This commit is contained in:
iceman1001 2021-04-08 10:44:31 +02:00
commit 27184d7f5b
21 changed files with 334 additions and 334 deletions

View file

@ -5,7 +5,7 @@
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// main code for hf_craftbyte
// main code for hf_craftbyte
//-----------------------------------------------------------------------------
//
//
@ -77,7 +77,7 @@ void RunMod(void) {
flags |= FLAG_4B_UID_IN_DATA;
} else if (card.uidlen == 7) {
flags |= FLAG_7B_UID_IN_DATA;
} else if (card.uidlen == 10){
} else if (card.uidlen == 10) {
flags |= FLAG_10B_UID_IN_DATA;
} else {
Dbprintf("Unusual UID length, something is wrong. Try again please.");

View file

@ -327,7 +327,7 @@ void RunMod(void) {
if (i == 4) {
// Get NDEF Data
if (apdubuffer[1] == 0x1b && apdubuffer[2] == 0xd1) {
if (apdubuffer[1] == 0x1b && apdubuffer[2] == 0xd1) {
gotndef = true;
memcpy(&ndef, &apdubuffer, apdulen - 2);
break;

View file

@ -1112,7 +1112,7 @@ static void PacketReceived(PacketCommandNG *packet) {
}
break;
}
case CMD_LF_HITAG_ELOAD: {
case CMD_LF_HITAG_ELOAD: {
/*
struct p {
uint16_t len;
@ -1746,7 +1746,7 @@ static void PacketReceived(PacketCommandNG *packet) {
break;
}
case CMD_SMART_RAW: {
SmartCardRaw((smart_card_raw_t*)packet->data.asBytes);
SmartCardRaw((smart_card_raw_t *)packet->data.asBytes);
break;
}
case CMD_SMART_UPLOAD: {

View file

@ -592,7 +592,7 @@ void felica_sniff(uint32_t samplesToSkip, uint32_t triggersToSkip) {
WDT_HIT();
// since simulation is a tight time critical loop,
// we only check for user request to end at iteration 3000, 9000.
// we only check for user request to end at iteration 3000, 9000.
if (flip == 3) {
if (data_available()) {
retval = PM3_EOPABORTED;
@ -689,7 +689,7 @@ void felica_sim_lite(uint8_t *uid) {
uint8_t *curresp = NULL;
bool listenmode = true;
// uint32_t frtm = GetCountSspClk();
uint8_t flip = 0;
uint16_t checker = 0;
for (;;) {
@ -697,7 +697,7 @@ void felica_sim_lite(uint8_t *uid) {
WDT_HIT();
// since simulation is a tight time critical loop,
// we only check for user request to end at iteration 3000, 9000.
// we only check for user request to end at iteration 3000, 9000.
if (flip == 3) {
if (data_available()) {
retval = PM3_EOPABORTED;

View file

@ -998,311 +998,311 @@ void SniffHitag2(void) {
DbpString("Starting Hitag2 sniffing");
LED_D_ON();
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
BigBuf_free();
BigBuf_Clear_ext(false);
clear_trace();
set_tracing(true);
/*
lf_init(false, false);
/*
lf_init(false, false);
// no logging of the raw signal
g_logging = lf_get_reader_modulation();
uint32_t total_count = 0;
// no logging of the raw signal
g_logging = lf_get_reader_modulation();
uint32_t total_count = 0;
uint8_t rx[20 * 8 * 2];
while (BUTTON_PRESS() == false) {
uint8_t rx[20 * 8 * 2];
while (BUTTON_PRESS() == false) {
lf_reset_counter();
lf_reset_counter();
WDT_HIT();
WDT_HIT();
size_t periods = 0;
uint16_t rxlen = 0;
memset(rx, 0x00, sizeof(rx));
size_t periods = 0;
uint16_t rxlen = 0;
memset(rx, 0x00, sizeof(rx));
// Use the current modulation state as starting point
uint8_t mod_state = lf_get_reader_modulation();
// Use the current modulation state as starting point
uint8_t mod_state = lf_get_reader_modulation();
while (rxlen < sizeof(rx)) {
periods = lf_count_edge_periods(64);
// Evaluate the number of periods before the next edge
if (periods >= 24 && periods < 64) {
// Detected two sequential equal bits and a modulation switch
// NRZ modulation: (11 => --|) or (11 __|)
rx[rxlen++] = mod_state;
rx[rxlen++] = mod_state;
// toggle tag modulation state
mod_state ^= 1;
} else if (periods > 0 && periods < 24) {
// Detected one bit and a modulation switch
// NRZ modulation: (1 => -|) or (0 _|)
rx[rxlen++] = mod_state;
mod_state ^= 1;
} else {
mod_state ^= 1;
break;
}
}
if (rxlen == 0)
continue;
// tag sends 11111 + uid,
bool got_tag = ((memcmp(rx, "\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00", 10) == 0));
if (got_tag) {
// mqnchester decode
bool bad_man = false;
uint16_t bitnum = 0;
for (uint16_t i = 0; i < rxlen; i += 2) {
if (rx[i] == 1 && (rx[i + 1] == 0)) {
rx[bitnum++] = 0;
} else if ((rx[i] == 0) && rx[i + 1] == 1) {
rx[bitnum++] = 1;
while (rxlen < sizeof(rx)) {
periods = lf_count_edge_periods(64);
// Evaluate the number of periods before the next edge
if (periods >= 24 && periods < 64) {
// Detected two sequential equal bits and a modulation switch
// NRZ modulation: (11 => --|) or (11 __|)
rx[rxlen++] = mod_state;
rx[rxlen++] = mod_state;
// toggle tag modulation state
mod_state ^= 1;
} else if (periods > 0 && periods < 24) {
// Detected one bit and a modulation switch
// NRZ modulation: (1 => -|) or (0 _|)
rx[rxlen++] = mod_state;
mod_state ^= 1;
} else {
bad_man = true;
mod_state ^= 1;
break;
}
}
if (bad_man) {
DBG DbpString("bad manchester");
continue;
}
if (bitnum < 5) {
DBG DbpString("too few bits");
continue;
}
// skip header 11111
uint16_t i = 0;
if (got_tag) {
i = 5;
}
// Pack the response into a byte array
rxlen = 0;
for (; i < bitnum; i++) {
uint8_t b = rx[i];
rx[rxlen >> 3] |= b << (7 - (rxlen % 8));
rxlen++;
}
// skip spurious bit
if (rxlen % 8 == 1) {
rxlen--;
}
// nothing to log
if (rxlen == 0)
continue;
LogTrace(rx, nbytes(rxlen), 0, 0, NULL, false);
total_count += nbytes(rxlen);
} else {
// decode reader comms
LogTrace(rx, rxlen, 0, 0, NULL, true);
total_count += rxlen;
// Pack the response into a byte array
// tag sends 11111 + uid,
bool got_tag = ((memcmp(rx, "\x01\x00\x01\x00\x01\x00\x01\x00\x01\x00", 10) == 0));
// LogTrace(rx, nbytes(rdr), 0, 0, NULL, true);
// total_count += nbytes(rdr);
if (got_tag) {
// mqnchester decode
bool bad_man = false;
uint16_t bitnum = 0;
for (uint16_t i = 0; i < rxlen; i += 2) {
if (rx[i] == 1 && (rx[i + 1] == 0)) {
rx[bitnum++] = 0;
} else if ((rx[i] == 0) && rx[i + 1] == 1) {
rx[bitnum++] = 1;
} else {
bad_man = true;
}
}
if (bad_man) {
DBG DbpString("bad manchester");
continue;
}
if (bitnum < 5) {
DBG DbpString("too few bits");
continue;
}
// skip header 11111
uint16_t i = 0;
if (got_tag) {
i = 5;
}
// Pack the response into a byte array
rxlen = 0;
for (; i < bitnum; i++) {
uint8_t b = rx[i];
rx[rxlen >> 3] |= b << (7 - (rxlen % 8));
rxlen++;
}
// skip spurious bit
if (rxlen % 8 == 1) {
rxlen--;
}
// nothing to log
if (rxlen == 0)
continue;
LogTrace(rx, nbytes(rxlen), 0, 0, NULL, false);
total_count += nbytes(rxlen);
} else {
// decode reader comms
LogTrace(rx, rxlen, 0, 0, NULL, true);
total_count += rxlen;
// Pack the response into a byte array
// LogTrace(rx, nbytes(rdr), 0, 0, NULL, true);
// total_count += nbytes(rdr);
}
LED_A_INV();
}
LED_A_INV();
}
lf_finalize();
lf_finalize();
Dbprintf("Collected %u bytes", total_count);
Dbprintf("Collected %u bytes", total_count);
*/
*/
// Set up eavesdropping mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); // 125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Set up eavesdropping mode, frequency divisor which will drive the FPGA
// and analog mux selection.
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT | FPGA_LF_EDGE_DETECT_TOGGLE_MODE);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); // 125Khz
SetAdcMuxFor(GPIO_MUXSEL_LOPKD);
RELAY_OFF();
// Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Configure output pin that is connected to the FPGA (for modulating)
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// Disable modulation, we are going to eavesdrop, not modulate ;)
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
// Disable modulation, we are going to eavesdrop, not modulate ;)
LOW(GPIO_SSC_DOUT);
// Enable Peripheral Clock for TIMER_CLOCK1, used to capture edges of the reader frames
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC1);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
// Disable timer during configuration
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
// Capture mode, defaul timer source = MCK/2 (TIMER_CLOCK1), TIOA is external trigger,
// external trigger rising edge, load RA on rising edge of TIOA.
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK | AT91C_TC_ETRGEDG_BOTH | AT91C_TC_ABETRG | AT91C_TC_LDRA_BOTH;
// Enable and reset counter
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
int frame_count = 0, response = 0, overflow = 0, lastbit = 1, tag_sof = 4;
bool rising_edge = false, reader_frame = false, bSkip = true;
uint8_t rx[HITAG_FRAME_LEN];
size_t rxlen = 0;
auth_table_len = 0;
auth_table_pos = 0;
bool rising_edge = false, reader_frame = false, bSkip = true;
uint8_t rx[HITAG_FRAME_LEN];
size_t rxlen = 0;
auth_table_len = 0;
auth_table_pos = 0;
// Reset the received frame, frame count and timing info
memset(rx, 0x00, sizeof(rx));
// Reset the received frame, frame count and timing info
memset(rx, 0x00, sizeof(rx));
auth_table = (uint8_t *)BigBuf_malloc(AUTH_TABLE_LENGTH);
memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
memset(auth_table, 0x00, AUTH_TABLE_LENGTH);
while(BUTTON_PRESS() == false) {
while (BUTTON_PRESS() == false) {
WDT_HIT();
WDT_HIT();
memset(rx, 0x00, sizeof(rx));
// Receive frame, watch for at most T0 * EOF periods
while (AT91C_BASE_TC1->TC_CV < (HITAG_T0 * HITAG_T_EOF) ) {
// Check if rising edge in modulation is detected
if(AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA / HITAG_T0);
// Find out if we are dealing with a rising or falling edge
rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0;
// Receive frame, watch for at most T0 * EOF periods
while (AT91C_BASE_TC1->TC_CV < (HITAG_T0 * HITAG_T_EOF)) {
// Check if rising edge in modulation is detected
if (AT91C_BASE_TC1->TC_SR & AT91C_TC_LDRAS) {
// Retrieve the new timing values
int ra = (AT91C_BASE_TC1->TC_RA / HITAG_T0);
// Shorter periods will only happen with reader frames
if (reader_frame == false && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) {
// Switch from tag to reader capture
LED_C_OFF();
reader_frame = true;
rxlen = 0;
}
// Only handle if reader frame and rising edge, or tag frame and falling edge
if (reader_frame == rising_edge) {
// Find out if we are dealing with a rising or falling edge
rising_edge = (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME) > 0;
// Shorter periods will only happen with reader frames
if (reader_frame == false && rising_edge && ra < HITAG_T_TAG_CAPTURE_ONE_HALF) {
// Switch from tag to reader capture
LED_C_OFF();
reader_frame = true;
rxlen = 0;
}
// Only handle if reader frame and rising edge, or tag frame and falling edge
if (reader_frame == rising_edge) {
overflow += ra;
continue;
}
// Add the buffered timing values of earlier captured edges which were skipped
ra += overflow;
overflow = 0;
if (reader_frame) {
LED_B_ON();
// Capture reader frame
if(ra >= HITAG_T_STOP) {
continue;
}
// Add the buffered timing values of earlier captured edges which were skipped
ra += overflow;
overflow = 0;
if (reader_frame) {
LED_B_ON();
// Capture reader frame
if (ra >= HITAG_T_STOP) {
// if (rxlen != 0) {
//DbpString("wierd0?");
//DbpString("wierd0?");
// }
// Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW);
} else if(ra >= HITAG_T_1_MIN ) {
// '1' bit
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
} else if(ra >= HITAG_T_0_MIN) {
// '0' bit
rx[rxlen / 8] |= 0 << (7-(rxlen%8));
rxlen++;
}
// Capture the T0 periods that have passed since last communication or field drop (reset)
response = (ra - HITAG_T_LOW);
} else if (ra >= HITAG_T_1_MIN) {
// '1' bit
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
} else if (ra >= HITAG_T_0_MIN) {
// '0' bit
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
}
} else {
LED_C_ON();
// Capture tag frame (manchester decoding using only falling edges)
if(ra >= HITAG_T_EOF) {
} else {
LED_C_ON();
// Capture tag frame (manchester decoding using only falling edges)
if (ra >= HITAG_T_EOF) {
// if (rxlen != 0) {
//DbpString("wierd1?");
//DbpString("wierd1?");
// }
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra - HITAG_T_TAG_HALF_PERIOD;
// Capture the T0 periods that have passed since last communication or field drop (reset)
// We always recieve a 'one' first, which has the falling edge after a half period |-_|
response = ra - HITAG_T_TAG_HALF_PERIOD;
} else if(ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
} else if (ra >= HITAG_T_TAG_CAPTURE_FOUR_HALF) {
// Manchester coding example |-_|_-|-_| (101)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
} else if(ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (bSkip == false) {
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if (ra >= HITAG_T_TAG_CAPTURE_THREE_HALF) {
// Manchester coding example |_-|...|_-|-_| (0...01)
rx[rxlen / 8] |= 0 << (7 - (rxlen % 8));
rxlen++;
// We have to skip this half period at start and add the 'one' the second time
if (bSkip == false) {
rx[rxlen / 8] |= 1 << (7 - (rxlen % 8));
rxlen++;
}
lastbit = !lastbit;
bSkip = !bSkip;
} else if(ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7 - (rxlen % 8));
rxlen++;
}
}
}
}
}
// Check if frame was captured
if(rxlen) {
frame_count++;
LogTrace(rx, nbytes(rxlen), response, 0, NULL, reader_frame);
// Check if we recognize a valid authentication attempt
if (nbytes(rxlen) == 8) {
// Store the authentication attempt
if (auth_table_len < (AUTH_TABLE_LENGTH - 8)) {
memcpy(auth_table + auth_table_len, rx, 8);
auth_table_len += 8;
}
}
// Reset the received frame and response timing info
memset(rx, 0x00, sizeof(rx));
response = 0;
reader_frame = false;
lastbit = 1;
bSkip = true;
tag_sof = 4;
overflow = 0;
LED_B_OFF();
LED_C_OFF();
} else {
// Save the timer overflow, will be 0 when frame was received
overflow += (AT91C_BASE_TC1->TC_CV / HITAG_T0);
}
// Reset the frame length
rxlen = 0;
// Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
} else if (ra >= HITAG_T_TAG_CAPTURE_TWO_HALF) {
// Manchester coding example |_-|_-| (00) or |-_|-_| (11)
if (tag_sof) {
// Ignore bits that are transmitted during SOF
tag_sof--;
} else {
// bit is same as last bit
rx[rxlen / 8] |= lastbit << (7 - (rxlen % 8));
rxlen++;
}
}
}
}
}
// Check if frame was captured
if (rxlen) {
frame_count++;
LogTrace(rx, nbytes(rxlen), response, 0, NULL, reader_frame);
// Check if we recognize a valid authentication attempt
if (nbytes(rxlen) == 8) {
// Store the authentication attempt
if (auth_table_len < (AUTH_TABLE_LENGTH - 8)) {
memcpy(auth_table + auth_table_len, rx, 8);
auth_table_len += 8;
}
}
// Reset the received frame and response timing info
memset(rx, 0x00, sizeof(rx));
response = 0;
reader_frame = false;
lastbit = 1;
bSkip = true;
tag_sof = 4;
overflow = 0;
LED_B_OFF();
LED_C_OFF();
} else {
// Save the timer overflow, will be 0 when frame was received
overflow += (AT91C_BASE_TC1->TC_CV / HITAG_T0);
}
// Reset the frame length
rxlen = 0;
// Reset the timer to restart while-loop that receives frames
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
}
AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG;
}
LEDsoff();
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
set_tracing(false);
Dbprintf("frame received: %d",frame_count);
Dbprintf("Authentication Attempts: %d",(auth_table_len / 8));
Dbprintf("frame received: %d", frame_count);
Dbprintf("Authentication Attempts: %d", (auth_table_len / 8));
}

View file

@ -735,7 +735,7 @@ void SmartCardRaw(smart_card_raw_t *p) {
if ((flags & SC_LOG) == SC_LOG)
set_tracing(true);
else
else
set_tracing(false);
if ((flags & SC_CONNECT) == SC_CONNECT) {
@ -758,11 +758,11 @@ void SmartCardRaw(smart_card_raw_t *p) {
LogTrace(p->data, p->len, 0, 0, NULL, true);
bool res = I2C_BufferWrite(
p->data,
p->len,
((flags & SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND),
I2C_DEVICE_ADDRESS_MAIN
);
p->data,
p->len,
((flags & SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND),
I2C_DEVICE_ADDRESS_MAIN
);
if (res == false && DBGLEVEL > 3) {
DbpString(I2C_ERROR);
reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0);

View file

@ -79,7 +79,7 @@ static size_t lf_count_edge_periods_ex(size_t max, bool wait, bool detect_gap) {
#define LIMIT_DEV 20
// timeout limit to 100 000 w/o
// timeout limit to 100 000 w/o
uint32_t timeout = 100000;
size_t periods = 0;
uint8_t avg_peak = adc_avg + LIMIT_DEV;
@ -135,7 +135,7 @@ static size_t lf_count_edge_periods_ex(size_t max, bool wait, bool detect_gap) {
}
}
}
}
}
previous_adc_val = adc_val;
@ -220,8 +220,8 @@ void lf_init(bool reader, bool simulate) {
// When in reader mode, give the field a bit of time to settle.
// 313T0 = 313 * 8us = 2504us = 2.5ms Hitag2 tags needs to be fully powered.
// if (reader) {
// 10 ms
SpinDelay(10);
// 10 ms
SpinDelay(10);
// }
// Steal this pin from the SSP (SPI communication channel with fpga) and use it to control the modulation

View file

@ -663,10 +663,10 @@ void MifareUSetPwd(uint8_t arg0, uint8_t *datain) {
// Return 1 if the nonce is invalid else return 0
static int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) {
return (
(oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) && \
(oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) && \
(oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0)))
) ? 1 : 0;
(oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1, 16))) && \
(oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1, 8))) && \
(oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1, 0)))
) ? 1 : 0;
}
void MifareAcquireNonces(uint32_t arg0, uint32_t flags) {

View file

@ -545,24 +545,24 @@ void Mifare1ksim(uint16_t flags, uint8_t exitAfterNReads, uint8_t *datain, uint1
counter++;
}
/*
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) {
/*
// find reader field
if (cardSTATE == MFEMUL_NOFIELD) {
#if defined RDV4
vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * SumAdc(ADC_CHAN_HF_RDV40, 32)) >> 15;
#else
vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
#endif
#if defined RDV4
vHf = (MAX_ADC_HF_VOLTAGE_RDV40 * SumAdc(ADC_CHAN_HF_RDV40, 32)) >> 15;
#else
vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15;
#endif
if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE();
LED_A_ON();
}
button_pushed = BUTTON_PRESS();
continue;
}
*/
if (vHf > MF_MINFIELDV) {
cardSTATE_TO_IDLE();
LED_A_ON();
}
button_pushed = BUTTON_PRESS();
continue;
}
*/
FpgaEnableTracing();
//Now, get data

View file

@ -213,7 +213,7 @@ uint32_t size_in_spiffs(const char *filename) {
if (SPIFFS_stat(&fs, filename, &s) < 0) {
Dbprintf("errno %i\n", SPIFFS_errno(&fs));
return 0;
}
}
return s.size;
}