CHG: extracted some timers functionality, to get unified access to a timer/clock which counts in ticks. Moved stuff from util.c

This commit is contained in:
iceman1001 2016-09-21 19:03:32 +02:00
commit 22f4dca88c
10 changed files with 372 additions and 274 deletions

View file

@ -50,7 +50,8 @@ THUMBSRC = start.c \
util.c \
string.c \
usb_cdc.c \
cmd.c
cmd.c \
ticks.c
# These are to be compiled in ARM mode
ARMSRC = fpgaloader.c \

View file

@ -7,7 +7,6 @@
//-----------------------------------------------------------------------------
// LEGIC RF simulation code
//-----------------------------------------------------------------------------
#include "legicrf.h"
static struct legic_frame {
@ -73,7 +72,7 @@ static void setup_timer(void) {
//#define RWD_TIME_0 90 /* RWD_TIME_PAUSE off, 40us on = 60us */
//#define RWD_TIME_PAUSE 30 /* 20us */
// testing calculating in ticks instead of (us) microseconds.
// testing calculating in (us) microseconds.
#define RWD_TIME_1 120 // READER_TIME_PAUSE 20us off, 80us on = 100us 80 * 1.5 == 120ticks
#define RWD_TIME_0 60 // READER_TIME_PAUSE 20us off, 40us on = 60us 40 * 1.5 == 60ticks
#define RWD_TIME_PAUSE 30 // 20us == 20 * 1.5 == 30ticks */
@ -107,36 +106,17 @@ uint32_t sendFrameStop = 0;
#ifndef COIL_PULSE
# define COIL_PULSE(x) { \
SHORT_COIL; \
Wait(RWD_TIME_PAUSE); \
WaitTicks(RWD_TIME_PAUSE); \
OPEN_COIL; \
Wait((x)); \
WaitTicks((x)); \
}
#endif
#ifndef GET_TICKS
# define GET_TICKS AT91C_BASE_TC0->TC_CV
#endif
// ToDo: define a meaningful maximum size for auth_table. The bigger this is, the lower will be the available memory for traces.
// Historically it used to be FREE_BUFFER_SIZE, which was 2744.
#define LEGIC_CARD_MEMSIZE 1024
static uint8_t* cardmem;
static void Wait(uint32_t time){
if ( time == 0 ) return;
time += GET_TICKS;
while (GET_TICKS < time);
}
// Starts Clock and waits until its reset
static void Reset(AT91PS_TC clock){
clock->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while(clock->TC_CV > 1) ;
}
// Starts Clock and waits until its reset
static void ResetClock(void){
Reset(timer);
}
static void frame_append_bit(struct legic_frame * const f, int bit) {
// Overflow, won't happen
if (f->bits >= 31) return;
@ -166,8 +146,7 @@ static void frame_clean(struct legic_frame * const f) {
*/
/* Generate Keystream */
static uint32_t get_key_stream(int skip, int count)
{
uint32_t get_key_stream(int skip, int count) {
uint32_t key = 0;
int i;
@ -175,7 +154,7 @@ static uint32_t get_key_stream(int skip, int count)
legic_prng_bc += prng_timer->TC_CV;
// reset the prng timer.
Reset(prng_timer);
ResetTimer(prng_timer);
/* If skip == -1, forward prng time based */
if(skip == -1) {
@ -209,7 +188,7 @@ static uint32_t get_key_stream(int skip, int count)
/* Send a frame in tag mode, the FPGA must have been set up by
* LegicRfSimulate
*/
static void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
/* Bitbang the response */
LOW(GPIO_SSC_DOUT);
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
@ -222,7 +201,7 @@ static void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
}
/* Wait for the frame start */
Wait( TAG_FRAME_WAIT );
WaitUS( TAG_FRAME_WAIT );
uint8_t bit = 0;
for(int i = 0; i < bits; i++) {
@ -235,7 +214,7 @@ static void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
else
LOW(GPIO_SSC_DOUT);
Wait(100);
WaitUS(100);
}
LOW(GPIO_SSC_DOUT);
}
@ -243,7 +222,7 @@ static void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt) {
/* Send a frame in reader mode, the FPGA must have been set up by
* LegicRfReader
*/
static void frame_sendAsReader(uint32_t data, uint8_t bits){
void frame_sendAsReader(uint32_t data, uint8_t bits){
uint32_t starttime = GET_TICKS, send = 0;
uint16_t mask = 1;
@ -298,14 +277,13 @@ static void frame_sendAsReader(uint32_t data, uint8_t bits){
static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
frame_clean(f);
if ( bits > 32 ) return;
uint8_t i = 0, edges = 0;
uint8_t i = bits, edges = 0;
uint16_t lsfr = 0;
uint32_t the_bit = 1, next_bit_at = 0, data;
int old_level = 0, level = 0;
if(bits > 32) bits = 32;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
@ -320,14 +298,14 @@ static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
data = lsfr;
//FIXED time between sending frame and now listening frame. 330us
Wait( TAG_FRAME_WAIT - ( GET_TICKS - sendFrameStop ) );
//Wait( TAG_FRAME_WAIT );
//WaitTicks( GET_TICKS - sendFrameStop - TAG_FRAME_WAIT);
WaitTicks( 490 );
uint32_t starttime = GET_TICKS;
next_bit_at = GET_TICKS + TAG_BIT_PERIOD;
for( i = 0; i < bits; i++) {
while ( i-- ){
edges = 0;
while ( GET_TICKS < next_bit_at) {
@ -341,7 +319,7 @@ static void frame_receiveAsReader(struct legic_frame * const f, uint8_t bits) {
next_bit_at += TAG_BIT_PERIOD;
// We expect 42 edges == ONE
if(edges > 20 && edges < 64)
if(edges > 30 && edges < 64)
data ^= the_bit;
the_bit <<= 1;
@ -373,9 +351,9 @@ static uint32_t setup_phase_reader(uint8_t iv) {
// Switch on carrier and let the tag charge for 1ms
HIGH(GPIO_SSC_DOUT);
SpinDelay(300);
WaitUS(300);
ResetUSClock();
ResetTicks();
// no keystream yet
legic_prng_init(0);
@ -389,8 +367,8 @@ static uint32_t setup_phase_reader(uint8_t iv) {
frame_receiveAsReader(&current_frame, 6);
// fixed delay before sending ack.
Wait(360); // 240us = 360tick
legic_prng_forward(2); //240us / 100 == 2.4 iterations
WaitTicks(387); // 244us
legic_prng_forward(3); //240us / 100 == 2.4 iterations
// Send obsfuscated acknowledgment frame.
// 0x19 = 0x18 MIM22, 0x01 LSB READCMD
@ -402,17 +380,13 @@ static uint32_t setup_phase_reader(uint8_t iv) {
default: break;
}
return current_frame.data;
// fixed delay after setup phase.
Wait(375); // 260us == 375 ticks
legic_prng_forward(2);// 260us / 100 == 2.6 iterations
}
static void LegicCommonInit(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
FpgaSetupSsc();
/* Bitbang the transmitter */
LOW(GPIO_SSC_DOUT);
@ -427,14 +401,15 @@ static void LegicCommonInit(void) {
set_tracing(TRUE);
crc_init(&legic_crc, 4, 0x19 >> 1, 0x5, 0);
StartCountUS();
StartTicks();
}
// Switch off carrier, make sure tag is reset
static void switch_off_tag_rwd(void) {
LOW(GPIO_SSC_DOUT);
SpinDelay(10);
WaitUS(200);
WDT_HIT();
Dbprintf("Exit Switch_off_tag_rwd");
}
// calculate crc4 for a legic READ command
@ -451,6 +426,15 @@ static uint32_t legic4Crc(uint8_t legicCmd, uint16_t byte_index, uint8_t value,
int legic_read_byte(int byte_index, int cmd_sz) {
// (us)| ticks
// -------------
// 330 | 495
// 460 | 690
// 258 | 387
// 244 | 366
WaitTicks(332);
legic_prng_forward(2); // 460 / 100 = 4.6 iterations
uint8_t byte = 0, crc = 0, calcCrc = 0;
uint32_t cmd = (byte_index << 1) | LEGIC_READ;
@ -466,9 +450,8 @@ int legic_read_byte(int byte_index, int cmd_sz) {
return -1;
}
Wait(690); // 460us == 690ticks
legic_prng_forward(4); // 460 / 100 = 4.6 iterations
// legic_prng_forward(2); // 460 / 100 = 4.6 iterations
return byte;
}
@ -504,7 +487,7 @@ int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
legic_prng_forward(2); /* we wait anyways */
Wait(TAG_FRAME_WAIT);
WaitUS(TAG_FRAME_WAIT);
frame_sendAsReader(cmd, cmd_sz);
@ -516,7 +499,7 @@ int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
int t, old_level = 0, edges = 0;
int next_bit_at = 0;
Wait(TAG_FRAME_WAIT);
WaitUS(TAG_FRAME_WAIT);
for( t = 0; t < 80; ++t) {
edges = 0;
@ -532,13 +515,13 @@ int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
int t = timer->TC_CV;
int c = t / TAG_BIT_PERIOD;
ResetClock();
ResetTimer(timer);
legic_prng_forward(c);
return 0;
}
}
ResetClock();
ResetTimer(timer);
return -1;
}
@ -802,7 +785,7 @@ static void frame_handle_tag(struct legic_frame const * const f)
LED_C_ON();
// Reset prng timer
Reset(prng_timer);
ResetTimer(prng_timer);
legic_prng_init(f->data);
frame_send_tag(0x3d, 6, 1); /* 0x3d^0x26 = 0x1B */
@ -812,8 +795,8 @@ static void frame_handle_tag(struct legic_frame const * const f)
legic_prng_iv = f->data;
ResetClock();
Wait(280);
ResetTimer(timer);
WaitUS(280);
return;
}
@ -824,8 +807,8 @@ static void frame_handle_tag(struct legic_frame const * const f)
if((f->bits == 6) && (f->data == xored)) {
legic_state = STATE_CON;
ResetClock();
Wait(200);
ResetTimer(timer);
WaitUS(200);
return;
} else {
@ -851,9 +834,9 @@ static void frame_handle_tag(struct legic_frame const * const f)
frame_send_tag(hash | data, 12, 1);
ResetClock();
ResetTimer(timer);
legic_prng_forward(2);
Wait(180);
WaitUS(180);
return;
}
}
@ -1004,10 +987,6 @@ void LegicRfSimulate(int phase, int frame, int reqresp)
LEDsoff();
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// Code up a string of octets at layer 2 (including CRC, we don't generate
// that here) so that they can be transmitted to the reader. Doesn't transmit

View file

@ -17,6 +17,7 @@
#include "string.h"
#include "legic_prng.h" // legic PRNG impl
#include "crc.h" // legic crc-4
#include "ticks.h" // timers
#define LEGIC_READ 0x01
#define LEGIC_WRITE 0x00
@ -26,6 +27,10 @@ extern int LegicRfReader(int offset, int bytes, int iv);
extern void LegicRfWriter(int offset, int bytes, int iv);
extern void LegicRfRawWriter(int address, int data, int iv);
uint32_t get_key_stream(int skip, int count);
void frame_send_tag(uint16_t response, uint8_t bits, uint8_t crypt);
void frame_sendAsReader(uint32_t data, uint8_t bits);
int ice_legic_select_card();
void ice_legic_setup();

235
armsrc/ticks.c Normal file
View file

@ -0,0 +1,235 @@
//-----------------------------------------------------------------------------
// Jonathan Westhues, Sept 2005
// Iceman, Sept 2016
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Timers, Clocks functions used in LF or Legic where you would need detailed time.
//-----------------------------------------------------------------------------
#include "ticks.h"
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayUs(int us) {
int ticks = (48 * us) >> 10;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == (uint16_t)(start + ticks))
return;
WDT_HIT();
}
}
void SpinDelay(int ms) {
// convert to uS and call microsecond delay function
SpinDelayUs(ms*1000);
}
// -------------------------------------------------------------------------
// timer lib
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount() {
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
// set RealTimeCounter divider to count at 1kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
// note: worst case precision is approx 2.5%
}
/*
* Get the current count.
*/
uint32_t RAMFUNC GetTickCount(){
return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
}
// -------------------------------------------------------------------------
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS() {
AT91C_BASE_PMC->PMC_PCER |= (1 << 12) | (1 << 13) | (1 << 14);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
// tick=1.5mks
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TCB->TCB_BCR = 1;
while (AT91C_BASE_TC1->TC_CV >= 1);
}
uint32_t RAMFUNC GetCountUS(){
//return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
// By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548
return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3);
}
void ResetUSClock(void) {
//enable clock of timer and software trigger
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC1->TC_CV >= 1);
}
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayCountUs(uint32_t us) {
if (us < 8) return;
us += GetCountUS();
while ( GetCountUS() < us ){}
}
// static uint32_t GlobalUsCounter = 0;
// uint32_t RAMFUNC GetDeltaCountUS(){
// uint32_t g_cnt = GetCountUS();
// uint32_t g_res = g_cnt - GlobalUsCounter;
// GlobalUsCounter = g_cnt;
// return g_res;
// }
// -------------------------------------------------------------------------
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk() {
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
// use TC0 to count TIOA1 pulses
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC2
// synchronize the counter with the ssp_frame signal.
// Note: FPGA must be in any iso14443 mode, otherwise the frame signal would not be present
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
// (just started with the transfer of the 4th Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) overflows.
// Therefore need to wait quite some time before we can use the counter.
while (AT91C_BASE_TC2->TC_CV >= 1);
}
void ResetSspClk(void) {
//enable clock of timer and software trigger
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
}
uint32_t RAMFUNC GetCountSspClk(){
uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
if ((tmp_count & 0x0000ffff) == 0) //small chance that we may have missed an increment in TC2
return (AT91C_BASE_TC2->TC_CV << 16);
return tmp_count;
}
void StartTicks(void){
//initialization of the timer
AT91C_BASE_PMC->PMC_PCER |= (1 << 12) | (1 << 13) | (1 << 14);
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock TC0
// tick=1.5mks
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; //clock at 48/32 MHz
// Enable and reset timer
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TCB->TCB_BCR = 1;
// wait until timer becomes zero.
while (AT91C_BASE_TC0->TC_CV > 1);
}
// Wait - Spindelay in ticks.
// if called with a high number, this will trigger the WDT...
void WaitTicks(uint32_t ticks){
if ( ticks == 0 ) return;
ticks += GET_TICKS;
while (GET_TICKS < ticks);
}
// Wait / Spindelay in us (microseconds)
// 1us = 1.5ticks.
void WaitUS(uint16_t us){
if ( us == 0 ) return;
WaitTicks( (uint32_t)(us * 1.5) );
}
void WaitMS(uint16_t ms){
if (ms == 0) return;
WaitTicks( (uint32_t)(ms * 1500) );
}
// Starts Clock and waits until its reset
void ResetTicks(){
ResetTimer(AT91C_BASE_TC0);
}
void ResetTimer(AT91PS_TC timer){
timer->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while(timer->TC_CV > 1) ;
}

47
armsrc/ticks.h Normal file
View file

@ -0,0 +1,47 @@
//-----------------------------------------------------------------------------
// Jonathan Westhues, Aug 2005
// Iceman, Sept 2016
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Timers, Clocks functions used in LF or Legic where you would need detailed time.
//-----------------------------------------------------------------------------
#ifndef __TICKS_H
#define __TICKS_H
#include <stddef.h>
#include <stdint.h>
#include "common.h"
#include "apps.h"
#include "proxmark3.h"
#ifndef GET_TICKS
# define GET_TICKS AT91C_BASE_TC0->TC_CV
#endif
void SpinDelay(int ms);
void SpinDelayUs(int us);
void StartTickCount(void);
uint32_t RAMFUNC GetTickCount(void);
void StartCountUS(void);
uint32_t RAMFUNC GetCountUS(void);
void ResetUSClock(void);
void SpinDelayCountUs(uint32_t us);
//uint32_t RAMFUNC GetDeltaCountUS(void);
void StartCountSspClk();
void ResetSspClk(void);
uint32_t RAMFUNC GetCountSspClk();
extern void StartTicks(void);
extern void WaitTicks(uint32_t ticks);
extern void WaitUS(uint16_t us);
extern void WaitMS(uint16_t ms);
extern void ResetTicks();
extern void ResetTimer(AT91PS_TC timer);
#endif

View file

@ -233,35 +233,6 @@ int BUTTON_HELD(int ms) {
return BUTTON_ERROR;
}
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayUs(int us) {
int ticks = (48 * us) >> 10;
// Borrow a PWM unit for my real-time clock
AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0);
// 48 MHz / 1024 gives 46.875 kHz
AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10);
AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0;
AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff;
uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
for(;;) {
uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR;
if (now == (uint16_t)(start + ticks))
return;
WDT_HIT();
}
}
void SpinDelay(int ms) {
// convert to uS and call microsecond delay function
SpinDelayUs(ms*1000);
}
/* Similar to FpgaGatherVersion this formats stored version information
* into a string representation. It takes a pointer to the struct version_information,
* verifies the magic properties, then stores a formatted string, prefixed by
@ -295,158 +266,3 @@ void FormatVersionInformation(char *dst, int len, const char *prefix, void *vers
strncat(dst, v->buildtime, len - strlen(dst) - 1);
strncat(dst, "\n", len - strlen(dst) - 1);
}
// -------------------------------------------------------------------------
// timer lib
// -------------------------------------------------------------------------
// test procedure:
//
// ti = GetTickCount();
// SpinDelay(1000);
// ti = GetTickCount() - ti;
// Dbprintf("timer(1s): %d t=%d", ti, GetTickCount());
void StartTickCount() {
// This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz.
// We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register.
uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & 0xffff; // = 16 * main clock frequency (16MHz) / slow clock frequency
// set RealTimeCounter divider to count at 1kHz:
AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((256000 + (mainf/2)) / mainf);
// note: worst case precision is approx 2.5%
}
/*
* Get the current count.
*/
uint32_t RAMFUNC GetTickCount(){
return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2;
}
// -------------------------------------------------------------------------
// microseconds timer
// -------------------------------------------------------------------------
void StartCountUS() {
AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14);
// AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0;
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE;
// fast clock
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks
AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR |
AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET;
AT91C_BASE_TC0->TC_RA = 1;
AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TCB->TCB_BCR = 1;
while (AT91C_BASE_TC1->TC_CV >= 1);
}
uint32_t RAMFUNC GetCountUS(){
//return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10);
// By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548
return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV * 2) / 3);
}
void ResetUSClock(void) {
//enable clock of timer and software trigger
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
while (AT91C_BASE_TC1->TC_CV >= 1);
}
// attempt at high resolution microsecond timer
// beware: timer counts in 21.3uS increments (1024/48Mhz)
void SpinDelayCountUs(uint32_t us) {
if (us < 8) return;
us += GetCountUS();
while ( GetCountUS() < us ){}
}
// static uint32_t GlobalUsCounter = 0;
// uint32_t RAMFUNC GetDeltaCountUS(){
// uint32_t g_cnt = GetCountUS();
// uint32_t g_res = g_cnt - GlobalUsCounter;
// GlobalUsCounter = g_cnt;
// return g_res;
// }
// -------------------------------------------------------------------------
// Timer for iso14443 commands. Uses ssp_clk from FPGA
// -------------------------------------------------------------------------
void StartCountSspClk() {
AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers
AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1
| AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none
| AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0
// configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs:
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1
AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz
| AT91C_TC_CPCSTOP // Stop clock on RC compare
| AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event
| AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16)
| AT91C_TC_ENETRG // Enable external trigger event
| AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_AEEVT_SET // Set TIOA1 on external event
| AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare
AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04
// use TC0 to count TIOA1 pulses
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP // just count
| AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare
| AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare
AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2
AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow
// use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk)
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2
AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0
| AT91C_TC_WAVE // Waveform Mode
| AT91C_TC_WAVESEL_UP; // just count
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC0
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC1
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC2
// synchronize the counter with the ssp_frame signal.
// Note: FPGA must be in any iso14443 mode, otherwise the frame signal would not be present
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame)
while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low
while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high
// note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame
// it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge
AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge)
// at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0)
// at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on,
// whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer.
// (just started with the transfer of the 4th Bit).
// The high word of the counter (TC2) will not reset until the low word (TC0) overflows.
// Therefore need to wait quite some time before we can use the counter.
while (AT91C_BASE_TC2->TC_CV >= 1);
}
void ResetSspClk(void) {
//enable clock of timer and software trigger
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
}
uint32_t RAMFUNC GetCountSspClk(){
uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV;
if ((tmp_count & 0x0000ffff) == 0) //small chance that we may have missed an increment in TC2
return (AT91C_BASE_TC2->TC_CV << 16);
return tmp_count;
}

View file

@ -18,6 +18,7 @@
#include "apps.h"
#include "BigBuf.h"
#include "proxmark3.h"
#include "ticks.h"
#define BYTEx(x, n) (((x) >> (n * 8)) & 0xff )
@ -51,25 +52,10 @@ void rol(uint8_t *data, const size_t len);
void lsl (uint8_t *data, size_t len);
int32_t le24toh (uint8_t data[3]);
void SpinDelay(int ms);
void SpinDelayUs(int us);
void LED(int led, int ms);
void LEDsoff();
int BUTTON_CLICKED(int ms);
int BUTTON_HELD(int ms);
void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information);
void StartTickCount();
uint32_t RAMFUNC GetTickCount();
void StartCountUS();
uint32_t RAMFUNC GetCountUS();
void ResetUSClock(void);
void SpinDelayCountUs(uint32_t us);
//uint32_t RAMFUNC GetDeltaCountUS();
void StartCountSspClk();
void ResetSspClk(void);
uint32_t RAMFUNC GetCountSspClk();
#endif

View file

@ -404,12 +404,14 @@ int CmdLegicRFRead(const char *Cmd) {
PrintAndLog("Current IV: 0x%02x", IV);
// get some prng bytes from
uint8_t temp[12];
uint8_t temp[32];
legic_prng_init(IV);
for ( uint8_t j = 0; j < sizeof(temp); ++j)
temp[j] = legic_prng_get_bits(8);
PrintAndLog("PRNG: %s", sprint_hex(temp, sizeof(temp)));
for ( uint8_t j = 0; j < sizeof(temp); ++j) {
temp[j] = legic_prng_get_bit(1);
legic_prng_forward(1);
//PrintAndLog("PRNG: %s", sprint_hex(temp, sizeof(temp)));
}
PrintAndLog("PRNG: %s", sprint_bin(temp, sizeof(temp)));
UsbCommand c = {CMD_READER_LEGIC_RF, {offset, len, IV}};
clearCommandBuffer();

View file

@ -43,6 +43,8 @@ void crc_update(crc_t *crc, uint32_t indata, int data_width){
crc->state ^= indata << (crc->order - data_width);
for( uint8_t bit = data_width; bit > 0; --bit) {
// Try to divide the current data bit.
if (crc->state & crc->topbit)
crc->state = (crc->state << 1) ^ crc->polynom;
@ -51,6 +53,22 @@ void crc_update(crc_t *crc, uint32_t indata, int data_width){
}
}
void crc_update2(crc_t *crc, uint32_t data, int data_width)
{
if (crc->refin) data = reflect(data, data_width);
int i;
for(i=0; i<data_width; i++) {
int oldstate = crc->state;
crc->state = crc->state >> 1;
if( (oldstate^data) & 1 ) {
crc->state ^= crc->polynom;
}
data >>= 1;
}
}
uint32_t crc_finish(crc_t *crc) {
uint32_t val = crc->state;
if (crc->refout) val = reflect(val, crc->order);
@ -83,6 +101,14 @@ uint32_t CRC8Maxim(uint8_t *buff, size_t size) {
}
// width=4 poly=0xC, reversed poly=0x7 init=0x5 refin=true refout=true xorout=0x0000 check= name="CRC-4/LEGIC"
uint32_t CRC4Legic(uint8_t *cmd, size_t size) {
crc_t crc;
crc_init_ref(&crc, 4, 0x19 >> 1, 0x5, 0, TRUE, TRUE);
crc_update2(&crc, 1, 1); /* CMD_READ */
crc_update2(&crc, cmd[0], 8);
crc_update2(&crc, cmd[1], 8);
return reflect(crc_finish(&crc), 4);
}
// width=8 poly=0x63, reversed poly=0x8D init=0x55 refin=true refout=true xorout=0x0000 check=0xC6 name="CRC-8/LEGIC"
// the CRC needs to be reversed before returned.
uint32_t CRC8Legic(uint8_t *buff, size_t size) {

View file

@ -44,6 +44,7 @@ extern void crc_init(crc_t *crc, int order, uint32_t polynom, uint32_t initial_v
* data_width lower-most bits are used).
*/
extern void crc_update(crc_t *crc, uint32_t data, int data_width);
extern void crc_update2(crc_t *crc, uint32_t data, int data_width);
/* Clean the crc state, e.g. reset it to initial_value */
extern void crc_clear(crc_t *crc);