mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-08-19 21:03:48 -07:00
fix to darkside overdue. I needed to remove my old impl..
This commit is contained in:
parent
f59ee2ffeb
commit
1f637d726f
17 changed files with 385 additions and 1598 deletions
|
@ -12,9 +12,6 @@ TARFLAGS = -C .. --ignore-failed-read -rvf
|
|||
RM = rm -f
|
||||
MV = mv
|
||||
|
||||
# uncomment to enable EMV
|
||||
#CFLAGS += -DWITH_EMV
|
||||
|
||||
ENV_LDFLAGS := $(LDFLAGS)
|
||||
ENV_CFLAGS := $(CFLAGS)
|
||||
|
||||
|
@ -90,7 +87,6 @@ CORESRCS = uart_posix.c \
|
|||
util_posix.c \
|
||||
scandir.c
|
||||
|
||||
|
||||
CMDSRCS = crapto1/crapto1.c \
|
||||
crapto1/crypto1.c \
|
||||
mfkey.c \
|
||||
|
@ -210,15 +206,7 @@ MULTIARCHOBJS = $(MULTIARCHSRCS:%.c=$(OBJDIR)/%_NOSIMD.o) \
|
|||
$(MULTIARCHSRCS:%.c=$(OBJDIR)/%_AVX.o) \
|
||||
$(MULTIARCHSRCS:%.c=$(OBJDIR)/%_AVX2.o)
|
||||
|
||||
#GCC_GTEQ_490 := $(shell expr `gcc --version | awk '/gcc/{print $$NF;}' | sed -e 's/\.\([0-9][0-9]\)/\1/g' -e 's/\.\([0-9]\)/0\1/g' -e 's/^[0-9]\{3,4\}$$/&00/'` \>= 40900)
|
||||
GCC_VERSION := $(shell gcc --version | awk '/gcc/{print $$NF;}' | sed -e 's/\-.*//g' -e 's/\.\([0-9][0-9]\)/\1/g' -e 's/\.\([0-9]\)/0\1/g' -e 's/^[0-9]\{3,4\}$$/&00/')
|
||||
CLANG_VERSION := $(shell gcc --version | awk '/Apple LLVM version/{print $$4;}' | sed -e 's/\-.*//g' -e 's/\.\([0-9][0-9]\)/\1/g' -e 's/\.\([0-9]\)/0\1/g' -e 's/^[0-9]\{3,4\}$$/&00/')
|
||||
ifneq ($(CLANG_VERSION), )
|
||||
SUPPORTS_AVX512 := $(shell [ $(CLANG_VERSION) -ge 80000 ] && echo "True" )
|
||||
endif
|
||||
ifneq ($(GCC_VERSION), )
|
||||
SUPPORTS_AVX512 := $(shell [ $(GCC_VERSION) -ge 40900 ] && echo "True" )
|
||||
endif
|
||||
SUPPORTS_AVX512 := $(shell echo | gcc -E -mavx512f - > /dev/null 2>&1 && echo "True" )
|
||||
|
||||
HARD_SWITCH_NOSIMD = -mno-mmx -mno-sse2 -mno-avx -mno-avx2
|
||||
HARD_SWITCH_MMX = -mmmx -mno-sse2 -mno-avx -mno-avx2
|
||||
|
|
|
@ -152,15 +152,17 @@ static uint16_t calcSumNibbleXor( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
|||
}
|
||||
static uint16_t calcSumByteXor( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
||||
uint16_t sum = 0;
|
||||
for (uint8_t i = 0; i < len; i++)
|
||||
for (uint8_t i = 0; i < len; i++) {
|
||||
sum ^= bytes[i];
|
||||
}
|
||||
sum &= mask;
|
||||
return sum;
|
||||
}
|
||||
static uint16_t calcSumByteAdd( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
||||
uint16_t sum = 0;
|
||||
for (uint8_t i = 0; i < len; i++)
|
||||
for (uint8_t i = 0; i < len; i++) {
|
||||
sum += bytes[i];
|
||||
}
|
||||
sum &= mask;
|
||||
return sum;
|
||||
}
|
||||
|
@ -171,8 +173,9 @@ static uint16_t calcSumByteAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask)
|
|||
|
||||
static uint16_t calcSumByteSub( uint8_t* bytes, uint8_t len, uint32_t mask) {
|
||||
uint8_t sum = 0;
|
||||
for (uint8_t i = 0; i < len; i++)
|
||||
for (uint8_t i = 0; i < len; i++) {
|
||||
sum -= bytes[i];
|
||||
}
|
||||
sum &= mask;
|
||||
return sum;
|
||||
}
|
||||
|
@ -414,35 +417,179 @@ int CmdAnalyseTEASelfTest(const char *Cmd){
|
|||
}
|
||||
|
||||
int CmdAnalyseA(const char *Cmd){
|
||||
/*
|
||||
piwi
|
||||
|
||||
//piwi
|
||||
// uid(2e086b1a) nt(230736f6) ks(0b0008000804000e) nr(000000000)
|
||||
// uid(2e086b1a) nt(230736f6) ks(0e0b0e0b090c0d02) nr(000000001)
|
||||
// uid(2e086b1a) nt(230736f6) ks(0e05060e01080b08) nr(000000002)
|
||||
uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02};
|
||||
uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08};
|
||||
//uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02};
|
||||
//uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08};
|
||||
|
||||
// uid(17758822) nt(c0c69e59) ks(080105020705040e) nr(00000001)
|
||||
// uid(17758822) nt(c0c69e59) ks(01070a05050c0705) nr(00000002)
|
||||
uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e};
|
||||
uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705};
|
||||
//uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e};
|
||||
//uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705};
|
||||
|
||||
// uid(6e442129) nt(8f699195) ks(090d0b0305020f02) nr(00000001)
|
||||
// uid(6e442129) nt(8f699195) ks(03030508030b0c0e) nr(00000002)
|
||||
// uid(6e442129) nt(8f699195) ks(02010f030c0d050d) nr(00000003)
|
||||
// uid(6e442129) nt(8f699195) ks(00040f0f0305030e) nr(00000004)
|
||||
uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02};
|
||||
uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e};
|
||||
//uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02};
|
||||
//uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e};
|
||||
|
||||
/*
|
||||
uid(3e172b29) nt(039b7bd2) ks(0c0e0f0505080800) nr(00000001)
|
||||
uid(3e172b29) nt(039b7bd2) ks(0e06090d03000b0f) nr(00000002)
|
||||
*/
|
||||
// uint64_t key = 0;
|
||||
// uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0x0c0e0f0505080800};
|
||||
// uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0x0e06090d03000b0f};
|
||||
uint64_t *keylistA = NULL, *keylistB = NULL;
|
||||
uint32_t keycountA = 0, keycountB = 0;
|
||||
// uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0, 0x0c0e0f0505080800};
|
||||
// uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0, 0x0e06090d03000b0f};
|
||||
uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0, 0x090d0b0305020f02};
|
||||
uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0, 0x00040f0f0305030e};
|
||||
|
||||
// nonce2key_ex(0, 0 , d1[0], d1[1], d1[2], d1[3], &key);
|
||||
// nonce2key_ex(0, 0 , d2[0], d2[1], d2[2], d2[3], &key);
|
||||
keycountA = nonce2key(d1[0], d1[1], d1[2], d1[3], d1[4] ,&keylistA);
|
||||
keycountB = nonce2key(d2[0], d2[1], d2[2], d2[3], d2[4], &keylistB);
|
||||
|
||||
switch (keycountA) {
|
||||
case 0: printf("Key test A failed\n"); break;
|
||||
case 1: printf("KEY A | %012" PRIX64 " ", keylistA[0]); break;
|
||||
}
|
||||
switch (keycountB) {
|
||||
case 0: printf("Key test B failed\n"); break;
|
||||
case 1: printf("KEY B | %012" PRIX64 " ", keylistB[0]); break;
|
||||
}
|
||||
|
||||
free(keylistA);
|
||||
free(keylistB);
|
||||
|
||||
// qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
|
||||
// keycount = intersection(last_keylist, keylist);
|
||||
|
||||
/*
|
||||
uint64_t keys[] = {
|
||||
0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961,
|
||||
0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3,
|
||||
0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c,
|
||||
0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9,
|
||||
0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a,
|
||||
0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba,
|
||||
0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b,
|
||||
0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe
|
||||
};
|
||||
|
||||
uint64_t keya[] = {
|
||||
0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961,
|
||||
0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3,
|
||||
0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c,
|
||||
0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9
|
||||
};
|
||||
uint64_t keyb[] = {
|
||||
0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a,
|
||||
0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba,
|
||||
0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b,
|
||||
0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe
|
||||
};
|
||||
|
||||
*/
|
||||
|
||||
/*
|
||||
uint64_t xor[] = {
|
||||
0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B,
|
||||
0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6,
|
||||
0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52,
|
||||
0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC, 0xB6E97F5F6776,
|
||||
0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F,
|
||||
0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD,
|
||||
0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8,
|
||||
0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244
|
||||
};
|
||||
|
||||
|
||||
uint64_t xorA[] = {
|
||||
0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B,
|
||||
0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6,
|
||||
0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52,
|
||||
0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC
|
||||
};
|
||||
uint64_t xorB[] = {
|
||||
0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F,
|
||||
0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD,
|
||||
0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8,
|
||||
0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244
|
||||
};
|
||||
*/
|
||||
/*
|
||||
// xor key A | xor key B
|
||||
1 | 0DEFED88E531 | 2F87A1BDC230
|
||||
2 | 7577AFA2E1BC | E43F502B984C
|
||||
3 | 14D7D7BDBEC3 | 8A776AB752D9
|
||||
4 | F5ABD3C6278B | 9A58D96A472F
|
||||
5 | AABDFA08276F | EF3702E01916
|
||||
6 | B77C275C10D6 | 48A03B01D007
|
||||
7 | B6DD0B434080 | 14754B0D659E
|
||||
8 | AAF2444499C6 | 009AD1868FDD
|
||||
9 | 852D7F8EBF90 | 6082DB527C11
|
||||
10 | 3108821DB92C | 4D666ADA4C0E
|
||||
11 | B3756A1FB685 | 2D461D05F163
|
||||
12 | DFE627C86A52 | 3596CFF0FEC8
|
||||
13 | 5D3C093EF375 | 8CBD9258FE22
|
||||
14 | 28C81D6FBF0E | 00D29A7B304B
|
||||
15 | 1204DF4D3ECC | BC33DC6C9244
|
||||
*/
|
||||
|
||||
// generate xor table :)
|
||||
/*
|
||||
for (uint8_t i=0; i<31; i++){
|
||||
uint64_t a = keys[i] ^ keys[i+1];
|
||||
printf("%u | %012" PRIX64 " | \n", i, a);
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
uint32_t id = param_get32ex(Cmd, 0, 0x93290142, 16);
|
||||
uint8_t uid[6] = {0};
|
||||
num_to_bytes(id,4,uid);
|
||||
|
||||
uint8_t key_s0a[] = {
|
||||
uid[1] ^ uid[2] ^ uid[3] ^ 0x11,
|
||||
uid[1] ^ 0x72,
|
||||
uid[2] ^ 0x80,
|
||||
(uid[0] + uid[1] + uid[2] + uid[3] ) ^ uid[3] ^ 0x19,
|
||||
0xA3,
|
||||
0x2F
|
||||
};
|
||||
|
||||
printf("UID | %s\n", sprint_hex(uid,4 ));
|
||||
printf("KEY A | %s\n", sprint_hex(key_s0a, 6));
|
||||
|
||||
// arrays w all keys
|
||||
uint64_t foo[32] = {0};
|
||||
|
||||
//A
|
||||
foo[0] = bytes_to_num(key_s0a, 6);
|
||||
//B
|
||||
//foo[16] = 0xcafe71411fbf;
|
||||
foo[16] = 0xeafe51411fbf;
|
||||
|
||||
for (uint8_t i=0; i<15; i++){
|
||||
foo[i+1] = foo[i] ^ xorA[i];
|
||||
foo[i+16+1] = foo[i+16] ^ xorB[i];
|
||||
|
||||
}
|
||||
for (uint8_t i=0; i<15; i++){
|
||||
uint64_t a = foo[i];
|
||||
uint64_t b = foo[i+16];
|
||||
|
||||
printf("%02u | %012" PRIX64 " %s | %012" PRIX64 " %s\n",
|
||||
i,
|
||||
a,
|
||||
( a == keya[i])?"ok":"err",
|
||||
b,
|
||||
( b == keyb[i])?"ok":"err"
|
||||
);
|
||||
}
|
||||
*/
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
|
|
@ -23,6 +23,7 @@
|
|||
#include "tea.h"
|
||||
#include "legic_prng.h"
|
||||
#include "loclass/elite_crack.h"
|
||||
#include "mfkey.h" //nonce2key
|
||||
|
||||
int usage_analyse_lcr(void);
|
||||
int usage_analyse_checksum(void);
|
||||
|
|
|
@ -10,7 +10,83 @@
|
|||
// MIFARE Darkside hack
|
||||
//-----------------------------------------------------------------------------
|
||||
#include "mfkey.h"
|
||||
#include "crapto1/crapto1.h"
|
||||
|
||||
// MIFARE
|
||||
int compare_uint64(const void *a, const void *b) {
|
||||
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
|
||||
if (*(uint64_t*)b < *(uint64_t*)a) return 1;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
|
||||
uint32_t intersection(uint64_t *listA, uint64_t *listB) {
|
||||
if (listA == NULL || listB == NULL)
|
||||
return 0;
|
||||
|
||||
uint64_t *p1, *p2, *p3;
|
||||
p1 = p3 = listA;
|
||||
p2 = listB;
|
||||
|
||||
while ( *p1 != -1 && *p2 != -1 ) {
|
||||
if (compare_uint64(p1, p2) == 0) {
|
||||
*p3++ = *p1++;
|
||||
p2++;
|
||||
}
|
||||
else {
|
||||
while (compare_uint64(p1, p2) == -1) ++p1;
|
||||
while (compare_uint64(p1, p2) == 1) ++p2;
|
||||
}
|
||||
}
|
||||
*p3 = -1;
|
||||
return p3 - listA;
|
||||
}
|
||||
|
||||
// Darkside attack (hf mf mifare)
|
||||
// if successful it will return a list of keys, not just one.
|
||||
uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
|
||||
struct Crypto1State *states;
|
||||
uint32_t i, pos, rr = 0;
|
||||
uint8_t bt, ks3x[8], par[8][8];
|
||||
uint64_t key_recovered;
|
||||
static uint64_t *keylist;
|
||||
|
||||
// Reset the last three significant bits of the reader nonce
|
||||
nr &= 0xFFFFFF1F;
|
||||
|
||||
for ( pos = 0; pos < 8; pos++ ) {
|
||||
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0F;
|
||||
bt = (par_info >> (pos*8)) & 0xFF;
|
||||
|
||||
par[7-pos][0] = (bt >> 0) & 1;
|
||||
par[7-pos][1] = (bt >> 1) & 1;
|
||||
par[7-pos][2] = (bt >> 2) & 1;
|
||||
par[7-pos][3] = (bt >> 3) & 1;
|
||||
par[7-pos][4] = (bt >> 4) & 1;
|
||||
par[7-pos][5] = (bt >> 5) & 1;
|
||||
par[7-pos][6] = (bt >> 6) & 1;
|
||||
par[7-pos][7] = (bt >> 7) & 1;
|
||||
}
|
||||
|
||||
states = lfsr_common_prefix(nr, rr, ks3x, par, (par_info == 0));
|
||||
|
||||
if (!states) {
|
||||
printf("Failed getting states\n");
|
||||
*keys = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
keylist = (uint64_t*)states;
|
||||
|
||||
for (i = 0; keylist[i]; i++) {
|
||||
lfsr_rollback_word(states+i, uid^nt, 0);
|
||||
crypto1_get_lfsr(states+i, &key_recovered);
|
||||
keylist[i] = key_recovered;
|
||||
}
|
||||
keylist[i] = -1;
|
||||
|
||||
*keys = keylist;
|
||||
return i;
|
||||
}
|
||||
|
||||
// recover key from 2 different reader responses on same tag challenge
|
||||
bool mfkey32(nonces_t data, uint64_t *outputkey) {
|
||||
|
@ -20,7 +96,9 @@ bool mfkey32(nonces_t data, uint64_t *outputkey) {
|
|||
bool isSuccess = false;
|
||||
uint8_t counter = 0;
|
||||
|
||||
s = lfsr_recovery32(data.ar ^ prng_successor(data.nonce, 64), 0);
|
||||
uint32_t p640 = prng_successor(data.nonce, 64);
|
||||
uint32_t p641 = prng_successor(data.nonce2, 64);
|
||||
s = lfsr_recovery32(data.ar ^ p640, 0);
|
||||
|
||||
for(t = s; t->odd | t->even; ++t) {
|
||||
lfsr_rollback_word(t, 0, 0);
|
||||
|
@ -29,7 +107,7 @@ bool mfkey32(nonces_t data, uint64_t *outputkey) {
|
|||
crypto1_get_lfsr(t, &key);
|
||||
crypto1_word(t, data.cuid ^ data.nonce, 0);
|
||||
crypto1_word(t, data.nr2, 1);
|
||||
if (data.ar2 == (crypto1_word(t, 0, 0) ^ prng_successor(data.nonce, 64))) {
|
||||
if (data.ar2 == (crypto1_word(t, 0, 0) ^ p641)) {
|
||||
outkey = key;
|
||||
counter++;
|
||||
if (counter == 20) break;
|
||||
|
@ -42,14 +120,17 @@ bool mfkey32(nonces_t data, uint64_t *outputkey) {
|
|||
}
|
||||
|
||||
// recover key from 2 reader responses on 2 different tag challenges
|
||||
// skip "several found keys". Only return true if ONE key is found
|
||||
bool mfkey32_moebius(nonces_t data, uint64_t *outputkey) {
|
||||
struct Crypto1State *s, *t;
|
||||
uint64_t outkey = 0;
|
||||
uint64_t key = 0; // recovered key
|
||||
bool isSuccess = false;
|
||||
int counter = 0;
|
||||
uint32_t p640 = prng_successor(data.nonce, 64);
|
||||
uint32_t p641 = prng_successor(data.nonce2, 64);
|
||||
|
||||
s = lfsr_recovery32(data.ar ^ prng_successor(data.nonce, 64), 0);
|
||||
s = lfsr_recovery32(data.ar ^ p640, 0);
|
||||
|
||||
for(t = s; t->odd | t->even; ++t) {
|
||||
lfsr_rollback_word(t, 0, 0);
|
||||
|
@ -59,11 +140,10 @@ bool mfkey32_moebius(nonces_t data, uint64_t *outputkey) {
|
|||
|
||||
crypto1_word(t, data.cuid ^ data.nonce2, 0);
|
||||
crypto1_word(t, data.nr2, 1);
|
||||
if (data.ar2 == (crypto1_word(t, 0, 0) ^ prng_successor(data.nonce2, 64))) {
|
||||
outkey=key;
|
||||
if (data.ar2 == (crypto1_word(t, 0, 0) ^ p641)) {
|
||||
outkey = key;
|
||||
++counter;
|
||||
if (counter==20)
|
||||
break;
|
||||
if (counter == 20) break;
|
||||
}
|
||||
}
|
||||
isSuccess = (counter == 1);
|
||||
|
@ -92,5 +172,3 @@ int mfkey64(nonces_t data, uint64_t *outputkey){
|
|||
*outputkey = key;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -13,12 +13,18 @@
|
|||
#ifndef MFKEY_H
|
||||
#define MFKEY_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "mifare.h"
|
||||
#include "crapto1/crapto1.h"
|
||||
|
||||
extern uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t **keys);
|
||||
extern bool mfkey32(nonces_t data, uint64_t *outputkey);
|
||||
extern bool mfkey32_moebius(nonces_t data, uint64_t *outputkey);
|
||||
extern int mfkey64(nonces_t data, uint64_t *outputkey);
|
||||
|
||||
extern int compare_uint64(const void *a, const void *b);
|
||||
extern uint32_t intersection(uint64_t *listA, uint64_t *listB);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -9,78 +9,6 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
#include "mifarehost.h"
|
||||
|
||||
// MIFARE
|
||||
static int compare_uint64(const void *a, const void *b) {
|
||||
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
|
||||
if (*(uint64_t*)b < *(uint64_t*)a) return 1;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
|
||||
static uint32_t intersection(uint64_t *list1, uint64_t *list2) {
|
||||
if (list1 == NULL || list2 == NULL)
|
||||
return 0;
|
||||
|
||||
uint64_t *p1, *p2, *p3;
|
||||
p1 = p3 = list1;
|
||||
p2 = list2;
|
||||
|
||||
while ( *p1 != -1 && *p2 != -1 ) {
|
||||
if (compare_uint64(p1, p2) == 0) {
|
||||
*p3++ = *p1++;
|
||||
p2++;
|
||||
}
|
||||
else {
|
||||
while (compare_uint64(p1, p2) == -1) ++p1;
|
||||
while (compare_uint64(p1, p2) == 1) ++p2;
|
||||
}
|
||||
}
|
||||
*p3 = -1;
|
||||
return p3 - list1;
|
||||
}
|
||||
|
||||
// Darkside attack (hf mf mifare)
|
||||
// if successful it will return a list of keys, not just one.
|
||||
static uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
|
||||
struct Crypto1State *states;
|
||||
uint32_t i, pos, rr;
|
||||
uint8_t bt, ks3x[8], par[8][8];
|
||||
uint64_t key_recovered;
|
||||
static uint64_t *keylist;
|
||||
rr = 0;
|
||||
|
||||
// Reset the last three significant bits of the reader nonce
|
||||
nr &= 0xffffff1f;
|
||||
|
||||
for ( pos = 0; pos < 8; pos++ ) {
|
||||
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
|
||||
bt = (par_info >> (pos*8)) & 0xff;
|
||||
for ( i = 0; i < 8; i++) {
|
||||
par[7-pos][i] = (bt >> i) & 0x01;
|
||||
}
|
||||
}
|
||||
|
||||
states = lfsr_common_prefix(nr, rr, ks3x, par, (par_info == 0));
|
||||
|
||||
if (!states) {
|
||||
PrintAndLog("Failed getting states");
|
||||
*keys = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
keylist = (uint64_t*)states;
|
||||
|
||||
for (i = 0; keylist[i]; i++) {
|
||||
lfsr_rollback_word(states+i, uid^nt, 0);
|
||||
crypto1_get_lfsr(states+i, &key_recovered);
|
||||
keylist[i] = key_recovered;
|
||||
}
|
||||
keylist[i] = -1;
|
||||
|
||||
*keys = keylist;
|
||||
return i;
|
||||
}
|
||||
|
||||
int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
|
||||
uint32_t uid = 0;
|
||||
uint32_t nt = 0, nr = 0;
|
||||
|
@ -97,7 +25,6 @@ int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
|
|||
printf("Press pm3-button on the proxmark3 device to abort both proxmark3 and client.\n");
|
||||
printf("-------------------------------------------------------------------------\n");
|
||||
|
||||
|
||||
while (true) {
|
||||
clearCommandBuffer();
|
||||
SendCommand(&c);
|
||||
|
@ -118,7 +45,7 @@ int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
|
|||
}
|
||||
|
||||
UsbCommand resp;
|
||||
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) {
|
||||
if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
|
||||
isOK = resp.arg[0];
|
||||
if (isOK < 0)
|
||||
return isOK;
|
||||
|
@ -869,6 +796,9 @@ int detect_classic_nackbug(bool verbose){
|
|||
if ( verbose )
|
||||
printf("Press pm3-button on the proxmark3 device to abort both proxmark3 and client.\n");
|
||||
|
||||
// for nice animation
|
||||
//bool stdinOnPipe = !isatty(STDIN_FILENO)
|
||||
|
||||
while (true) {
|
||||
|
||||
printf(".");
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
#include "iso14443crc.h"
|
||||
#include "protocols.h"
|
||||
#include "mifare.h"
|
||||
#include "mfkey.h"
|
||||
|
||||
#define NESTED_SECTOR_RETRY 10
|
||||
|
||||
|
|
|
@ -1,567 +0,0 @@
|
|||
/* crapto1.c
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||||
Boston, MA 02110-1301, US$
|
||||
|
||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
||||
*/
|
||||
#include "crapto1.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#if !defined LOWMEM && defined __GNUC__
|
||||
static uint8_t filterlut[1 << 20];
|
||||
static void __attribute__((constructor)) fill_lut()
|
||||
{
|
||||
uint32_t i;
|
||||
for(i = 0; i < 1 << 20; ++i)
|
||||
filterlut[i] = filter(i);
|
||||
}
|
||||
#define filter(x) (filterlut[(x) & 0xfffff])
|
||||
#endif
|
||||
|
||||
/** update_contribution
|
||||
* helper, calculates the partial linear feedback contributions and puts in MSB
|
||||
*/
|
||||
static inline void update_contribution(uint32_t *item, const uint32_t mask1, const uint32_t mask2)
|
||||
{
|
||||
uint32_t p = *item >> 25;
|
||||
|
||||
p = p << 1 | parity(*item & mask1);
|
||||
p = p << 1 | parity(*item & mask2);
|
||||
*item = p << 24 | (*item & 0xffffff);
|
||||
}
|
||||
|
||||
/** extend_table
|
||||
* using a bit of the keystream extend the table of possible lfsr states
|
||||
*/
|
||||
static inline void extend_table(uint32_t *tbl, uint32_t **end, int bit, int m1, int m2, uint32_t in)
|
||||
{
|
||||
in <<= 24;
|
||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1)
|
||||
if(filter(*tbl) ^ filter(*tbl | 1)) {
|
||||
*tbl |= filter(*tbl) ^ bit;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl ^= in;
|
||||
} else if(filter(*tbl) == bit) {
|
||||
*++*end = tbl[1];
|
||||
tbl[1] = tbl[0] | 1;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl++ ^= in;
|
||||
update_contribution(tbl, m1, m2);
|
||||
*tbl ^= in;
|
||||
} else
|
||||
*tbl-- = *(*end)--;
|
||||
}
|
||||
/** extend_table_simple
|
||||
* using a bit of the keystream extend the table of possible lfsr states
|
||||
*/
|
||||
static inline void extend_table_simple(uint32_t *tbl, uint32_t **end, int bit)
|
||||
{
|
||||
for(*tbl <<= 1; tbl <= *end; *++tbl <<= 1) {
|
||||
if(filter(*tbl) ^ filter(*tbl | 1)) { // replace
|
||||
*tbl |= filter(*tbl) ^ bit;
|
||||
} else if(filter(*tbl) == bit) { // insert
|
||||
*++*end = *++tbl;
|
||||
*tbl = tbl[-1] | 1;
|
||||
} else { // drop
|
||||
*tbl-- = *(*end)--;
|
||||
}
|
||||
}
|
||||
}
|
||||
/** recover
|
||||
* recursively narrow down the search space, 4 bits of keystream at a time
|
||||
*/
|
||||
static struct Crypto1State*
|
||||
recover(uint32_t *o_head, uint32_t *o_tail, uint32_t oks,
|
||||
uint32_t *e_head, uint32_t *e_tail, uint32_t eks, int rem,
|
||||
struct Crypto1State *sl, uint32_t in, bucket_array_t bucket)
|
||||
{
|
||||
uint32_t *o, *e;
|
||||
bucket_info_t bucket_info;
|
||||
|
||||
if(rem == -1) {
|
||||
for(e = e_head; e <= e_tail; ++e) {
|
||||
*e = *e << 1 ^ parity(*e & LF_POLY_EVEN) ^ !!(in & 4);
|
||||
for(o = o_head; o <= o_tail; ++o, ++sl) {
|
||||
sl->even = *o;
|
||||
sl->odd = *e ^ parity(*o & LF_POLY_ODD);
|
||||
sl[1].odd = sl[1].even = 0;
|
||||
}
|
||||
}
|
||||
return sl;
|
||||
}
|
||||
|
||||
for(uint32_t i = 0; i < 4 && rem--; i++) {
|
||||
oks >>= 1;
|
||||
eks >>= 1;
|
||||
in >>= 2;
|
||||
extend_table(o_head, &o_tail, oks & 1, LF_POLY_EVEN << 1 | 1, LF_POLY_ODD << 1, 0);
|
||||
if(o_head > o_tail)
|
||||
return sl;
|
||||
|
||||
extend_table(e_head, &e_tail, eks & 1, LF_POLY_ODD, LF_POLY_EVEN << 1 | 1, in & 3);
|
||||
if(e_head > e_tail)
|
||||
return sl;
|
||||
}
|
||||
|
||||
bucket_sort_intersect(e_head, e_tail, o_head, o_tail, &bucket_info, bucket);
|
||||
|
||||
for (int i = bucket_info.numbuckets - 1; i >= 0; i--) {
|
||||
sl = recover(bucket_info.bucket_info[1][i].head, bucket_info.bucket_info[1][i].tail, oks,
|
||||
bucket_info.bucket_info[0][i].head, bucket_info.bucket_info[0][i].tail, eks,
|
||||
rem, sl, in, bucket);
|
||||
}
|
||||
|
||||
return sl;
|
||||
}
|
||||
/** lfsr_recovery
|
||||
* recover the state of the lfsr given 32 bits of the keystream
|
||||
* additionally you can use the in parameter to specify the value
|
||||
* that was fed into the lfsr at the time the keystream was generated
|
||||
*/
|
||||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
||||
{
|
||||
struct Crypto1State *statelist;
|
||||
uint32_t *odd_head = 0, *odd_tail = 0, oks = 0;
|
||||
uint32_t *even_head = 0, *even_tail = 0, eks = 0;
|
||||
int i;
|
||||
|
||||
// split the keystream into an odd and even part
|
||||
for(i = 31; i >= 0; i -= 2)
|
||||
oks = oks << 1 | BEBIT(ks2, i);
|
||||
for(i = 30; i >= 0; i -= 2)
|
||||
eks = eks << 1 | BEBIT(ks2, i);
|
||||
|
||||
odd_head = odd_tail = malloc(sizeof(uint32_t) << 21);
|
||||
even_head = even_tail = malloc(sizeof(uint32_t) << 21);
|
||||
statelist = malloc(sizeof(struct Crypto1State) << 18);
|
||||
if(!odd_tail-- || !even_tail-- || !statelist) {
|
||||
free(statelist);
|
||||
statelist = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
statelist->odd = statelist->even = 0;
|
||||
|
||||
// allocate memory for out of place bucket_sort
|
||||
bucket_array_t bucket;
|
||||
|
||||
for (uint32_t i = 0; i < 2; i++) {
|
||||
for (uint32_t j = 0; j <= 0xff; j++) {
|
||||
bucket[i][j].head = malloc(sizeof(uint32_t)<<14);
|
||||
if (!bucket[i][j].head) {
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// initialize statelists: add all possible states which would result into the rightmost 2 bits of the keystream
|
||||
for(i = 1 << 20; i >= 0; --i) {
|
||||
if(filter(i) == (oks & 1))
|
||||
*++odd_tail = i;
|
||||
if(filter(i) == (eks & 1))
|
||||
*++even_tail = i;
|
||||
}
|
||||
|
||||
// extend the statelists. Look at the next 8 Bits of the keystream (4 Bit each odd and even):
|
||||
for(i = 0; i < 4; i++) {
|
||||
extend_table_simple(odd_head, &odd_tail, (oks >>= 1) & 1);
|
||||
extend_table_simple(even_head, &even_tail, (eks >>= 1) & 1);
|
||||
}
|
||||
|
||||
// the statelists now contain all states which could have generated the last 10 Bits of the keystream.
|
||||
// 22 bits to go to recover 32 bits in total. From now on, we need to take the "in"
|
||||
// parameter into account.
|
||||
in = (in >> 16 & 0xff) | (in << 16) | (in & 0xff00); // Byte swapping
|
||||
recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
|
||||
|
||||
out:
|
||||
for (uint32_t i = 0; i < 2; i++)
|
||||
for (uint32_t j = 0; j <= 0xff; j++)
|
||||
free(bucket[i][j].head);
|
||||
free(odd_head);
|
||||
free(even_head);
|
||||
return statelist;
|
||||
}
|
||||
|
||||
static const uint32_t S1[] = { 0x62141, 0x310A0, 0x18850, 0x0C428, 0x06214,
|
||||
0x0310A, 0x85E30, 0xC69AD, 0x634D6, 0xB5CDE, 0xDE8DA, 0x6F46D, 0xB3C83,
|
||||
0x59E41, 0xA8995, 0xD027F, 0x6813F, 0x3409F, 0x9E6FA};
|
||||
static const uint32_t S2[] = { 0x3A557B00, 0x5D2ABD80, 0x2E955EC0, 0x174AAF60,
|
||||
0x0BA557B0, 0x05D2ABD8, 0x0449DE68, 0x048464B0, 0x42423258, 0x278192A8,
|
||||
0x156042D0, 0x0AB02168, 0x43F89B30, 0x61FC4D98, 0x765EAD48, 0x7D8FDD20,
|
||||
0x7EC7EE90, 0x7F63F748, 0x79117020};
|
||||
static const uint32_t T1[] = {
|
||||
0x4F37D, 0x279BE, 0x97A6A, 0x4BD35, 0x25E9A, 0x12F4D, 0x097A6, 0x80D66,
|
||||
0xC4006, 0x62003, 0xB56B4, 0x5AB5A, 0xA9318, 0xD0F39, 0x6879C, 0xB057B,
|
||||
0x582BD, 0x2C15E, 0x160AF, 0x8F6E2, 0xC3DC4, 0xE5857, 0x72C2B, 0x39615,
|
||||
0x98DBF, 0xC806A, 0xE0680, 0x70340, 0x381A0, 0x98665, 0x4C332, 0xA272C};
|
||||
static const uint32_t T2[] = { 0x3C88B810, 0x5E445C08, 0x2982A580, 0x14C152C0,
|
||||
0x4A60A960, 0x253054B0, 0x52982A58, 0x2FEC9EA8, 0x1156C4D0, 0x08AB6268,
|
||||
0x42F53AB0, 0x217A9D58, 0x161DC528, 0x0DAE6910, 0x46D73488, 0x25CB11C0,
|
||||
0x52E588E0, 0x6972C470, 0x34B96238, 0x5CFC3A98, 0x28DE96C8, 0x12CFC0E0,
|
||||
0x4967E070, 0x64B3F038, 0x74F97398, 0x7CDC3248, 0x38CE92A0, 0x1C674950,
|
||||
0x0E33A4A8, 0x01B959D0, 0x40DCACE8, 0x26CEDDF0};
|
||||
static const uint32_t C1[] = { 0x846B5, 0x4235A, 0x211AD};
|
||||
static const uint32_t C2[] = { 0x1A822E0, 0x21A822E0, 0x21A822E0};
|
||||
/** Reverse 64 bits of keystream into possible cipher states
|
||||
* Variation mentioned in the paper. Somewhat optimized version
|
||||
*/
|
||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3)
|
||||
{
|
||||
struct Crypto1State *statelist, *sl;
|
||||
uint8_t oks[32], eks[32], hi[32];
|
||||
uint32_t low = 0, win = 0;
|
||||
uint32_t *tail, table[1 << 16];
|
||||
int i, j;
|
||||
|
||||
sl = statelist = malloc(sizeof(struct Crypto1State) << 4);
|
||||
if(!sl)
|
||||
return 0;
|
||||
sl->odd = sl->even = 0;
|
||||
|
||||
for(i = 30; i >= 0; i -= 2) {
|
||||
oks[i >> 1] = BEBIT(ks2, i);
|
||||
oks[16 + (i >> 1)] = BEBIT(ks3, i);
|
||||
}
|
||||
for(i = 31; i >= 0; i -= 2) {
|
||||
eks[i >> 1] = BEBIT(ks2, i);
|
||||
eks[16 + (i >> 1)] = BEBIT(ks3, i);
|
||||
}
|
||||
|
||||
for(i = 0xfffff; i >= 0; --i) {
|
||||
if (filter(i) != oks[0])
|
||||
continue;
|
||||
|
||||
*(tail = table) = i;
|
||||
for(j = 1; tail >= table && j < 29; ++j)
|
||||
extend_table_simple(table, &tail, oks[j]);
|
||||
|
||||
if(tail < table)
|
||||
continue;
|
||||
|
||||
for(j = 0; j < 19; ++j)
|
||||
low = low << 1 | parity(i & S1[j]);
|
||||
for(j = 0; j < 32; ++j)
|
||||
hi[j] = parity(i & T1[j]);
|
||||
|
||||
for(; tail >= table; --tail) {
|
||||
for(j = 0; j < 3; ++j) {
|
||||
*tail = *tail << 1;
|
||||
*tail |= parity((i & C1[j]) ^ (*tail & C2[j]));
|
||||
if(filter(*tail) != oks[29 + j])
|
||||
goto continue2;
|
||||
}
|
||||
|
||||
for(j = 0; j < 19; ++j)
|
||||
win = win << 1 | parity(*tail & S2[j]);
|
||||
|
||||
win ^= low;
|
||||
for(j = 0; j < 32; ++j) {
|
||||
win = win << 1 ^ hi[j] ^ parity(*tail & T2[j]);
|
||||
if(filter(win) != eks[j])
|
||||
goto continue2;
|
||||
}
|
||||
|
||||
*tail = *tail << 1 | parity(LF_POLY_EVEN & *tail);
|
||||
sl->odd = *tail ^ parity(LF_POLY_ODD & win);
|
||||
sl->even = win;
|
||||
++sl;
|
||||
sl->odd = sl->even = 0;
|
||||
continue2:;
|
||||
}
|
||||
}
|
||||
return statelist;
|
||||
}
|
||||
|
||||
/** lfsr_rollback_bit
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
int out;
|
||||
uint8_t ret;
|
||||
uint32_t t;
|
||||
|
||||
s->odd &= 0xffffff;
|
||||
t = s->odd, s->odd = s->even, s->even = t;
|
||||
|
||||
out = s->even & 1;
|
||||
out ^= LF_POLY_EVEN & (s->even >>= 1);
|
||||
out ^= LF_POLY_ODD & s->odd;
|
||||
out ^= !!in;
|
||||
out ^= (ret = filter(s->odd)) & !!fb;
|
||||
|
||||
s->even |= parity(out) << 23;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_byte
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/*
|
||||
int i, ret = 0;
|
||||
for (i = 7; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
|
||||
*/
|
||||
// unfold loop 20160112
|
||||
uint8_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_word
|
||||
* Rollback the shift register in order to get previous states
|
||||
*/
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/*
|
||||
int i;
|
||||
uint32_t ret = 0;
|
||||
for (i = 31; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
|
||||
*/
|
||||
// unfold loop 20160112
|
||||
uint32_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/** nonce_distance
|
||||
* x,y valid tag nonces, then prng_successor(x, nonce_distance(x, y)) = y
|
||||
*/
|
||||
static uint16_t *dist = 0;
|
||||
int nonce_distance(uint32_t from, uint32_t to)
|
||||
{
|
||||
uint16_t x, i;
|
||||
if(!dist) {
|
||||
dist = malloc(2 << 16);
|
||||
if(!dist)
|
||||
return -1;
|
||||
for (x = i = 1; i; ++i) {
|
||||
dist[(x & 0xff) << 8 | x >> 8] = i;
|
||||
x = x >> 1 | (x ^ x >> 2 ^ x >> 3 ^ x >> 5) << 15;
|
||||
}
|
||||
}
|
||||
return (65535 + dist[to >> 16] - dist[from >> 16]) % 65535;
|
||||
}
|
||||
|
||||
/** validate_prng_nonce
|
||||
* Determine if nonce is deterministic. ie: Suspectable to Darkside attack.
|
||||
* returns
|
||||
* true = weak prng
|
||||
* false = hardend prng
|
||||
*/
|
||||
bool validate_prng_nonce(uint32_t nonce) {
|
||||
// init prng table:
|
||||
nonce_distance(nonce, nonce);
|
||||
return ((65535 - dist[nonce >> 16] + dist[nonce & 0xffff]) % 65535) == 16;
|
||||
}
|
||||
|
||||
static uint32_t fastfwd[2][8] = {
|
||||
{ 0, 0x4BC53, 0xECB1, 0x450E2, 0x25E29, 0x6E27A, 0x2B298, 0x60ECB},
|
||||
{ 0, 0x1D962, 0x4BC53, 0x56531, 0xECB1, 0x135D3, 0x450E2, 0x58980}};
|
||||
|
||||
|
||||
/** lfsr_prefix_ks
|
||||
*
|
||||
* Is an exported helper function from the common prefix attack
|
||||
* Described in the "dark side" paper. It returns an -1 terminated array
|
||||
* of possible partial(21 bit) secret state.
|
||||
* The required keystream(ks) needs to contain the keystream that was used to
|
||||
* encrypt the NACK which is observed when varying only the 3 last bits of Nr
|
||||
* only correct iff [NR_3] ^ NR_3 does not depend on Nr_3
|
||||
*/
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
|
||||
{
|
||||
uint32_t *candidates = malloc(4 << 10);
|
||||
if(!candidates) return 0;
|
||||
|
||||
uint32_t c, entry;
|
||||
int size = 0, i, good;
|
||||
|
||||
for(i = 0; i < 1 << 21; ++i) {
|
||||
for(c = 0, good = 1; good && c < 8; ++c) {
|
||||
entry = i ^ fastfwd[isodd][c];
|
||||
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
|
||||
good &= (BIT(ks[c], isodd + 2) == filter(entry));
|
||||
}
|
||||
if(good)
|
||||
candidates[size++] = i;
|
||||
}
|
||||
|
||||
candidates[size] = -1;
|
||||
|
||||
return candidates;
|
||||
}
|
||||
|
||||
/** check_pfx_parity
|
||||
* helper function which eliminates possible secret states using parity bits
|
||||
*/
|
||||
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl)
|
||||
{
|
||||
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
|
||||
|
||||
for(c = 0; good && c < 8; ++c) {
|
||||
sl->odd = odd ^ fastfwd[1][c];
|
||||
sl->even = even ^ fastfwd[0][c];
|
||||
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
|
||||
ks3 = lfsr_rollback_bit(sl, 0, 0);
|
||||
ks2 = lfsr_rollback_word(sl, 0, 0);
|
||||
ks1 = lfsr_rollback_word(sl, prefix | c << 5, 1);
|
||||
|
||||
nr = ks1 ^ (prefix | c << 5);
|
||||
rr = ks2 ^ rresp;
|
||||
|
||||
good &= parity(nr & 0x000000ff) ^ parities[c][3] ^ BIT(ks2, 24);
|
||||
good &= parity(rr & 0xff000000) ^ parities[c][4] ^ BIT(ks2, 16);
|
||||
good &= parity(rr & 0x00ff0000) ^ parities[c][5] ^ BIT(ks2, 8);
|
||||
good &= parity(rr & 0x0000ff00) ^ parities[c][6] ^ BIT(ks2, 0);
|
||||
good &= parity(rr & 0x000000ff) ^ parities[c][7] ^ ks3;
|
||||
}
|
||||
|
||||
return sl + good;
|
||||
}
|
||||
static struct Crypto1State* check_pfx_parity_ex(uint32_t prefix, uint32_t odd, uint32_t even, struct Crypto1State* sl) {
|
||||
|
||||
uint32_t c = 0;
|
||||
|
||||
sl->odd = odd ^ fastfwd[1][c];
|
||||
sl->even = even ^ fastfwd[0][c];
|
||||
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
lfsr_rollback_bit(sl, 0, 0);
|
||||
lfsr_rollback_word(sl, 0, 0);
|
||||
lfsr_rollback_word(sl, prefix | c << 5, 1);
|
||||
|
||||
return ++sl;
|
||||
}
|
||||
|
||||
/** lfsr_common_prefix
|
||||
* Implentation of the common prefix attack.
|
||||
* Requires the 28 bit constant prefix used as reader nonce (pfx)
|
||||
* The reader response used (rr)
|
||||
* The keystream used to encrypt the observed NACK's (ks)
|
||||
* The parity bits (par)
|
||||
* It returns a zero terminated list of possible cipher states after the
|
||||
* tag nonce was fed in
|
||||
*/
|
||||
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8])
|
||||
{
|
||||
struct Crypto1State *statelist, *s;
|
||||
uint32_t *odd, *even, *o, *e, top;
|
||||
|
||||
odd = lfsr_prefix_ks(ks, 1);
|
||||
even = lfsr_prefix_ks(ks, 0);
|
||||
|
||||
s = statelist = malloc((sizeof *statelist) << 24);
|
||||
if(!s || !odd || !even) {
|
||||
free(statelist);
|
||||
statelist = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
for(o = odd; *o + 1; ++o)
|
||||
for(e = even; *e + 1; ++e)
|
||||
for(top = 0; top < 64; ++top) {
|
||||
*o += 1 << 21;
|
||||
*e += (!(top & 7) + 1) << 21;
|
||||
s = check_pfx_parity(pfx, rr, par, *o, *e, s);
|
||||
}
|
||||
|
||||
s->odd = s->even = 0;
|
||||
out:
|
||||
free(odd);
|
||||
free(even);
|
||||
return statelist;
|
||||
}
|
||||
|
||||
struct Crypto1State* lfsr_common_prefix_ex(uint32_t pfx, uint8_t ks[8])
|
||||
{
|
||||
struct Crypto1State *statelist, *s;
|
||||
uint32_t *odd, *even, *o, *e, top;
|
||||
|
||||
odd = lfsr_prefix_ks(ks, 1);
|
||||
even = lfsr_prefix_ks(ks, 0);
|
||||
|
||||
s = statelist = malloc((sizeof *statelist) << 24);
|
||||
if(!s || !odd || !even) {
|
||||
free(statelist);
|
||||
statelist = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
for(o = odd; *o + 1; ++o)
|
||||
for(e = even; *e + 1; ++e)
|
||||
for(top = 0; top < 64; ++top) {
|
||||
*o += 1 << 21;
|
||||
*e += (!(top & 7) + 1) << 21;
|
||||
s = check_pfx_parity_ex(pfx, *o, *e, s);
|
||||
}
|
||||
|
||||
// in this version, -1 signifies end of states
|
||||
s->odd = s->even = -1;
|
||||
|
||||
out:
|
||||
free(odd);
|
||||
free(even);
|
||||
return statelist;
|
||||
}
|
|
@ -1,103 +0,0 @@
|
|||
/* crapto1.h
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, US$
|
||||
|
||||
Copyright (C) 2008-2014 bla <blapost@gmail.com>
|
||||
*/
|
||||
#ifndef CRAPTO1_H__
|
||||
#define CRAPTO1_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "bucketsort.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct Crypto1State {uint32_t odd, even;};
|
||||
struct Crypto1State* crypto1_create(uint64_t);
|
||||
void crypto1_destroy(struct Crypto1State*);
|
||||
void crypto1_get_lfsr(struct Crypto1State*, uint64_t*);
|
||||
uint8_t crypto1_bit(struct Crypto1State*, uint8_t, int);
|
||||
uint8_t crypto1_byte(struct Crypto1State*, uint8_t, int);
|
||||
uint32_t crypto1_word(struct Crypto1State*, uint32_t, int);
|
||||
uint32_t prng_successor(uint32_t x, uint32_t n);
|
||||
|
||||
struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in);
|
||||
struct Crypto1State* lfsr_recovery64(uint32_t ks2, uint32_t ks3);
|
||||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd);
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8]);
|
||||
|
||||
// douvan's no-parity function
|
||||
struct Crypto1State* lfsr_common_prefix_ex(uint32_t pfx, uint8_t ks[8]);
|
||||
|
||||
|
||||
uint8_t lfsr_rollback_bit(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State* s, uint32_t in, int fb);
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State* s, uint32_t in, int fb);
|
||||
int nonce_distance(uint32_t from, uint32_t to);
|
||||
extern bool validate_prng_nonce(uint32_t nonce);
|
||||
#define SWAPENDIAN(x)\
|
||||
(x = (x >> 8 & 0xff00ff) | (x & 0xff00ff) << 8, x = x >> 16 | x << 16)
|
||||
|
||||
#define FOREACH_VALID_NONCE(N, FILTER, FSIZE)\
|
||||
uint32_t __n = 0,__M = 0, N = 0;\
|
||||
int __i;\
|
||||
for(; __n < 1 << 16; N = prng_successor(__M = ++__n, 16))\
|
||||
for(__i = FSIZE - 1; __i >= 0; __i--)\
|
||||
if(BIT(FILTER, __i) ^ parity(__M & 0xFF01))\
|
||||
break;\
|
||||
else if(__i)\
|
||||
__M = prng_successor(__M, (__i == 7) ? 48 : 8);\
|
||||
else
|
||||
|
||||
#define LF_POLY_ODD (0x29CE5C)
|
||||
#define LF_POLY_EVEN (0x870804)
|
||||
#define BIT(x, n) ((x) >> (n) & 1)
|
||||
#define BEBIT(x, n) BIT(x, (n) ^ 24)
|
||||
static inline int parity(uint32_t x)
|
||||
{
|
||||
#if !defined __i386__ || !defined __GNUC__
|
||||
x ^= x >> 16;
|
||||
x ^= x >> 8;
|
||||
x ^= x >> 4;
|
||||
return BIT(0x6996, x & 0xf);
|
||||
#else
|
||||
__asm__( "movl %1, %%eax\n"
|
||||
"mov %%ax, %%cx\n"
|
||||
"shrl $0x10, %%eax\n"
|
||||
"xor %%ax, %%cx\n"
|
||||
"xor %%ch, %%cl\n"
|
||||
"setpo %%al\n"
|
||||
"movzx %%al, %0\n": "=r"(x) : "r"(x): "eax","ecx");
|
||||
return x;
|
||||
#endif
|
||||
}
|
||||
static inline int filter(uint32_t const x)
|
||||
{
|
||||
uint32_t f;
|
||||
f = 0xf22c0 >> (x & 0xf) & 16;
|
||||
f |= 0x6c9c0 >> (x >> 4 & 0xf) & 8;
|
||||
f |= 0x3c8b0 >> (x >> 8 & 0xf) & 4;
|
||||
f |= 0x1e458 >> (x >> 12 & 0xf) & 2;
|
||||
f |= 0x0d938 >> (x >> 16 & 0xf) & 1;
|
||||
return BIT(0xEC57E80A, f);
|
||||
}
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif
|
|
@ -1,146 +0,0 @@
|
|||
/* crypto1.c
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License
|
||||
as published by the Free Software Foundation; either version 2
|
||||
of the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
|
||||
MA 02110-1301, US
|
||||
|
||||
Copyright (C) 2008-2008 bla <blapost@gmail.com>
|
||||
*/
|
||||
#include "crapto1.h"
|
||||
#include <stdlib.h>
|
||||
|
||||
struct Crypto1State * crypto1_create(uint64_t key)
|
||||
{
|
||||
struct Crypto1State *s = malloc(sizeof(*s));
|
||||
if ( !s ) return NULL;
|
||||
|
||||
s->odd = s->even = 0;
|
||||
|
||||
int i;
|
||||
//for(i = 47;s && i > 0; i -= 2) {
|
||||
for(i = 47; i > 0; i -= 2) {
|
||||
s->odd = s->odd << 1 | BIT(key, (i - 1) ^ 7);
|
||||
s->even = s->even << 1 | BIT(key, i ^ 7);
|
||||
}
|
||||
return s;
|
||||
}
|
||||
void crypto1_destroy(struct Crypto1State *state)
|
||||
{
|
||||
free(state);
|
||||
}
|
||||
void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
|
||||
{
|
||||
int i;
|
||||
for(*lfsr = 0, i = 23; i >= 0; --i) {
|
||||
*lfsr = *lfsr << 1 | BIT(state->odd, i ^ 3);
|
||||
*lfsr = *lfsr << 1 | BIT(state->even, i ^ 3);
|
||||
}
|
||||
}
|
||||
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
uint32_t feedin;
|
||||
uint32_t tmp;
|
||||
uint8_t ret = filter(s->odd);
|
||||
|
||||
feedin = ret & !!is_encrypted;
|
||||
feedin ^= !!in;
|
||||
feedin ^= LF_POLY_ODD & s->odd;
|
||||
feedin ^= LF_POLY_EVEN & s->even;
|
||||
s->even = s->even << 1 | parity(feedin);
|
||||
|
||||
tmp = s->odd;
|
||||
s->odd = s->even;
|
||||
s->even = tmp;
|
||||
|
||||
return ret;
|
||||
}
|
||||
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
uint8_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 8; ++i)
|
||||
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
|
||||
*/
|
||||
// unfold loop 20161012
|
||||
uint8_t ret = 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
|
||||
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
|
||||
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
|
||||
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
|
||||
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
|
||||
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
|
||||
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
|
||||
return ret;
|
||||
}
|
||||
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
uint32_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 32; ++i)
|
||||
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
|
||||
*/
|
||||
//unfold loop 2016012
|
||||
uint32_t ret = 0;
|
||||
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* prng_successor
|
||||
* helper used to obscure the keystream during authentication
|
||||
*/
|
||||
uint32_t prng_successor(uint32_t x, uint32_t n)
|
||||
{
|
||||
SWAPENDIAN(x);
|
||||
while(n--)
|
||||
x = x >> 1 | (x >> 16 ^ x >> 18 ^ x >> 19 ^ x >> 21) << 31;
|
||||
|
||||
return SWAPENDIAN(x);
|
||||
}
|
|
@ -1,120 +0,0 @@
|
|||
// Bit-sliced Crypto-1 implementation
|
||||
// The cipher states are stored with the least significant bit first, hence all bit indexes are reversed here
|
||||
/*
|
||||
Copyright (c) 2015-2016 Aram Verstegen
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in
|
||||
all copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||||
THE SOFTWARE.
|
||||
*/
|
||||
|
||||
#include "crypto1_bs.h"
|
||||
#include <inttypes.h>
|
||||
#define __STDC_FORMAT_MACROS
|
||||
|
||||
// The following functions use this global or thread-local state
|
||||
// It is sized to fit exactly KEYSTREAM_SIZE more states next to the initial state
|
||||
__thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE];
|
||||
__thread bitslice_t * restrict state_p;
|
||||
|
||||
void crypto1_bs_init(){
|
||||
// initialize constant one and zero bit vectors
|
||||
memset(bs_ones.bytes, 0xff, VECTOR_SIZE);
|
||||
memset(bs_zeroes.bytes, 0x00, VECTOR_SIZE);
|
||||
}
|
||||
|
||||
// The following functions have side effects on 48 bitslices at the state_p pointer
|
||||
// use the crypto1_bs_rewind_* macros to (re-)initialize them as needed
|
||||
|
||||
inline const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted){
|
||||
bitslice_value_t feedback = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(state_p);
|
||||
if(is_encrypted){
|
||||
feedback ^= ks_bits;
|
||||
}
|
||||
state_p--;
|
||||
state_p[0].value = feedback ^ input;
|
||||
return ks_bits;
|
||||
}
|
||||
|
||||
inline const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted){
|
||||
bitslice_value_t feedout = state_p[0].value;
|
||||
state_p++;
|
||||
const bitslice_value_t ks_bits = crypto1_bs_f20(state_p);
|
||||
if(is_encrypted){
|
||||
feedout ^= ks_bits;
|
||||
}
|
||||
const bitslice_value_t feedback = (feedout ^ state_p[47- 5].value ^ state_p[47- 9].value ^
|
||||
state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^
|
||||
state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^
|
||||
state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^
|
||||
state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^
|
||||
state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value);
|
||||
state_p[47].value = feedback ^ input;
|
||||
return ks_bits;
|
||||
}
|
||||
|
||||
// side-effect free from here on
|
||||
// note that bytes are sliced and unsliced with reversed endianness
|
||||
inline void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]){
|
||||
size_t bit_idx = 0, slice_idx = 0;
|
||||
state_t values[MAX_BITSLICES];
|
||||
memset(values, 0x0, sizeof(values));
|
||||
|
||||
for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){
|
||||
for(bit_idx = 0; bit_idx < STATE_SIZE; bit_idx++){
|
||||
bool bit = get_vector_bit(slice_idx, bitsliced_states[bit_idx]);
|
||||
values[slice_idx].value <<= 1;
|
||||
values[slice_idx].value |= bit;
|
||||
}
|
||||
// swap endianness
|
||||
values[slice_idx].value = rev_state_t(values[slice_idx].value);
|
||||
// roll off unused bits
|
||||
//values[slice_idx].value >>= ((sizeof(state_t)*8)-STATE_SIZE); // - 48
|
||||
values[slice_idx].value >>= 16;
|
||||
}
|
||||
memcpy(regular_states, values, sizeof(values));
|
||||
}
|
||||
|
||||
// bitslice a value
|
||||
void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len){
|
||||
// load nonce bytes with unswapped endianness
|
||||
size_t bit_idx;
|
||||
for(bit_idx = 0; bit_idx < bit_len; bit_idx++){
|
||||
bool bit = get_bit(bit_len-1-bit_idx, rev32(value));
|
||||
if(bit){
|
||||
bitsliced_value[bit_idx].value = bs_ones.value;
|
||||
} else {
|
||||
bitsliced_value[bit_idx].value = bs_zeroes.value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void crypto1_bs_print_states(bitslice_t bitsliced_states[]){
|
||||
size_t slice_idx = 0;
|
||||
state_t values[MAX_BITSLICES] = {{0x00}};
|
||||
crypto1_bs_convert_states(bitsliced_states, values);
|
||||
for(slice_idx = 0; slice_idx < MAX_BITSLICES; slice_idx++){
|
||||
printf("State %03zu: %012" PRIx64 "\n", slice_idx, values[slice_idx].value);
|
||||
}
|
||||
}
|
||||
|
|
@ -1,99 +0,0 @@
|
|||
#ifndef _CRYPTO1_BS_H
|
||||
#define _CRYPTO1_BS_H
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
|
||||
// bitslice type
|
||||
// while AVX supports 256 bit vector floating point operations, we need integer operations for boolean logic
|
||||
// same for AVX2 and 512 bit vectors
|
||||
// using larger vectors works but seems to generate more register pressure
|
||||
#if defined(__AVX2__)
|
||||
#define MAX_BITSLICES 256
|
||||
#elif defined(__AVX__)
|
||||
#define MAX_BITSLICES 128
|
||||
#elif defined(__SSE2__)
|
||||
#define MAX_BITSLICES 128
|
||||
#else
|
||||
#define MAX_BITSLICES 64
|
||||
#endif
|
||||
|
||||
#define VECTOR_SIZE (MAX_BITSLICES/8)
|
||||
typedef unsigned int __attribute__((aligned(VECTOR_SIZE))) __attribute__((vector_size(VECTOR_SIZE))) bitslice_value_t;
|
||||
typedef union {
|
||||
bitslice_value_t value;
|
||||
uint64_t bytes64[MAX_BITSLICES/64];
|
||||
uint8_t bytes[MAX_BITSLICES/8];
|
||||
} bitslice_t;
|
||||
|
||||
// filter function (f20)
|
||||
// sourced from ``Wirelessly Pickpocketing a Mifare Classic Card'' by Flavio Garcia, Peter van Rossum, Roel Verdult and Ronny Wichers Schreur
|
||||
#define f20a(a,b,c,d) (((a|b)^(a&d))^(c&((a^b)|d)))
|
||||
#define f20b(a,b,c,d) (((a&b)|c)^((a^b)&(c|d)))
|
||||
#define f20c(a,b,c,d,e) ((a|((b|e)&(d^e)))^((a^(b&d))&((c^d)|(b&e))))
|
||||
|
||||
#define crypto1_bs_f20(s) \
|
||||
f20c(f20a((s[47- 9].value), (s[47-11].value), (s[47-13].value), (s[47-15].value)), \
|
||||
f20b((s[47-17].value), (s[47-19].value), (s[47-21].value), (s[47-23].value)), \
|
||||
f20b((s[47-25].value), (s[47-27].value), (s[47-29].value), (s[47-31].value)), \
|
||||
f20a((s[47-33].value), (s[47-35].value), (s[47-37].value), (s[47-39].value)), \
|
||||
f20b((s[47-41].value), (s[47-43].value), (s[47-45].value), (s[47-47].value)))
|
||||
|
||||
// bit indexing
|
||||
#define get_bit(n, word) ((word >> (n)) & 1)
|
||||
#define get_vector_bit(slice, value) get_bit(slice&0x3f, value.bytes64[slice>>6])
|
||||
|
||||
// constant ones/zeroes
|
||||
bitslice_t bs_ones;
|
||||
bitslice_t bs_zeroes;
|
||||
|
||||
// size of crypto-1 state
|
||||
#define STATE_SIZE 48
|
||||
// size of nonce to be decrypted
|
||||
#define KEYSTREAM_SIZE 32
|
||||
// size of first uid^nonce byte to be rolled back to the initial key
|
||||
#define ROLLBACK_SIZE 8
|
||||
// number of nonces required to test to cover entire 48-bit state
|
||||
// I would have said it's 12... but bla goes with 100, so I do too
|
||||
#define NONCE_TESTS 100
|
||||
|
||||
// state pointer management
|
||||
extern __thread bitslice_t states[KEYSTREAM_SIZE+STATE_SIZE];
|
||||
extern __thread bitslice_t * restrict state_p;
|
||||
|
||||
// rewind to the point a0, at which KEYSTREAM_SIZE more bits can be generated
|
||||
#define crypto1_bs_rewind_a0() (state_p = &states[KEYSTREAM_SIZE])
|
||||
|
||||
// bitsliced bytewise parity
|
||||
#define bitsliced_byte_parity(n) (n[0].value ^ n[1].value ^ n[2].value ^ n[3].value ^ n[4].value ^ n[5].value ^ n[6].value ^ n[7].value)
|
||||
|
||||
// 48-bit crypto-1 states are normally represented using 64-bit values
|
||||
typedef union {
|
||||
uint64_t value;
|
||||
uint8_t bytes[8];
|
||||
} state_t;
|
||||
|
||||
// endianness conversion
|
||||
#define rev32(word) (((word & 0xff) << 24) | (((word >> 8) & 0xff) << 16) | (((word >> 16) & 0xff) << 8) | (((word >> 24) & 0xff)))
|
||||
#define rev64(x) (rev32(x)<<32|(rev32((x>>32))))
|
||||
#define rev_state_t rev64
|
||||
|
||||
// crypto-1 functions
|
||||
const bitslice_value_t crypto1_bs_bit(const bitslice_value_t input, const bool is_encrypted);
|
||||
const bitslice_value_t crypto1_bs_lfsr_rollback(const bitslice_value_t input, const bool is_encrypted);
|
||||
|
||||
// initialization functions
|
||||
void crypto1_bs_init();
|
||||
|
||||
// conversion functions
|
||||
void crypto1_bs_bitslice_value32(uint32_t value, bitslice_t bitsliced_value[], size_t bit_len);
|
||||
void crypto1_bs_convert_states(bitslice_t bitsliced_states[], state_t regular_states[]);
|
||||
|
||||
// debug print
|
||||
void crypto1_bs_print_states(bitslice_t *bitsliced_states);
|
||||
|
||||
#endif // _CRYPTO1_BS_H
|
||||
|
|
@ -1,335 +0,0 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// Merlok - June 2011
|
||||
// Roel - Dec 2009
|
||||
// Unknown author
|
||||
//
|
||||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||||
// the license.
|
||||
//-----------------------------------------------------------------------------
|
||||
// MIFARE Darkside hack
|
||||
//-----------------------------------------------------------------------------
|
||||
#include "nonce2key.h"
|
||||
|
||||
// called with a uint8_t *x array
|
||||
#define LE32TOH(x) (uint32_t)( ( (x)[3]<<24) | ( (x)[2]<<16) | ( (x)[1]<<8) | (x)[0]);
|
||||
|
||||
int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) {
|
||||
struct Crypto1State *state;
|
||||
uint32_t i, pos, rr = 0, nr_diff;
|
||||
byte_t bt, ks3x[8], par[8][8];
|
||||
|
||||
// Reset the last three significant bits of the reader nonce
|
||||
nr &= 0xffffff1f;
|
||||
|
||||
PrintAndLog("uid(%08x) nt(%08x) par(%016" PRIx64") ks(%016" PRIx64") nr(%08x)", uid, nt, par_info, ks_info, nr);
|
||||
|
||||
for ( pos = 0; pos < 8; pos++ ) {
|
||||
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
|
||||
bt = (par_info >> (pos*8)) & 0xff;
|
||||
|
||||
for ( i = 0; i < 8; i++) {
|
||||
par[7-pos][i] = (bt >> i) & 0x01;
|
||||
}
|
||||
}
|
||||
|
||||
PrintAndLog("+----+--------+---+-----+---------------+");
|
||||
PrintAndLog("|diff|{nr} |ks3|ks3^5|parity |");
|
||||
PrintAndLog("+----+--------+---+-----+---------------+");
|
||||
for ( i = 0; i < 8; i++) {
|
||||
nr_diff = nr | i << 5;
|
||||
|
||||
PrintAndLog("| %02x |%08x| %01x | %01x |%01x,%01x,%01x,%01x,%01x,%01x,%01x,%01x|",
|
||||
i << 5, nr_diff, ks3x[i], ks3x[i]^5,
|
||||
par[i][0], par[i][1], par[i][2], par[i][3],
|
||||
par[i][4], par[i][5], par[i][6], par[i][7]);
|
||||
|
||||
}
|
||||
PrintAndLog("+----+--------+---+-----+---------------+");
|
||||
|
||||
uint64_t t1 = msclock();
|
||||
|
||||
state = lfsr_common_prefix(nr, rr, ks3x, par);
|
||||
lfsr_rollback_word(state, uid ^ nt, 0);
|
||||
crypto1_get_lfsr(state, key);
|
||||
crypto1_destroy(state);
|
||||
|
||||
t1 = msclock() - t1;
|
||||
PrintAndLog("Time in nonce2key: %.0f ticks", (float)t1/1000.0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int compar_intA(const void * a, const void * b) {
|
||||
if (*(int64_t*)b == *(int64_t*)a) return 0;
|
||||
if (*(int64_t*)b > *(int64_t*)a) return 1;
|
||||
return -1;
|
||||
}
|
||||
|
||||
// call when PAR == 0, special attack? It seems to need two calls. with same uid, block, keytype
|
||||
int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key) {
|
||||
|
||||
struct Crypto1State *state;
|
||||
uint32_t i, pos, key_count;
|
||||
uint8_t ks3x[8];
|
||||
uint64_t key_recovered;
|
||||
int64_t *state_s;
|
||||
static uint8_t last_blockno;
|
||||
static uint8_t last_keytype;
|
||||
static uint32_t last_uid;
|
||||
static int64_t *last_keylist;
|
||||
|
||||
if (last_uid != uid &&
|
||||
last_blockno != blockno &&
|
||||
last_keytype != keytype &&
|
||||
last_keylist != NULL)
|
||||
{
|
||||
free(last_keylist);
|
||||
last_keylist = NULL;
|
||||
}
|
||||
last_uid = uid;
|
||||
last_blockno = blockno;
|
||||
last_keytype = keytype;
|
||||
|
||||
// Reset the last three significant bits of the reader nonce
|
||||
nr &= 0xffffff1f;
|
||||
|
||||
// split keystream into array
|
||||
for (pos=0; pos<8; pos++) {
|
||||
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f;
|
||||
}
|
||||
|
||||
// find possible states for this keystream
|
||||
state = lfsr_common_prefix_ex(nr, ks3x);
|
||||
|
||||
if (!state) {
|
||||
PrintAndLog("Failed getting states");
|
||||
return 1;
|
||||
}
|
||||
|
||||
state_s = (int64_t*)state;
|
||||
|
||||
uint32_t xored = uid ^ nt;
|
||||
|
||||
for (i = 0; (state) && ((state + i)->odd != -1); i++) {
|
||||
lfsr_rollback_word(state + i, xored, 0);
|
||||
crypto1_get_lfsr(state + i, &key_recovered);
|
||||
*(state_s + i) = key_recovered;
|
||||
}
|
||||
|
||||
qsort(state_s, i, sizeof(int64_t), compar_intA);
|
||||
*(state_s + i) = -1;
|
||||
|
||||
// first call to this function. clear all other stuff and set new found states.
|
||||
if (last_keylist == NULL) {
|
||||
free(last_keylist);
|
||||
last_keylist = state_s;
|
||||
PrintAndLog("parity is all zero, testing special attack. First call, this attack needs at least two calls. Hold on...");
|
||||
PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr);
|
||||
return 1;
|
||||
}
|
||||
|
||||
PrintAndLog("uid(%08x) nt(%08x) ks(%016" PRIx64") nr(%08x)", uid, nt, ks_info, nr);
|
||||
|
||||
//Create the intersection:
|
||||
int64_t *p1, *p2, *p3;
|
||||
p1 = p3 = last_keylist;
|
||||
p2 = state_s;
|
||||
|
||||
while ( *p1 != -1 && *p2 != -1 ) {
|
||||
if (compar_intA(p1, p2) == 0) {
|
||||
PrintAndLog("p1:%" PRIx64" p2:%" PRIx64" p3:%" PRIx64" key:%012" PRIx64
|
||||
, (uint64_t)(p1-last_keylist)
|
||||
, (uint64_t)(p2-state_s)
|
||||
, (uint64_t)(p3-last_keylist)
|
||||
, *p1
|
||||
);
|
||||
*p3++ = *p1++;
|
||||
p2++;
|
||||
}
|
||||
else {
|
||||
while (compar_intA(p1, p2) == -1) ++p1;
|
||||
while (compar_intA(p1, p2) == 1) ++p2;
|
||||
}
|
||||
}
|
||||
key_count = p3 - last_keylist;
|
||||
PrintAndLog("key_count: %d", key_count);
|
||||
if ( key_count == 0 ){
|
||||
free(state);
|
||||
state = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
uint8_t retval = 1;
|
||||
// Validate all key candidates with testing each of them with mfCheckKeys
|
||||
uint8_t keyBlock[6] = {0,0,0,0,0,0};
|
||||
uint64_t key64;
|
||||
for (i = 0; i < key_count; i++) {
|
||||
key64 = *(last_keylist + i);
|
||||
num_to_bytes(key64, 6, keyBlock);
|
||||
key64 = 0;
|
||||
if (!mfCheckKeys(blockno, keytype, false, 1, keyBlock, &key64)) {
|
||||
*key = key64;
|
||||
retval = 0;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
|
||||
out:
|
||||
free(last_keylist);
|
||||
last_keylist = NULL;
|
||||
free(state);
|
||||
state = NULL;
|
||||
return retval;
|
||||
}
|
||||
|
||||
// 32 bit recover key from 2 nonces, with same nonce
|
||||
bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose) {
|
||||
struct Crypto1State *s,*t;
|
||||
uint64_t outkey = 0;
|
||||
uint64_t key=0; // recovered key
|
||||
uint32_t uid = data.cuid;
|
||||
uint32_t nt = data.nonce; // first tag challenge (nonce)
|
||||
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
|
||||
uint32_t ar0_enc = data.ar; // first encrypted reader response
|
||||
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
|
||||
uint32_t ar1_enc = data.ar2; // second encrypted reader response
|
||||
bool isSuccess = false;
|
||||
uint8_t counter = 0;
|
||||
|
||||
clock_t t1 = clock();
|
||||
uint32_t p64 = prng_successor(nt, 64);
|
||||
|
||||
if ( verbose ) {
|
||||
PrintAndLog("Recovering key for:");
|
||||
PrintAndLog(" uid: %08x",uid);
|
||||
PrintAndLog(" nt: %08x",nt);
|
||||
PrintAndLog(" {nr_0}: %08x",nr0_enc);
|
||||
PrintAndLog(" {ar_0}: %08x",ar0_enc);
|
||||
PrintAndLog(" {nr_1}: %08x",nr1_enc);
|
||||
PrintAndLog(" {ar_1}: %08x",ar1_enc);
|
||||
PrintAndLog("\nLFSR succesors of the tag challenge:");
|
||||
PrintAndLog(" nt': %08x", p64);
|
||||
PrintAndLog(" nt'': %08x", prng_successor(p64, 32));
|
||||
}
|
||||
|
||||
s = lfsr_recovery32(ar0_enc ^ p64, 0);
|
||||
|
||||
for(t = s; t->odd | t->even; ++t) {
|
||||
lfsr_rollback_word(t, 0, 0);
|
||||
lfsr_rollback_word(t, nr0_enc, 1);
|
||||
lfsr_rollback_word(t, uid ^ nt, 0);
|
||||
crypto1_get_lfsr(t, &key);
|
||||
crypto1_word(t, uid ^ nt, 0);
|
||||
crypto1_word(t, nr1_enc, 1);
|
||||
if (ar1_enc == (crypto1_word(t, 0, 0) ^ p64)) {
|
||||
outkey = key;
|
||||
++counter;
|
||||
if (counter==20) break;
|
||||
}
|
||||
}
|
||||
isSuccess = (counter > 0);
|
||||
t1 = clock() - t1;
|
||||
if ( t1 > 0 ) PrintAndLog("Time in mfkey32: %.0f ticks - possible keys %d", (float)t1, counter);
|
||||
|
||||
*outputkey = ( isSuccess ) ? outkey : 0;
|
||||
crypto1_destroy(s);
|
||||
return isSuccess;
|
||||
}
|
||||
|
||||
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose) {
|
||||
struct Crypto1State *s, *t;
|
||||
uint64_t outkey = 0;
|
||||
uint64_t key = 0; // recovered key
|
||||
uint32_t uid = data.cuid;
|
||||
uint32_t nt0 = data.nonce; // first tag challenge (nonce)
|
||||
uint32_t nr0_enc = data.nr; // first encrypted reader challenge
|
||||
uint32_t ar0_enc = data.ar; // first encrypted reader response
|
||||
//uint32_t uid1 = LE32TOH(data+16);
|
||||
uint32_t nt1 = data.nonce2; // second tag challenge (nonce)
|
||||
uint32_t nr1_enc = data.nr2; // second encrypted reader challenge
|
||||
uint32_t ar1_enc = data.ar2; // second encrypted reader response
|
||||
bool isSuccess = false;
|
||||
int counter = 0;
|
||||
|
||||
clock_t t1 = clock();
|
||||
|
||||
uint32_t p640 = prng_successor(nt0, 64);
|
||||
uint32_t p641 = prng_successor(nt1, 64);
|
||||
|
||||
if (verbose) {
|
||||
PrintAndLog("Recovering key for:");
|
||||
PrintAndLog(" uid: %08x", uid);
|
||||
PrintAndLog(" nt_0: %08x", nt0);
|
||||
PrintAndLog(" {nr_0}: %08x", nr0_enc);
|
||||
PrintAndLog(" {ar_0}: %08x", ar0_enc);
|
||||
PrintAndLog(" nt_1: %08x", nt1);
|
||||
PrintAndLog(" {nr_1}: %08x", nr1_enc);
|
||||
PrintAndLog(" {ar_1}: %08x", ar1_enc);
|
||||
PrintAndLog("\nLFSR succesors of the tag challenge:");
|
||||
PrintAndLog(" nt': %08x", p640);
|
||||
PrintAndLog(" nt'': %08x", prng_successor(p640, 32));
|
||||
}
|
||||
|
||||
s = lfsr_recovery32(ar0_enc ^ p640, 0);
|
||||
|
||||
for(t = s; t->odd | t->even; ++t) {
|
||||
lfsr_rollback_word(t, 0, 0);
|
||||
lfsr_rollback_word(t, nr0_enc, 1);
|
||||
lfsr_rollback_word(t, uid ^ nt0, 0);
|
||||
crypto1_get_lfsr(t, &key);
|
||||
|
||||
crypto1_word(t, uid ^ nt1, 0);
|
||||
crypto1_word(t, nr1_enc, 1);
|
||||
if (ar1_enc == (crypto1_word(t, 0, 0) ^ p641)) {
|
||||
outkey=key;
|
||||
++counter;
|
||||
if (counter==20) break;
|
||||
}
|
||||
}
|
||||
isSuccess = (counter > 0);
|
||||
t1 = clock() - t1;
|
||||
if (verbose) {
|
||||
if ( t1 > 0 ) PrintAndLog("Time in mfkey32_moebius: %.0f ticks - possible keys %d", (float)t1, counter);
|
||||
}
|
||||
*outputkey = ( isSuccess ) ? outkey : 0;
|
||||
crypto1_destroy(s);
|
||||
return isSuccess;
|
||||
}
|
||||
|
||||
// 64 bit recover key from a full authentication. (sniffed)
|
||||
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey){
|
||||
uint32_t uid = LE32TOH(data);
|
||||
uint32_t nt = LE32TOH(data+4); // tag challenge
|
||||
uint32_t nr_enc = LE32TOH(data+8); // encrypted reader challenge
|
||||
uint32_t ar_enc = LE32TOH(data+12); // encrypted reader response
|
||||
uint32_t at_enc = LE32TOH(data+16); // encrypted tag response
|
||||
return tryMfk64(uid, nt, nr_enc, ar_enc, at_enc, outputkey);
|
||||
}
|
||||
|
||||
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey){
|
||||
uint64_t key = 0; // recovered key
|
||||
uint32_t ks2; // keystream used to encrypt reader response
|
||||
uint32_t ks3; // keystream used to encrypt tag response
|
||||
struct Crypto1State *revstate;
|
||||
|
||||
PrintAndLog("Enter mfkey64");
|
||||
clock_t t1 = clock();
|
||||
|
||||
// Extract the keystream from the messages
|
||||
ks2 = ar_enc ^ prng_successor(nt, 64);
|
||||
ks3 = at_enc ^ prng_successor(nt, 96);
|
||||
revstate = lfsr_recovery64(ks2, ks3);
|
||||
lfsr_rollback_word(revstate, 0, 0);
|
||||
lfsr_rollback_word(revstate, 0, 0);
|
||||
lfsr_rollback_word(revstate, nr_enc, 1);
|
||||
lfsr_rollback_word(revstate, uid ^ nt, 0);
|
||||
crypto1_get_lfsr(revstate, &key);
|
||||
|
||||
PrintAndLog("Found Key: [%012" PRIx64 "]", key);
|
||||
t1 = clock() - t1;
|
||||
if ( t1 > 0 ) PrintAndLog("Time in mfkey64: %.0f ticks", (float)t1);
|
||||
|
||||
*outputkey = key;
|
||||
crypto1_destroy(revstate);
|
||||
return 0;
|
||||
}
|
|
@ -1,34 +0,0 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// Merlok - June 2011
|
||||
// Roel - Dec 2009
|
||||
// Unknown author
|
||||
// iceman - may 2015
|
||||
// marshmellow42 - june 2016
|
||||
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
|
||||
// at your option, any later version. See the LICENSE.txt file for the text of
|
||||
// the license.
|
||||
//-----------------------------------------------------------------------------
|
||||
// MIFARE Darkside hack
|
||||
//-----------------------------------------------------------------------------
|
||||
|
||||
#ifndef __NONCE2KEY_H
|
||||
#define __NONCE2KEY_H
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include "crapto1.h"
|
||||
#include "common.h"
|
||||
#include "mifare.h" // nonces_t struct
|
||||
#include "ui.h" // PrintAndLog
|
||||
#include "proxmark3.h"
|
||||
#include "mifarehost.h"
|
||||
|
||||
extern int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key);
|
||||
extern int nonce2key_ex(uint8_t blockno, uint8_t keytype, uint32_t uid, uint32_t nt, uint32_t nr, uint64_t ks_info, uint64_t * key);
|
||||
|
||||
//iceman, added these to be able to crack key direct from "hf 14 sim" && "hf mf sim"
|
||||
bool tryMfk32(nonces_t data, uint64_t *outputkey, bool verbose );
|
||||
bool tryMfk32_moebius(nonces_t data, uint64_t *outputkey, bool verbose); // <<-- this one has best success
|
||||
int tryMfk64_ex(uint8_t *data, uint64_t *outputkey );
|
||||
int tryMfk64(uint32_t uid, uint32_t nt, uint32_t nr_enc, uint32_t ar_enc, uint32_t at_enc, uint64_t *outputkey);
|
||||
#endif
|
|
@ -35,67 +35,8 @@ static void __attribute__((constructor)) fill_lut()
|
|||
|
||||
|
||||
|
||||
typedef struct bucket {
|
||||
uint32_t *head;
|
||||
uint32_t *bp;
|
||||
} bucket_t;
|
||||
|
||||
typedef bucket_t bucket_array_t[2][0x100];
|
||||
|
||||
typedef struct bucket_info {
|
||||
struct {
|
||||
uint32_t *head, *tail;
|
||||
} bucket_info[2][0x100];
|
||||
uint32_t numbuckets;
|
||||
} bucket_info_t;
|
||||
|
||||
|
||||
static void bucket_sort_intersect(uint32_t* const estart, uint32_t* const estop,
|
||||
uint32_t* const ostart, uint32_t* const ostop,
|
||||
bucket_info_t *bucket_info, bucket_array_t bucket)
|
||||
{
|
||||
uint32_t *p1, *p2;
|
||||
uint32_t *start[2];
|
||||
uint32_t *stop[2];
|
||||
|
||||
start[0] = estart;
|
||||
stop[0] = estop;
|
||||
start[1] = ostart;
|
||||
stop[1] = ostop;
|
||||
|
||||
// init buckets to be empty
|
||||
for (uint32_t i = 0; i < 2; i++) {
|
||||
for (uint32_t j = 0x00; j <= 0xff; j++) {
|
||||
bucket[i][j].bp = bucket[i][j].head;
|
||||
}
|
||||
}
|
||||
|
||||
// sort the lists into the buckets based on the MSB (contribution bits)
|
||||
for (uint32_t i = 0; i < 2; i++) {
|
||||
for (p1 = start[i]; p1 <= stop[i]; p1++) {
|
||||
uint32_t bucket_index = (*p1 & 0xff000000) >> 24;
|
||||
*(bucket[i][bucket_index].bp++) = *p1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// write back intersecting buckets as sorted list.
|
||||
// fill in bucket_info with head and tail of the bucket contents in the list and number of non-empty buckets.
|
||||
uint32_t nonempty_bucket;
|
||||
for (uint32_t i = 0; i < 2; i++) {
|
||||
p1 = start[i];
|
||||
nonempty_bucket = 0;
|
||||
for (uint32_t j = 0x00; j <= 0xff; j++) {
|
||||
if (bucket[0][j].bp != bucket[0][j].head && bucket[1][j].bp != bucket[1][j].head) { // non-empty intersecting buckets only
|
||||
bucket_info->bucket_info[i][nonempty_bucket].head = p1;
|
||||
for (p2 = bucket[i][j].head; p2 < bucket[i][j].bp; *p1++ = *p2++);
|
||||
bucket_info->bucket_info[i][nonempty_bucket].tail = p1 - 1;
|
||||
nonempty_bucket++;
|
||||
}
|
||||
}
|
||||
bucket_info->numbuckets = nonempty_bucket;
|
||||
}
|
||||
}
|
||||
/** binsearch
|
||||
* Binary search for the first occurence of *stop's MSB in sorted [start,stop]
|
||||
*/
|
||||
|
@ -268,12 +209,11 @@ struct Crypto1State* lfsr_recovery32(uint32_t ks2, uint32_t in)
|
|||
recover(odd_head, odd_tail, oks, even_head, even_tail, eks, 11, statelist, in << 1, bucket);
|
||||
|
||||
out:
|
||||
free(odd_head);
|
||||
free(even_head);
|
||||
for (uint32_t i = 0; i < 2; i++)
|
||||
for (uint32_t j = 0; j <= 0xff; j++)
|
||||
free(bucket[i][j].head);
|
||||
|
||||
free(odd_head);
|
||||
free(even_head);
|
||||
return statelist;
|
||||
}
|
||||
|
||||
|
@ -393,9 +333,21 @@ uint8_t lfsr_rollback_bit(struct Crypto1State *s, uint32_t in, int fb)
|
|||
*/
|
||||
uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/*
|
||||
int i, ret=0;
|
||||
for (i = 7; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, i), fb) << i;
|
||||
*/
|
||||
// unfold loop 20160112
|
||||
uint8_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 7), fb) << 7;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 6), fb) << 6;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 5), fb) << 5;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 4), fb) << 4;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 3), fb) << 3;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 2), fb) << 2;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 1), fb) << 1;
|
||||
ret |= lfsr_rollback_bit(s, BIT(in, 0), fb) << 0;
|
||||
return ret;
|
||||
}
|
||||
/** lfsr_rollback_word
|
||||
|
@ -403,10 +355,49 @@ uint8_t lfsr_rollback_byte(struct Crypto1State *s, uint32_t in, int fb)
|
|||
*/
|
||||
uint32_t lfsr_rollback_word(struct Crypto1State *s, uint32_t in, int fb)
|
||||
{
|
||||
/*
|
||||
int i;
|
||||
uint32_t ret = 0;
|
||||
for (i = 31; i >= 0; --i)
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, i), fb) << (i ^ 24);
|
||||
*/
|
||||
// unfold loop 20160112
|
||||
uint32_t ret = 0;
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 31), fb) << (31 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 30), fb) << (30 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 29), fb) << (29 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 28), fb) << (28 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 27), fb) << (27 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 26), fb) << (26 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 25), fb) << (25 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 24), fb) << (24 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 23), fb) << (23 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 22), fb) << (22 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 21), fb) << (21 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 20), fb) << (20 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 19), fb) << (19 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 18), fb) << (18 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 17), fb) << (17 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 16), fb) << (16 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 15), fb) << (15 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 14), fb) << (14 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 13), fb) << (13 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 12), fb) << (12 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 11), fb) << (11 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 10), fb) << (10 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 9), fb) << (9 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 8), fb) << (8 ^ 24);
|
||||
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 7), fb) << (7 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 6), fb) << (6 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 5), fb) << (5 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 4), fb) << (4 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 3), fb) << (3 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 2), fb) << (2 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 1), fb) << (1 ^ 24);
|
||||
ret |= lfsr_rollback_bit(s, BEBIT(in, 0), fb) << (0 ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
@ -458,18 +449,18 @@ static uint32_t fastfwd[2][8] = {
|
|||
uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
|
||||
{
|
||||
uint32_t *candidates = malloc(4 << 10);
|
||||
if(!candidates) return 0;
|
||||
if (!candidates) return 0;
|
||||
|
||||
uint32_t c, entry;
|
||||
int size = 0, i, good;
|
||||
|
||||
for(i = 0; i < 1 << 21; ++i) {
|
||||
for(c = 0, good = 1; good && c < 8; ++c) {
|
||||
for (i = 0; i < 1 << 21; ++i) {
|
||||
for (c = 0, good = 1; good && c < 8; ++c) {
|
||||
entry = i ^ fastfwd[isodd][c];
|
||||
good &= (BIT(ks[c], isodd) == filter(entry >> 1));
|
||||
good &= (BIT(ks[c], isodd + 2) == filter(entry));
|
||||
}
|
||||
if(good)
|
||||
if (good)
|
||||
candidates[size++] = i;
|
||||
}
|
||||
|
||||
|
@ -481,9 +472,7 @@ uint32_t *lfsr_prefix_ks(uint8_t ks[8], int isodd)
|
|||
/** check_pfx_parity
|
||||
* helper function which eliminates possible secret states using parity bits
|
||||
*/
|
||||
static struct Crypto1State*
|
||||
check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
|
||||
uint32_t odd, uint32_t even, struct Crypto1State* sl, uint32_t no_par)
|
||||
static struct Crypto1State* check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8], uint32_t odd, uint32_t even, struct Crypto1State* sl, uint32_t no_par)
|
||||
{
|
||||
uint32_t ks1, nr, ks2, rr, ks3, c, good = 1;
|
||||
|
||||
|
@ -524,8 +513,8 @@ check_pfx_parity(uint32_t prefix, uint32_t rresp, uint8_t parities[8][8],
|
|||
* It returns a zero terminated list of possible cipher states after the
|
||||
* tag nonce was fed in
|
||||
*/
|
||||
struct Crypto1State*
|
||||
lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint32_t no_par)
|
||||
|
||||
struct Crypto1State* lfsr_common_prefix(uint32_t pfx, uint32_t rr, uint8_t ks[8], uint8_t par[8][8], uint32_t no_par)
|
||||
{
|
||||
struct Crypto1State *statelist, *s;
|
||||
uint32_t *odd, *even, *o, *e, top;
|
||||
|
|
|
@ -21,6 +21,8 @@
|
|||
#define CRAPTO1_INCLUDED
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include "bucketsort.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
|
|
@ -72,7 +72,7 @@ void crypto1_get_lfsr(struct Crypto1State *state, uint64_t *lfsr)
|
|||
}
|
||||
uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
uint32_t feedin, tmp;
|
||||
uint32_t feedin, t;
|
||||
uint8_t ret = filter(s->odd);
|
||||
|
||||
feedin = ret & !!is_encrypted;
|
||||
|
@ -81,28 +81,77 @@ uint8_t crypto1_bit(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
|||
feedin ^= LF_POLY_EVEN & s->even;
|
||||
s->even = s->even << 1 | evenparity32(feedin);
|
||||
|
||||
tmp = s->odd;
|
||||
t = s->odd;
|
||||
s->odd = s->even;
|
||||
s->even = tmp;
|
||||
s->even = t;
|
||||
|
||||
return ret;
|
||||
}
|
||||
uint8_t crypto1_byte(struct Crypto1State *s, uint8_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
uint8_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 8; ++i)
|
||||
ret |= crypto1_bit(s, BIT(in, i), is_encrypted) << i;
|
||||
|
||||
*/
|
||||
// unfold loop 20161012
|
||||
uint8_t ret = 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 0), is_encrypted) << 0;
|
||||
ret |= crypto1_bit(s, BIT(in, 1), is_encrypted) << 1;
|
||||
ret |= crypto1_bit(s, BIT(in, 2), is_encrypted) << 2;
|
||||
ret |= crypto1_bit(s, BIT(in, 3), is_encrypted) << 3;
|
||||
ret |= crypto1_bit(s, BIT(in, 4), is_encrypted) << 4;
|
||||
ret |= crypto1_bit(s, BIT(in, 5), is_encrypted) << 5;
|
||||
ret |= crypto1_bit(s, BIT(in, 6), is_encrypted) << 6;
|
||||
ret |= crypto1_bit(s, BIT(in, 7), is_encrypted) << 7;
|
||||
return ret;
|
||||
}
|
||||
uint32_t crypto1_word(struct Crypto1State *s, uint32_t in, int is_encrypted)
|
||||
{
|
||||
/*
|
||||
uint32_t i, ret = 0;
|
||||
|
||||
for (i = 0; i < 32; ++i)
|
||||
ret |= crypto1_bit(s, BEBIT(in, i), is_encrypted) << (i ^ 24);
|
||||
*/
|
||||
//unfold loop 2016012
|
||||
uint32_t ret = 0;
|
||||
ret |= crypto1_bit(s, BEBIT(in, 0), is_encrypted) << (0 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 1), is_encrypted) << (1 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 2), is_encrypted) << (2 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 3), is_encrypted) << (3 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 4), is_encrypted) << (4 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 5), is_encrypted) << (5 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 6), is_encrypted) << (6 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 7), is_encrypted) << (7 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 8), is_encrypted) << (8 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 9), is_encrypted) << (9 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 10), is_encrypted) << (10 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 11), is_encrypted) << (11 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 12), is_encrypted) << (12 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 13), is_encrypted) << (13 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 14), is_encrypted) << (14 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 15), is_encrypted) << (15 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 16), is_encrypted) << (16 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 17), is_encrypted) << (17 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 18), is_encrypted) << (18 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 19), is_encrypted) << (19 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 20), is_encrypted) << (20 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 21), is_encrypted) << (21 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 22), is_encrypted) << (22 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 23), is_encrypted) << (23 ^ 24);
|
||||
|
||||
ret |= crypto1_bit(s, BEBIT(in, 24), is_encrypted) << (24 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 25), is_encrypted) << (25 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 26), is_encrypted) << (26 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 27), is_encrypted) << (27 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 28), is_encrypted) << (28 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 29), is_encrypted) << (29 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 30), is_encrypted) << (30 ^ 24);
|
||||
ret |= crypto1_bit(s, BEBIT(in, 31), is_encrypted) << (31 ^ 24);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue