4x50 standalone mode

This commit is contained in:
tharexde 2021-01-25 23:52:14 +01:00
commit 1ca5d3c53c
6 changed files with 450 additions and 100 deletions

View file

@ -35,6 +35,9 @@ define KNOWN_STANDALONE_DEFINITIONS
| LF_SAMYRUN | HID26 read/clone/sim |
| | - Samy Kamkar |
+----------------------------------------------------------+
| LF_THAREXDE | Simulate/read EM4x50 tags |
| (RDV4 only) | storing in flashmem |
+----------------------------------------------------------+
| HF_14ASNIFF | 14a sniff to flashmem |
| (RDV4 only) | |
+----------------------------------------------------------+
@ -67,10 +70,10 @@ define KNOWN_STANDALONE_DEFINITIONS
+----------------------------------------------------------+
endef
STANDALONE_MODES := LF_SKELETON LF_EM4100EMUL LF_EM4100RSWB LF_EM4100RWC LF_HIDBRUTE LF_ICEHID LF_PROXBRUTE LF_SAMYRUN
STANDALONE_MODES := LF_SKELETON LF_EM4100EMUL LF_EM4100RSWB LF_EM4100RWC LF_HIDBRUTE LF_ICEHID LF_PROXBRUTE LF_SAMYRUN LF_THAREXDE
STANDALONE_MODES += HF_14ASNIFF HF_AVEFUL HF_BOG HF_COLIN HF_ICECLASS HF_LEGIC HF_MATTYRUN HF_MSDSAL HF_TCPRST HF_YOUNG
STANDALONE_MODES_REQ_SMARTCARD :=
STANDALONE_MODES_REQ_FLASH := LF_ICEHID HF_14ASNIFF HF_BOG HF_COLIN HF_ICECLASS
STANDALONE_MODES_REQ_FLASH := LF_ICEHID LF_THAREXDE HF_14ASNIFF HF_BOG HF_COLIN HF_ICECLASS
ifneq ($(filter $(STANDALONE),$(STANDALONE_MODES)),)
STANDALONE_PLATFORM_DEFS += -DWITH_STANDALONE_$(STANDALONE)
ifneq ($(filter $(STANDALONE),$(STANDALONE_MODES_REQ_SMARTCARD)),)

View file

@ -73,3 +73,7 @@ endif
ifneq (,$(findstring WITH_STANDALONE_HF_ICECLASS,$(APP_CFLAGS)))
SRC_STANDALONE = hf_iceclass.c
endif
# WITH_STANDALONE_LF_THAREXDE
ifneq (,$(findstring WITH_STANDALONE_LF_THAREXDE,$(APP_CFLAGS)))
SRC_STANDALONE = lf_tharexde.c
endif

View file

@ -0,0 +1,271 @@
//-----------------------------------------------------------------------------
// tharexde, 2021
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// main code for EM4x50 simulator and collector aka THAREXDE
//-----------------------------------------------------------------------------
#include <inttypes.h>
#include "ticks.h"
#include "standalone.h"
#include "proxmark3_arm.h"
#include "appmain.h"
#include "BigBuf.h"
#include "fpgaloader.h"
#include "util.h"
#include "dbprint.h"
#include "spiffs.h"
#include "../em4x50.h"
/*
* `lf_tharexde` simulates EM4x50 dumps uploaded words/blocks, reads words of standard read
* mode of EM4x50 tags and stores them in internal flash.
* It requires RDV4 hardware (for flash and battery).
*
* On entering stand-alone mode, this module will start simulating EM4x50 data.
* Data is read from eml dump file uploaded to flash memory.
*
* On switching to read/record mode by pressing pm3 button, module will start
* reading/recording EM4x50 data. Every found / collected data will be
* written/appended to the logfile in flash as a text string.
*
* LEDs:
* - LED A: simulating
* - LED B: reading / record
* - LED C: writing to flash
* - LED D: unmounting/sync'ing flash (normally < 100ms)
*
* To upload input file (eml format) to flash:
* - mem spiffs load f <filename> o lf_em4x50_simulate.eml
*
* To retrieve log file from flash:
* - mem spiffs dump o lf_em4x50_collect.log f <filename>
*
* This module emits debug strings during normal operation -- so try it out in
* the lab connected to PM3 client before taking it into the field.
*
* To delete the input file from flash:
* - mem spiffs remove lf_em4x50_simulate.eml
*
* To delete the log file from flash:
* - mem spiffs remove lf_em4x50_collect.log
*/
#define STATE_SIM 0
#define STATE_READ 1
#define EM4X50_TAG_WORD 45
#define LF_EM4X50_INPUTFILE_SIM "lf_em4x50_simulate.eml"
#define LF_EM4X50_LOGFILE_COLLECT "lf_em4x50_collect.log"
bool input_exists;
bool log_exists;
static void LoadDataInstructions(const char *inputfile) {
Dbprintf("");
Dbprintf("To load datafile to flash and display it:");
Dbprintf(_YELLOW_("1.") " edit input file %s", inputfile);
Dbprintf(_YELLOW_("2.") " start proxmark3 client");
Dbprintf(_YELLOW_("3.") " mem spiffs load f <filename> o %s", inputfile);
Dbprintf(_YELLOW_("4.") " start standalone mode");
}
static void DownloadLogInstructions(const char *logfile) {
Dbprintf("");
Dbprintf("To get the logfile from flash and display it:");
Dbprintf(_YELLOW_("1.") " mem spiffs dump o %s f <filename>", logfile);
Dbprintf(_YELLOW_("2.") " exit proxmark3 client");
Dbprintf(_YELLOW_("3.") " cat <filename>");
}
static bool get_input_data_from_file(uint32_t *tag, char *inputfile) {
size_t now = 0;
if (exists_in_spiffs(inputfile)) {
uint32_t size = size_in_spiffs(inputfile);
uint8_t *mem = BigBuf_malloc(size);
Dbprintf(_YELLOW_("found input file %s"), inputfile);
rdv40_spiffs_read_as_filetype(inputfile, mem, size, RDV40_SPIFFS_SAFETY_SAFE);
now = size / 9;
for (int i = 0; i < now; i++)
for (int j = 0; j < 4; j++)
tag[i] |= (hex2int(mem[2 * j + 9 * i]) << 4 | hex2int(mem[2 * j + 1 + 9 * i])) << ((3 - j) * 8);
Dbprintf(_YELLOW_("read tag data from input file"));
}
BigBuf_free();
return ((now == EM4X50_NO_WORDS) && (tag[EM4X50_DEVICE_SERIAL] != tag[EM4X50_DEVICE_ID]));
}
static void append(const char *filename, uint8_t *entry, size_t entry_len) {
LED_D_ON();
if (log_exists == false) {
rdv40_spiffs_write(filename, entry, entry_len, RDV40_SPIFFS_SAFETY_SAFE);
log_exists = true;
} else {
rdv40_spiffs_append(filename, entry, entry_len, RDV40_SPIFFS_SAFETY_SAFE);
}
LED_D_OFF();
}
void ModInfo(void) {
DbpString(_YELLOW_(" LF EM4x50 sim/collector mode") " - a.k.a tharexde");
}
void RunMod(void) {
bool state_change = true;
int no_words = 0, command = 0;
uint8_t entry[81], state = STATE_SIM;
uint32_t tag[EM4X50_NO_WORDS] = {0x0};
rdv40_spiffs_lazy_mount();
StandAloneMode();
Dbprintf(_YELLOW_("Standalone mode THAREXDE started"));
for (;;) {
WDT_HIT();
if (data_available()) {
break;
}
// press button - toggle between SIM and READ
// hold button - exit
int button_pressed = BUTTON_CLICKED(1000);
if (button_pressed == BUTTON_SINGLE_CLICK) {
SpinUp(100);
switch (state) {
case STATE_SIM:
state = STATE_READ;
break;
case STATE_READ:
state = STATE_SIM;
break;
default:
break;
}
state_change = true;
} else if (button_pressed == BUTTON_HOLD) {
SpinDown(100);
break;
}
if (state == STATE_SIM) {
if (state_change) {
LEDsoff();
LED_A_ON();
Dbprintf("");
Dbprintf(_YELLOW_("switched to EM4x50 simulating mode"));
if (get_input_data_from_file(tag, LF_EM4X50_INPUTFILE_SIM)) {
Dbprintf(_YELLOW_("tag data ok"));
} else {
Dbprintf(_RED_("error in tag data"));
}
// init; start with command = standard read mode
em4x50_setup_sim();
gLogin = false;
gWritePasswordProcess = false;
command = EM4X50_COMMAND_STANDARD_READ;
state_change = false;
}
em4x50_handle_commands(&command, tag);
// stop if key (pm3 button or enter key) has been pressed
if (command == PM3_EOPABORTED) {
break;
}
// if timeout (e.g. no reader field) continue with standard read
// mode and reset former authentication
if (command == PM3_ETIMEOUT) {
command = EM4X50_COMMAND_STANDARD_READ;
gLogin = false;
}
} else if (state == STATE_READ) {
if (state_change) {
LEDsoff();
LED_B_ON();
Dbprintf("");
Dbprintf(_YELLOW_("switched to EM4x50 reading mode"));
memset(entry, 0, sizeof(entry));
memset(tag, 0, sizeof(tag));
log_exists = exists_in_spiffs(LF_EM4X50_LOGFILE_COLLECT);
em4x50_setup_read();
state_change = false;
}
standard_read(&no_words, tag);
// reset timers
AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // re-enable timer and wait for TC0
AT91C_BASE_TC0->TC_RC = 0; // set TIOA (carry bit) on overflow, return to zero
AT91C_BASE_TC0->TC_RA = 1; // clear carry bit on next clock cycle
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // reset and re-enable timer
if (no_words > 0) {
memset(entry, 0, sizeof(entry));
Dbprintf("");
sprintf((char *)entry, "found new EM4x50 tag:");
Dbprintf("%s", entry);
strcat((char *)entry, "\n");
append(LF_EM4X50_LOGFILE_COLLECT, entry, strlen((char *)entry));
for (int i = 0; i < no_words; i++) {
sprintf((char *)entry, " %2i -> 0x%08"PRIx32"", i + 1, tag[i]);
Dbprintf("%s", entry);
strcat((char *)entry, "\n");
append(LF_EM4X50_LOGFILE_COLLECT, entry, strlen((char *)entry));
}
}
memset(tag, 0, sizeof(tag));
no_words = 0;
}
}
if (state == STATE_READ) {
DownloadLogInstructions(LF_EM4X50_LOGFILE_COLLECT);
} else {
LoadDataInstructions(LF_EM4X50_INPUTFILE_SIM);
}
LED_D_ON();
rdv40_spiffs_lazy_unmount();
LED_D_OFF();
FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF);
LEDsoff();
Dbprintf("");
Dbprintf(_YELLOW_("[=] Standalone mode THAREXDE stopped"));
}

View file

@ -24,11 +24,17 @@
// TIMER_CLOCK1 = MCK/2, MCK is running at 48 MHz, Timer is running at 48/2 = 24 MHz
// EM4x50 units (T0) have duration of 8 microseconds (us), which is 1/125000 per second (carrier)
// T0 = TIMER_CLOCK1 / 125000 = 192
#ifndef T0
#define T0 192
#endif
// the following terms are used (for carrier frequency of 125 kHz):
// 1 us = 1.5 ticks
// 1 cycle = 1 period = 8 us = 12 ticks
// 1 bit = 64 cycles = 768 ticks = 512 us
#define CYCLES2TICKS 12
// given in cycles/periods
#define EM4X50_T_TAG_QUARTER_PERIOD 16
#define EM4X50_T_TAG_HALF_PERIOD 32
#define EM4X50_T_TAG_THREE_QUARTER_PERIOD 48
@ -40,27 +46,21 @@
#define EM4X50_T_TAG_WAITING_FOR_SIGNAL 75
#define EM4X50_T_WAITING_FOR_DBLLIW 1550
#define EM4X50_T_WAITING_FOR_ACK 4
#define EM4X50_TAG_TOLERANCE 8
#define EM4X50_ZERO_DETECTION 3
// timeout values for simulation mode (may vary with regard to reader)
// timeout values (empirical) for simulation mode (may vary with regard to reader)
#define EM4X50_T_SIMULATION_TIMEOUT_READ 600
#define EM4X50_T_SIMULATION_TIMEOUT_WAIT 50
// the following value seems to be critical; if it's too low (e.g. < 120)
// some cards are no longer readable although they're ok
// the following value (pulses) seems to be critical; if it's too low
//(e.g. < 120) some cards are no longer readable although they're ok
#define EM4X50_T_WAITING_FOR_SNGLLIW 140
#define EM4X50_TAG_TOLERANCE 8
#define EM4X50_ZERO_DETECTION 3
// div
#define EM4X50_TAG_WORD 45
#define EM4X50_TAG_MAX_NO_BYTES 136
#define EM4X50_COMMAND_LOGIN 0x01
#define EM4X50_COMMAND_RESET 0x80
#define EM4X50_COMMAND_WRITE 0x12
#define EM4X50_COMMAND_WRITE_PASSWORD 0x11
#define EM4X50_COMMAND_SELECTIVE_READ 0x0A
#define EM4X50_COMMAND_STANDARD_READ 0x02 // virtual command
int gHigh = 190;
int gLow = 60;
@ -74,10 +74,14 @@ bool gWritePasswordProcess = false;
// do nothing for <period> using timer0
static void wait_timer(uint32_t period) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < period);
}
int timeout = period;
uint32_t tval = GetTicks();
//AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
//while (AT91C_BASE_TC0->TC_CV < period);
while ((timeout--) && (GetTicks() - tval < period));
}
// extract and check parities
// return result of parity check and extracted plain data
@ -130,13 +134,16 @@ static bool extract_parities(uint64_t word, uint32_t *data) {
return false;
}
static void em4x50_setup_read(void) {
void em4x50_setup_read(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_ADC | FPGA_LF_ADC_READER_FIELD);
StartTicks();
// 50ms for the resonant antenna to settle.
SpinDelay(50);
//SpinDelay(50);
WaitMS(50);
// Now set up the SSC to get the ADC samples that are now streaming at us.
FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER);
@ -154,6 +161,7 @@ static void em4x50_setup_read(void) {
// Disable modulation at default, which means enable the field
LOW(GPIO_SSC_DOUT);
/*
// Enable Peripheral Clock for
// TIMER_CLOCK0, used to measure exact timing before answering
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0);// | (1 << AT91C_ID_TC1);
@ -172,12 +180,13 @@ static void em4x50_setup_read(void) {
// synchronized startup procedure
while (AT91C_BASE_TC0->TC_CV > 0) {}; // wait until TC1 returned to zero
*/
// Watchdog hit
WDT_HIT();
}
static void em4x50_setup_sim(void) {
void em4x50_setup_sim(void) {
FpgaDownloadAndGo(FPGA_BITSTREAM_LF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_EDGE_DETECT);
FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125);
@ -186,11 +195,14 @@ static void em4x50_setup_sim(void) {
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
StartTicks();
/*
AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0);
AT91C_BASE_PIOA->PIO_BSR = GPIO_SSC_FRAME;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS;
AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG;
*/
// Watchdog hit
WDT_HIT();
@ -200,7 +212,7 @@ static void em4x50_setup_sim(void) {
// calculate signal properties (mean amplitudes) from measured data:
// 32 amplitudes (maximum values) -> mean amplitude value -> gHigh -> gLow
static bool get_signalproperties(void) {
bool get_signalproperties(void) {
bool signal_found = false;
int no_periods = 32, pct = 75, noise = 140;
@ -208,6 +220,7 @@ static bool get_signalproperties(void) {
uint8_t sample_max_mean = 0;
uint8_t sample_max[no_periods];
uint32_t sample_max_sum = 0;
uint32_t tval = 0;
memset(sample_max, 0x00, sizeof(sample_max));
LED_A_ON();
@ -218,7 +231,8 @@ static bool get_signalproperties(void) {
if (BUTTON_PRESS()) return false;
// about 2 samples per bit period
wait_timer(T0 * EM4X50_T_TAG_HALF_PERIOD);
//wait_timer(T0 * EM4X50_T_TAG_HALF_PERIOD);
wait_timer(12 * EM4X50_T_TAG_HALF_PERIOD);
// ignore first samples
if ((i > SIGNAL_IGNORE_FIRST_SAMPLES) && (AT91C_BASE_SSC->SSC_RHR > noise)) {
@ -236,8 +250,10 @@ static bool get_signalproperties(void) {
// 3 single "full periods" to eliminate the influence of a listen window
for (int i = 0; i < no_periods; i++) {
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 3 * EM4X50_T_TAG_FULL_PERIOD) {
//AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
//while (AT91C_BASE_TC0->TC_CV < T0 * 3 * EM4X50_T_TAG_FULL_PERIOD) {
tval = GetTicks();
while (GetTicks() - tval < 12 * 3 * EM4X50_T_TAG_FULL_PERIOD) {
if (BUTTON_PRESS()) return false;
@ -268,12 +284,14 @@ static bool get_signalproperties(void) {
static bool invalid_bit(void) {
// get sample at 3/4 of bit period
wait_timer(T0 * EM4X50_T_TAG_THREE_QUARTER_PERIOD);
//wait_timer(T0 * EM4X50_T_TAG_THREE_QUARTER_PERIOD);
wait_timer(12 * EM4X50_T_TAG_THREE_QUARTER_PERIOD);
uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR;
// wait until end of bit period
wait_timer(T0 * EM4X50_T_TAG_QUARTER_PERIOD);
//wait_timer(T0 * EM4X50_T_TAG_QUARTER_PERIOD);
wait_timer(12 * EM4X50_T_TAG_QUARTER_PERIOD);
// bit in "undefined" state?
if (sample <= gHigh && sample >= gLow)
@ -284,7 +302,7 @@ static bool invalid_bit(void) {
static uint32_t get_pulse_length(void) {
int32_t timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
int32_t timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD), tval = 0;
// iterates pulse length (low -> high -> low)
@ -296,7 +314,8 @@ static uint32_t get_pulse_length(void) {
if (timeout == 0)
return 0;
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
//AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
tval = GetTicks();
timeout = (T0 * 3 * EM4X50_T_TAG_FULL_PERIOD);
while (sample < gHigh && (timeout--))
@ -312,41 +331,59 @@ static uint32_t get_pulse_length(void) {
if (timeout == 0)
return 0;
return (uint32_t)AT91C_BASE_TC0->TC_CV;
//return (uint32_t)AT91C_BASE_TC0->TC_CV;
return GetTicks() - tval;
}
// check if pulse length <pl> corresponds to given length <length>
static bool check_pulse_length(uint32_t pl, int length) {
return ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) && (pl <= T0 * (length + EM4X50_TAG_TOLERANCE)));
//return ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) && (pl <= T0 * (length + EM4X50_TAG_TOLERANCE)));
return ((pl >= 12 * (length - EM4X50_TAG_TOLERANCE)) && (pl <= 12 * (length + EM4X50_TAG_TOLERANCE)));
}
// send single bit according to EM4x50 application note and datasheet
static void em4x50_reader_send_bit(int bit) {
int timeout = 500;
// reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
//AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
uint32_t tval = GetTicks();
if (bit == 0) {
// disable modulation (activate the field) for 7 cycles of carrier
// period (Opt64)
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * 7);
//while (AT91C_BASE_TC0->TC_CV < T0 * 7);
while ((timeout--) && (GetTicks() - tval < 12 * 7));
if (timeout <= 0)
return;
timeout = 500;
// enable modulation (drop the field) for remaining first
// half of bit period
HIGH(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD);
//while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_HALF_PERIOD);
while ((timeout--) && (GetTicks() - tval < 12 * EM4X50_T_TAG_HALF_PERIOD));
if (timeout <= 0)
return;
timeout = 500;
// disable modulation for second half of bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
//while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
while ((timeout--) && (GetTicks() - tval < 12 * EM4X50_T_TAG_FULL_PERIOD));
if (timeout <= 0)
return;
timeout = 500;
} else {
// bit = "1" means disable modulation for full bit period
LOW(GPIO_SSC_DOUT);
while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
//while (AT91C_BASE_TC0->TC_CV < T0 * EM4X50_T_TAG_FULL_PERIOD);
while ((timeout--) && (GetTicks() - tval < 12 * EM4X50_T_TAG_FULL_PERIOD));
}
}
@ -446,7 +483,8 @@ static int find_double_listen_window(bool bcommand) {
// second window follows - sync on this to issue a command
// skip the next bit...
wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD);
//wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD);
wait_timer(12 * EM4X50_T_TAG_FULL_PERIOD);
// ...and check if the following bit does make sense
// (if not it is the correct position within the second
@ -484,7 +522,7 @@ static int find_double_listen_window(bool bcommand) {
// function is used to check wether a tag on the proxmark is an
// EM4x50 tag or not -> speed up "lf search" process
static bool find_em4x50_tag(void) {
bool find_em4x50_tag(void) {
return find_single_listen_window();
}
@ -524,7 +562,8 @@ static bool check_ack(bool bliw) {
// wait for 2 bits (remaining "bit" of ACK signal + first
// "bit" of listen window)
wait_timer(T0 * 2 * EM4X50_T_TAG_FULL_PERIOD);
//wait_timer(T0 * 2 * EM4X50_T_TAG_FULL_PERIOD);
wait_timer(12 * 2 * EM4X50_T_TAG_FULL_PERIOD);
// check for listen window (if first bit cannot be interpreted
// as a valid bit it must belong to a listen window)
@ -655,7 +694,8 @@ static bool login(uint32_t password) {
// send password
em4x50_reader_send_word(password);
wait_timer(T0 * EM4X50_T_TAG_TPP);
//wait_timer(T0 * EM4X50_T_TAG_TPP);
wait_timer(12 * EM4X50_T_TAG_TPP);
// check if ACK is returned
if (check_ack(false))
@ -815,7 +855,7 @@ static int reset(void) {
// reads data that tag transmits when exposed to reader field
// (standard read mode); number of read words is saved in <now>
static int standard_read(int *now, uint32_t *words) {
int standard_read(int *now, uint32_t *words) {
int fwr = *now, res = PM3_EFAILED;
@ -823,8 +863,11 @@ static int standard_read(int *now, uint32_t *words) {
if ((res = find_double_listen_window(false)) == PM3_SUCCESS) {
// read and save words until following double listen window is detected
while ((res = get_word_from_bitstream(&words[*now])) == EM4X50_TAG_WORD)
res = get_word_from_bitstream(&words[*now]);
while (res == EM4X50_TAG_WORD) {
(*now)++;
res = get_word_from_bitstream(&words[*now]);
}
// number of detected words
*now -= fwr;
@ -957,7 +1000,8 @@ static int write(uint32_t word, uint32_t addresses) {
} else {
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
wait_timer(T0 * EM4X50_T_TAG_TWA);
//wait_timer(T0 * EM4X50_T_TAG_TWA);
wait_timer(12 * EM4X50_T_TAG_TWA);
// look for ACK sequence
if (check_ack(false)) {
@ -965,7 +1009,8 @@ static int write(uint32_t word, uint32_t addresses) {
// now EM4x50 needs T0 * EM4X50_T_TAG_TWEE (EEPROM write time = 3.2ms = 50 * 64 periods)
// for saving data and should return with ACK
for (int i = 0; i < 50; i++) {
wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD);
//wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD);
wait_timer(12 * EM4X50_T_TAG_FULL_PERIOD);
}
if (check_ack(false))
@ -996,7 +1041,8 @@ static int write_password(uint32_t password, uint32_t new_password) {
} else {
// wait for T0 * EM4x50_T_TAG_TPP (processing pause time)
wait_timer(T0 * EM4X50_T_TAG_TPP);
//wait_timer(T0 * EM4X50_T_TAG_TPP);
wait_timer(12 * EM4X50_T_TAG_TPP);
// look for ACK sequence and send rm request
// during following listen window
@ -1006,14 +1052,16 @@ static int write_password(uint32_t password, uint32_t new_password) {
em4x50_reader_send_word(new_password);
// wait for T0 * EM4X50_T_TAG_TWA (write access time)
wait_timer(T0 * EM4X50_T_TAG_TWA);
//wait_timer(T0 * EM4X50_T_TAG_TWA);
wait_timer(12 * EM4X50_T_TAG_TWA);
if (check_ack(false)) {
// now EM4x50 needs T0 * EM4X50_T_TAG_TWEE (EEPROM write time = 3.2ms = 50 * 64 periods)
// for saving data and should return with ACK
for (int i = 0; i < 50; i++) {
wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD);
//wait_timer(T0 * EM4X50_T_TAG_FULL_PERIOD);
wait_timer(12 * EM4X50_T_TAG_FULL_PERIOD);
}
if (check_ack(false))
@ -1216,19 +1264,19 @@ static int em4x50_sim_read_bit(void) {
int cycles = 0;
int timeout = EM4X50_T_SIMULATION_TIMEOUT_READ;
uint32_t tval = 0;
while (cycles < EM4X50_T_TAG_FULL_PERIOD) {
// wait until reader field disappears
while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK));
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
// now check until reader switches on carrier field
tval = GetTicks();
while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK) {
// check if cycle (i.e. off -> on -> off) takes longer than T0
if (AT91C_BASE_TC0->TC_CV > T0 * EM4X50_ZERO_DETECTION) {
// check if current cycle takes longer than "usual""
if (GetTicks() - tval > EM4X50_ZERO_DETECTION * CYCLES2TICKS) {
// gap detected; wait until reader field is switched on again
while ((timeout--) && (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK));
@ -1727,13 +1775,61 @@ static int em4x50_sim_handle_writepwd_command(uint32_t *tag) {
return EM4X50_COMMAND_WRITE_PASSWORD;
}
void em4x50_handle_commands(int *command, uint32_t *tag) {
switch (*command) {
case EM4X50_COMMAND_LOGIN:
LED_B_OFF();
LED_C_OFF();
*command = em4x50_sim_handle_login_command(tag);
break;
case EM4X50_COMMAND_RESET:
LED_B_OFF();
LED_C_OFF();
*command = em4x50_sim_handle_reset_command(tag);
break;
case EM4X50_COMMAND_WRITE:
LED_B_OFF();
LED_C_OFF();
*command = em4x50_sim_handle_write_command(tag);
break;
case EM4X50_COMMAND_WRITE_PASSWORD:
LED_B_OFF();
LED_C_OFF();
*command = em4x50_sim_handle_writepwd_command(tag);
break;
case EM4X50_COMMAND_SELECTIVE_READ:
LED_B_OFF();
LED_C_ON();
*command = em4x50_sim_handle_selective_read_command(tag);
break;
case EM4X50_COMMAND_STANDARD_READ:
LED_B_ON();
LED_C_OFF();
*command = em4x50_sim_handle_standard_read_command(tag);
break;
// bit errors during reading may lead to unknown commands
// -> continue with standard read mode
default:
*command = EM4X50_COMMAND_STANDARD_READ;
break;
}
}
// simulate uploaded data in emulator memory
// LED A -> operations that require authentication are possible
// LED B -> standard read mode is active
// LED C -> command has been transmitted by reader
void em4x50_sim(uint32_t *password) {
int command = PM3_ENODATA;
int command = 0;
uint8_t *em4x50_mem = BigBuf_get_EM_addr();
uint32_t tag[EM4X50_NO_WORDS] = {0x0};
@ -1759,50 +1855,7 @@ void em4x50_sim(uint32_t *password) {
for (;;) {
switch (command) {
case EM4X50_COMMAND_LOGIN:
LED_B_OFF();
LED_C_OFF();
command = em4x50_sim_handle_login_command(tag);
break;
case EM4X50_COMMAND_RESET:
LED_B_OFF();
LED_C_OFF();
command = em4x50_sim_handle_reset_command(tag);
break;
case EM4X50_COMMAND_WRITE:
LED_B_OFF();
LED_C_OFF();
command = em4x50_sim_handle_write_command(tag);
break;
case EM4X50_COMMAND_WRITE_PASSWORD:
LED_B_OFF();
LED_C_OFF();
command = em4x50_sim_handle_writepwd_command(tag);
break;
case EM4X50_COMMAND_SELECTIVE_READ:
LED_B_OFF();
LED_C_ON();
command = em4x50_sim_handle_selective_read_command(tag);
break;
case EM4X50_COMMAND_STANDARD_READ:
LED_B_ON();
LED_C_OFF();
command = em4x50_sim_handle_standard_read_command(tag);
break;
// bit errors during reading may lead to unknown commands
// -> continue with standard read mode
default:
command = EM4X50_COMMAND_STANDARD_READ;
break;
}
em4x50_handle_commands(&command, tag);
// stop if key (pm3 button or enter key) has been pressed
if (command == PM3_EOPABORTED) {

View file

@ -13,6 +13,14 @@
#include "../include/em4x50.h"
void em4x50_setup_read(void);
bool get_signalproperties(void);
bool find_em4x50_tag(void);
int standard_read(int *now, uint32_t *words);
void em4x50_setup_sim(void);
void em4x50_handle_commands(int *command, uint32_t *tag);
void em4x50_info(em4x50_data_t *etd);
void em4x50_write(em4x50_data_t *etd);
void em4x50_writepwd(em4x50_data_t *etd);

View file

@ -33,6 +33,14 @@
#define FIRST_WORD_WRITE_INHIBITED 2 // third byte
#define LAST_WORD_WRITE_INHIBITED 3 // fourth byte
// commands
#define EM4X50_COMMAND_LOGIN 0x01
#define EM4X50_COMMAND_RESET 0x80
#define EM4X50_COMMAND_WRITE 0x12
#define EM4X50_COMMAND_WRITE_PASSWORD 0x11
#define EM4X50_COMMAND_SELECTIVE_READ 0x0A
#define EM4X50_COMMAND_STANDARD_READ 0x02 // virtual command
// misc
#define TIMEOUT 2000
#define DUMP_FILESIZE 136
@ -52,4 +60,7 @@ typedef struct {
uint8_t byte[4];
} PACKED em4x50_word_t;
extern bool gLogin;
extern bool gWritePasswordProcess;
#endif /* EM4X50_H__ */