation: (1 => -|) or (0 _|)
rx[rxlen++] = mod_state; rx[rxlen++] = mod_state;
mod_state ^= 1; mod_state ^= 1;
} else {
mod_state ^= 1;
break;
}
}
if (rxlen == 0)
continue;
// tag sends 11111 + uid,
bool got_tag = ((memcmp(rx, "\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00", 10) == 0));
if (got_tag) {
// mqnchester decode
bool bad_man = false;
uint16_t bitnum = 0;
for (uint16_t i = 0; i < rxlen; i += 2) {
if (rx[i] == 1 && (rx[i + 1] == 0)) {
rx[bitnum++] = 0;
} else if ((rx[i] == 0) && rx[i + 1] == 1) {
rx[bitnum++] = 1;
} else { } else {
bad_man = true; mod_state ^= 1;
break;
} }
} }
if (bad_man) {
DBG DbpString("bad manchester");
continue;
}
if (bitnum < 5) {
DBG DbpString("too few bits");
continue;
}
// skip header 11111
uint16_t i = 0;
if (got_tag) {
i = 5;
}
// Pack the response into a byte array
rxlen = 0;
for (; i < bitnum; i++) {
uint8_t b = rx[i];
rx[rxlen >> 3] |= b << (7 - (rxlen % 8));
rxlen++;
}
// skip spurious bit
if (rxlen % 8 == 1) {
rxlen--;
}
// nothing to log
if (rxlen == 0) if (rxlen == 0)
continue; continue;
LogTrace(rx, nbytes(rxlen), 0, 0, NULL, false); // tag sends 11111 + uid,
total_count += nbytes(rxlen); bool got_tag = ((memcmp(rx, "\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00", 10) == 0));
} else {
// decode reader comms
LogTrace(rx, rxlen, 0, 0, NULL, true);
total_count += rxlen;
// Pack the response into a byte array
// LogTrace(rx, nbytes(rdr), 0, 0, NULL, true); if (got_tag) {
// total_count += nbytes(rdr); // mqnchester decode
bool bad_man = false;
uint16_t bitnum = 0;
for (uint16_t i = 0; i < rxlen; i += 2) {
if (rx[i] == 1 && (rx[i + 1] == 0)) {
rx[bitnum++] = 0;
} else if ((rx[i] == 0) && rx[i + 1] == 1) {
rx[bitnum++] = 1;
} else {
bad_man = true;
}
}
if (bad_man) {
DBG DbpString("bad manchester");
continue;
}
if (bitnum < 5) {
DBG DbpString("too few bits");
continue;
}
// skip header 11111
uint16_t i = 0;
if (got_tag) {
i = 5;
}
// Pack the response into a byte array
rxlen = 0;
for (; i < bitnum; i++) {
uint8_t b = rx[i];
rx[rxlen >> 3] |= b << (7 - (rxlen % 8));
rxlen++;
}
// skip spurious bit
if (rxlen % 8 == 1) {
rxlen--;
}
// nothing to log
if (rxlen == 0)
continue;
LogTrace(rx, nbytes(rxlen), 0, 0, NULL, false);
total_count += nbytes(rxlen);
} else {
// decode reader comms
LogTrace(rx, rxlen, 0, 0, NULL, true);
total_count += rxlen;
// Pack the response into a byte array
// LogTrace(rx, nbytes(rdr), 0, 0, NULL, true);
// total_count += nbytes(rdr);
}
LED_A_INV();
} }
LED_A_INV();
}
lf_finalize(); lf_finalize();
Dbprintf("Collected %u bytes", total_count); Dbprintf("Collected %u bytes", total_count);
*/ */
// Set up eavesdropping mode, frequency divisor which will drive the FPGA // Set up eavesdropping mode, frequency divisor which will drive the FPGA
// and analog mux selection. // and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); // 125Khz FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); // 125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD); SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF(); RELAY_OFF();
// Configure output pin that is connected to the FPGA (for modulating) // Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Disable modulation, we are going to eavesdrop, not modulate ;) // Disable modulation, we are going to eavesdrop, not modulate ;)
LOW(GPIO_SSC_DOUT); LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames // Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1); AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME; AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration // Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger, // Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA. // external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH; AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
// Enable and reset counter // Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
int frame_count = 0, response = 0, overflow = 0, lastbit = 1, tag_sof = 4; int frame_count = 0, response = 0, overflow = 0, lastbit = 1, tag_sof = 4;
bool rising_edge = false, reader_frame = false, bSkip = true; bool rising_edge = false, reader_frame = false, bSkip = true;
uint8_t rx[HITAG_FRAME_LEN]; uint8_t rx[HITAG_FRAME_LEN];
size_t rxlen = 0; size_t rxlen = 0;
auth_table_len = 0; auth_table_len = 0;
auth_table_pos = 0; auth_table_pos = 0;
// Reset the received frame, frame count and timing info // Reset the received frame, frame count and timing info
memset(rx, 0x00, sizeof(rx)); memset(rx, 0x00, sizeof(rx));
auth_table = (uint8_t *)BigBuf_malloc(AUTH_TABLE_LENGTH); auth_table = (uint8_t *)BigBuf_malloc(AUTH_TABLE_LENGTH);
memset(auth_table, 0x00, AUTH_TABLE_LENGTH); memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
while(BUTTON_PRESS() == false) { while (BUTTON_PRESS() == false) {
WDT_HIT(); WDT_HIT();
memset(rx, 0x00, sizeof(rx)); memset(rx, 0x00, sizeof(rx));
// Receive frame, watch for at most T0 * EOF periods // Receive frame, watch for at most T0 * EOF periods
while (AT91C_BASE_TC1->TC_CV < (HITAG_T0 * HITAG_T_EOF) ) { while (AT91C_BASE_TC1->TC_CV < (HITAG_T0 * HITAG_T_EOF)) {
// Check if rising edge in modulation is detected // Check if rising edge in modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) { if (AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values // Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA / HITAG_T0); int ra = (AT91C_BASE_TC1->TC_RA / HITAG_T0);
// Find out if we are dealing with a rising or falling edge // Find out if we are dealing with a rising or falling edge
rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0; rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0;
// Shorter periods will only happen with reader frames // Shorter periods will only happen with reader frames
if (reader_frame == false && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) { if (reader_frame == false && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) {
// Switch from tag to reader capture // Switch from tag to reader capture
LED_C_OFF(); LED_C_OFF();
reader_frame = true; reader_frame = true;
rxlen = 0; rxlen = 0;
} }
// Only handle if reader frame and rising edge, or tag frame and falling edge // Only handle if reader frame and rising edge, or tag frame and falling edge
if (reader_frame == rising_edge) { if (reader_frame == rising_edge) {
overflow += ra; overflow += ra;
continue; continue;
} }
// Add the buffered timing values of earlier captured edges which were skipped // Add the buffered timing values of earlier captured edges which were skipped
ra += overflow; ra += overflow;
overflow = 0; overflow = 0;
if (reader_frame) { if (reader_frame) {
LED_B_ON(); LED_B_ON();
// Capture reader frame // Capture reader frame
if(ra >= HITAG_T_STOP) { if (ra >= HITAG_T_STOP) {
// if (rxlen != 0) { // if (rxlen != 0) {
//DbpString("wierd0?"); //DbpString("wierd0?");
// } // }
// Capture the T0 periods that have passed since last communication or field drop (reset) // Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW); response = (ra - HITAG_T_LOW);
} else if(ra >= HITAG_T_1_MIN ) { } else if (ra >= HITAG_T_1_MIN) {
// '1' bit // '1' bit
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8)); rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++; rxlen++;
} else if(ra >= HITAG_T_0_MIN) { } else if (ra >= HITAG_T_0_MIN) {
// '0' bit // '0' bit
rx[rxlen / 8] |= 0 << (7-(rxlen%8)); rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++; rxlen++;
} }
} else { } else {
LED_C_ON(); LED_C_ON();
// Capture tag frame (manchester decoding using only falling edges) // Capture tag frame (manchester decoding using only falling edges)
if(ra >= HITAG_T_EOF) { if (ra >= HITAG_T_EOF) {
// if (rxlen != 0) { // if (rxlen != 0) {
//DbpString("wierd1?"); //DbpString("wierd1?");
// } // }
// Capture the T0 periods that have passed since last communication or field drop (reset) // Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_| // We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra - HITAG_T_TAG_HALF_PERIOD; response = ra - HITAG_T_TAG_HALF_PERIOD;
} else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) { } else if (ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101) // Manchester coding example |-_|_-|-_| (101)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8)); rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++; rxlen++;
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8)); rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++; rxlen++;
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) { } else if (ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01) // Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8)); rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++; rxlen++;
// We have to skip this half period at start and add the 'one' the second time // We have to skip this half period at start and add the 'one' the second time
if (bSkip == false) { if (bSkip == false) {
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8)); rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++; rxlen++;
} }
lastbit = !lastbit; lastbit = !lastbit;
bSkip = !bSkip; bSkip = !bSkip;
} else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) { } else if (ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11) // Manchester coding example |_-|_-| (00) or |-_|-_| (11)
if (tag_sof) { if (tag_sof) {
// Ignore bits that are transmitted during SOF // Ignore bits that are transmitted during SOF
tag_sof--; tag_sof--;
} else { } else {
// bit is same as last bit // bit is same as last bit
rx[rxlen / 8] |= lastbit << (7 - (rxlen % 8)); rx[rxlen / 8] |= lastbit << (7 - (rxlen % 8));
rxlen++; rxlen++;
} }
} }
} }
} }
} }
// Check if frame was captured // Check if frame was captured
if(rxlen) { if (rxlen) {
frame_count++; frame_count++;
LogTrace(rx, nbytes(rxlen), response, 0, NULL, reader_frame); LogTrace(rx, nbytes(rxlen), response, 0, NULL, reader_frame);
// Check if we recognize a valid authentication attempt // Check if we recognize a valid authentication attempt
if (nbytes(rxlen) == 8) { if (nbytes(rxlen) == 8) {
// Store the authentication attempt // Store the authentication attempt
if (auth_table_len < (AUTH_TABLE_LENGTH - 8)) { if (auth_table_len < (AUTH_TABLE_LENGTH - 8)) {
memcpy(auth_table + auth_table_len, rx, 8); memcpy(auth_table + auth_table_len, rx, 8);
auth_table_len += 8; auth_table_len += 8;
} }
} }
// Reset the received frame and response timing info // Reset the received frame and response timing info
memset(rx, 0x00, sizeof(rx)); memset(rx, 0x00, sizeof(rx));
response = 0; response = 0;
reader_frame = false; reader_frame = false;
lastbit = 1; lastbit = 1;
bSkip = true; bSkip = true;
tag_sof = 4; tag_sof = 4;
overflow = 0; overflow = 0;
LED_B_OFF(); LED_B_OFF();
LED_C_OFF(); LED_C_OFF();
} else { } else {
// Save the timer overflow, will be 0 when frame was received // Save the timer overflow, will be 0 when frame was received
overflow += (AT91C_BASE_TC1->TC_CV / HITAG_T0); overflow += (AT91C_BASE_TC1->TC_CV / HITAG_T0);
} }
// Reset the frame length // Reset the frame length
rxlen = 0; rxlen = 0;
// Reset the timer to restart while-loop that receives frames // Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
} AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
}
LEDsoff(); LEDsoff();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false); set_tracing(false);
Dbprintf("frame received: %d",frame_count); Dbprintf("frame received: %d", frame_count);
Dbprintf("Authentication Attempts: %d",(auth_table_len / 8)); Dbprintf("Authentication Attempts: %d", (auth_table_len / 8));
} }

View file

@ -758,11 +758,11 @@ void SmartCardRaw(smart_card_raw_t *p) {
LogTrace(p->data, p->len, 0, 0, NULL, true); LogTrace(p->data, p->len, 0, 0, NULL, true);
bool res = I2C_BufferWrite( bool res = I2C_BufferWrite(
p->data, p->data,
p->len, p->len,
((flags & SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND), ((flags & SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND),
I2C_DEVICE_ADDRESS_MAIN I2C_DEVICE_ADDRESS_MAIN
); );
if (res == false && DBGLEVEL > 3) { if (res == false && DBGLEVEL > 3) {
DbpString(I2C_ERROR); DbpString(I2C_ERROR);
reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0); reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0);

View file

@ -220,8 +220,8 @@ void lf_init(bool reader, bool simulate) {
// When in reader mode, give the field a bit of time to settle. // When in reader mode, give the field a bit of time to settle.
// 313T0 = 313 * 8us = 2504us = 2.5ms Hitag2 tags needs to be fully powered. // 313T0 = 313 * 8us = 2504us = 2.5ms Hitag2 tags needs to be fully powered.
// if (reader) { // if (reader) {
// 10 ms // 10 ms
SpinDelay(10); SpinDelay(10);
// } // }
// Steal this pin from the SSP (SPI communication channel with fpga) and use it to control the modulation // Steal this pin from the SSP (SPI communication channel with fpga) and use it to control the modulation

View file

@ -663,10 +663,10 @@ void MifareUSetPwd(uint8_t arg0, uint8_t *datain) {
// Return 1 if the nonce is invalid else return 0 // Return 1 if the nonce is invalid else return 0
static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) { static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) {
return ( return (
(oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) && \ (oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) && \
(oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) && \ (oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) && \
(oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0))) (oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0)))
) ? 1 : 0; ) ? 1 : 0;
} }
void MifareAcquireNonces(uint32_t arg0, uint32_t flags) { void MifareAcquireNonces(uint32_t arg0, uint32_t flags) {

View file

@ -545,24 +545,24 @@ void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint1
counter++; counter++;
} }
/* /*
// find reader field // find reader field
if (cardSTATE == MFEMUL_NOFIELD) { if (cardSTATE == MFEMUL_NOFIELD) {
#if defined RDV4 #if defined RDV4
vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * SumAdc(ADC_CHAN_HF_RDV40, 32)) >> 15; vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * SumAdc(ADC_CHAN_HF_RDV40, 32)) >> 15;
#else #else
vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15; vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
#endif #endif
if (vHf > MF_MINFIELDV) { if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE(); cardSTATE_TO_IDLE();
LED_A_ON(); LED_A_ON();
} }
button_pushed = BUTTON_PRESS(); button_pushed = BUTTON_PRESS();
continue; continue;
} }
*/ */
FpgaEnableTracing(); FpgaEnableTracing();
//Now, get data //Now, get data

View file

@ -148,7 +148,7 @@ bool nfc3d_amiibo_load_keys(nfc3d_amiibo_keys *amiiboKeys) {
return false; return false;
} }
if ((amiiboKeys->data.magicBytesSize > 16) || (amiiboKeys->tag.magicBytesSize > 16)) { if ((amiiboKeys->data.magicBytesSize > 16) || (amiiboKeys->tag.magicBytesSize > 16)) {
free(dump); free(dump);
return false; return false;
} }

View file

@ -376,7 +376,7 @@ static void precalculate_bit0_bitflip_bitarrays(uint8_t const bitflip, uint16_t
count[odd_even], count[odd_even],
odd_even == EVEN_STATE ? "even" : "odd", odd_even == EVEN_STATE ? "even" : "odd",
bitflip, bitflip,
(1 << 24) - count[odd_even], (1 << 24) - count[odd_even],
(float)((1 << 24) - count[odd_even]) / (1 << 24) * 100.0); (float)((1 << 24) - count[odd_even]) / (1 << 24) * 100.0);
#ifndef TEST_RUN #ifndef TEST_RUN
write_bitflips_file(odd_even, bitflip, sum_a0, test_bitarray[odd_even], count[odd_even]); write_bitflips_file(odd_even, bitflip, sum_a0, test_bitarray[odd_even], count[odd_even]);
@ -404,7 +404,7 @@ static void precalculate_bit0_bitflip_bitarrays(uint8_t const bitflip, uint16_t
count[odd_even], count[odd_even],
odd_even == EVEN_STATE ? "even" : "odd", odd_even == EVEN_STATE ? "even" : "odd",
bitflip | BITFLIP_2ND_BYTE, bitflip | BITFLIP_2ND_BYTE,
(1 << 24) - count[odd_even], (1 << 24) - count[odd_even],
(float)((1 << 24) - count[odd_even]) / (1 << 24) * 100.0); (float)((1 << 24) - count[odd_even]) / (1 << 24) * 100.0);
#ifndef TEST_RUN #ifndef TEST_RUN
write_bitflips_file(odd_even, bitflip | BITFLIP_2ND_BYTE, sum_a0, test_bitarray_2nd, count[odd_even]); write_bitflips_file(odd_even, bitflip | BITFLIP_2ND_BYTE, sum_a0, test_bitarray_2nd, count[odd_even]);
@ -490,7 +490,7 @@ static void precalculate_bit0_bitflip_bitarrays(uint8_t const bitflip, uint16_t
count[odd_even], count[odd_even],
odd_even == EVEN_STATE ? "even" : "odd", odd_even == EVEN_STATE ? "even" : "odd",
bitflip | 0x100, bitflip | 0x100,
(1 << 24) - count[odd_even], (1 << 24) - count[odd_even],
(float)((1 << 24) - count[odd_even]) / (1 << 24) * 100.0); (float)((1 << 24) - count[odd_even]) / (1 << 24) * 100.0);
#ifndef TEST_RUN #ifndef TEST_RUN
write_bitflips_file(odd_even, bitflip | 0x100, sum_a0, test_not_bitarray[odd_even], count[odd_even]); write_bitflips_file(odd_even, bitflip | 0x100, sum_a0, test_not_bitarray[odd_even], count[odd_even]);

View file

@ -440,15 +440,15 @@ static void showSavePathState(savePaths_t path_index, prefShowOpt_t opt) {
if (path_index < spItemCount) { if (path_index < spItemCount) {
if ((session.defaultPaths[path_index] == NULL) || (strcmp(session.defaultPaths[path_index], "") == 0)) { if ((session.defaultPaths[path_index] == NULL) || (strcmp(session.defaultPaths[path_index], "") == 0)) {
PrintAndLogEx(INFO, " %s %s "_WHITE_("not set"), PrintAndLogEx(INFO, " %s %s "_WHITE_("not set"),
prefShowMsg(opt), prefShowMsg(opt),
s s
); );
} else { } else {
PrintAndLogEx(INFO, " %s %s "_GREEN_("%s"), PrintAndLogEx(INFO, " %s %s "_GREEN_("%s"),
prefShowMsg(opt), prefShowMsg(opt),
s, s,
session.defaultPaths[path_index] session.defaultPaths[path_index]
); );
} }
} }
} }

View file

@ -308,7 +308,7 @@ char *sprint_bin_break(const uint8_t *data, const size_t len, const uint8_t brea
if (breaks) { if (breaks) {
if (((i + 1) % breaks) == 0) { if (((i + 1) % breaks) == 0) {
*(tmp++) = '\n'; *(tmp++) = '\n';
} }
} }
} }
@ -1026,7 +1026,7 @@ int hexstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str)
int binstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) { int binstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str) {
uint32_t n = 0, i = 0; uint32_t n = 0, i = 0;
for(;;) { for (;;) {
int res = sscanf(&str[i], "%1u", &n); int res = sscanf(&str[i], "%1u", &n);
if ((res != 1) || (n > 1)) if ((res != 1) || (n > 1))
@ -1050,7 +1050,7 @@ int binstring_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, const char *str)
*/ */
int binarray_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, uint8_t *arr, int arrlen) { int binarray_to_u96(uint32_t *hi2, uint32_t *hi, uint32_t *lo, uint8_t *arr, int arrlen) {
int i = 0; int i = 0;
for(; i < arrlen; i++) { for (; i < arrlen; i++) {
uint8_t n = arr[i]; uint8_t n = arr[i];
if (n > 1) if (n > 1)
break; break;

View file

@ -137,7 +137,7 @@ int GetConfigCardByIdx(uint8_t typ, uint8_t *blocks) {
int resp_len = 0; int resp_len = 0;
uint8_t resp[254] = {0}; uint8_t resp[254] = {0};
uint8_t c[] = {0x96, CARD_INS_CC, 0x00, 0x00, 17, typ, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t c[] = {0x96, CARD_INS_CC, 0x00, 0x00, 17, typ, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
ExchangeAPDUSC(false, c, sizeof(c), false, true, resp, sizeof(resp), &resp_len); ExchangeAPDUSC(false, c, sizeof(c), false, true, resp, sizeof(resp), &resp_len);
if (resp_len < 2) { if (resp_len < 2) {

View file

@ -137,7 +137,7 @@ static int param_gethex_to_eol(const char *line, int paramnum, uint8_t *data, in
} }
static void hex_to_buffer(const uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len, static void hex_to_buffer(const uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len,
const size_t min_str_len, const size_t spaces_between, bool uppercase) { const size_t min_str_len, const size_t spaces_between, bool uppercase) {
if (buf == NULL) return; if (buf == NULL) return;
@ -216,7 +216,7 @@ static void *brute_thread(void *arguments) {
crypto1_deinit(pcs); crypto1_deinit(pcs);
if (CheckCrc14443(CRC_14443_A, dec , 4)) { if (CheckCrc14443(CRC_14443_A, dec, 4)) {
// check crc-16 in the end // check crc-16 in the end
@ -267,7 +267,7 @@ int main(int argc, char *argv[]) {
printf("partial key.. %08x\n", part_key); printf("partial key.. %08x\n", part_key);
printf("nt enc....... %08x\n", nt_enc); printf("nt enc....... %08x\n", nt_enc);
printf("nr enc....... %08x\n", nr_enc); printf("nr enc....... %08x\n", nr_enc);
printf("next encrypted cmd: %s\n", sprint_hex_inrow_ex(enc, ENC_LEN ,0)); printf("next encrypted cmd: %s\n", sprint_hex_inrow_ex(enc, ENC_LEN, 0));
clock_t t1 = clock(); clock_t t1 = clock();