mirror of
https://github.com/RfidResearchGroup/proxmark3.git
synced 2025-08-21 13:53:55 -07:00
Updated logic in lo_read.v so it's much tidier now, better timing.
Commented source and recompiled FPGA to new fpgaimg.c
This commit is contained in:
parent
1a093c19b5
commit
1c38843b3f
3 changed files with 7687 additions and 7683 deletions
|
@ -1,8 +1,7 @@
|
|||
//-----------------------------------------------------------------------------
|
||||
// The way that we connect things in low-frequency read mode. In this case
|
||||
// we are generating the 134 kHz or 125 kHz carrier, and running the
|
||||
// unmodulated carrier at that frequency. The A/D samples at that same rate,
|
||||
// and the result is serialized.
|
||||
// we are generating the unmodulated low frequency carrier.
|
||||
// The A/D samples at that same rate and the result is serialized.
|
||||
//
|
||||
// Jonathan Westhues, April 2006
|
||||
//-----------------------------------------------------------------------------
|
||||
|
@ -24,54 +23,81 @@ module lo_read(
|
|||
output ssp_frame, ssp_din, ssp_clk;
|
||||
input cross_hi, cross_lo;
|
||||
output dbg;
|
||||
input lo_is_125khz;
|
||||
input lo_is_125khz; // redundant signal, no longer used anywhere
|
||||
input [7:0] divisor;
|
||||
|
||||
// The low-frequency RFID stuff. This is relatively simple, because most
|
||||
// of the work happens on the ARM, and we just pass samples through. The
|
||||
// PCK0 must be divided down to generate the A/D clock, and from there by
|
||||
// a factor of 8 to generate the carrier (that we apply to the coil drivers).
|
||||
//
|
||||
// This is also where we decode the received synchronous serial port words,
|
||||
// to determine how to drive the output enables.
|
||||
|
||||
// PCK0 will run at (PLL clock) / 4, or 24 MHz. That means that we can do
|
||||
// 125 kHz by dividing by a further factor of (8*12*2), or ~134 kHz by
|
||||
// dividing by a factor of (8*11*2) (for 136 kHz, ~2% error, tolerable).
|
||||
|
||||
reg [7:0] to_arm_shiftreg;
|
||||
reg [7:0] pck_divider;
|
||||
reg [6:0] ssp_divider;
|
||||
reg ant_lo;
|
||||
|
||||
// this task runs on the rising egde of pck0 clock (24Mhz) and creates ant_lo
|
||||
// which is high for (divisor+1) pck0 cycles and low for the same duration
|
||||
// ant_lo is therefore a 50% duty cycle clock signal with a frequency of
|
||||
// 12Mhz/(divisor+1) which drives the antenna as well as the ADC clock adc_clk
|
||||
always @(posedge pck0)
|
||||
begin
|
||||
if(pck_divider == 8'd0)
|
||||
if(pck_divider == divisor[7:0])
|
||||
begin
|
||||
pck_divider <= divisor[7:0];
|
||||
pck_divider <= 8'd0;
|
||||
ant_lo = !ant_lo;
|
||||
if(ant_lo == 1'b0)
|
||||
begin
|
||||
ssp_divider <= 7'b0011111;
|
||||
to_arm_shiftreg <= adc_d;
|
||||
end
|
||||
end
|
||||
else
|
||||
begin
|
||||
pck_divider <= pck_divider - 1;
|
||||
if(ssp_divider[6] == 1'b0)
|
||||
begin
|
||||
if (ssp_divider[1:0] == 1'b11) to_arm_shiftreg[7:1] <= to_arm_shiftreg[6:0];
|
||||
ssp_divider <= ssp_divider - 1;
|
||||
end
|
||||
pck_divider <= pck_divider + 1;
|
||||
end
|
||||
end
|
||||
|
||||
assign ssp_din = to_arm_shiftreg[7];
|
||||
assign ssp_clk = pck_divider[1];
|
||||
assign ssp_frame = ~ssp_divider[5];
|
||||
// this task also runs at pck0 frequency (24Mhz) and is used to serialize
|
||||
// the ADC output which is then clocked into the ARM SSP.
|
||||
|
||||
// because ant_lo always transitions when pck_divider = 0 we use the
|
||||
// pck_divider counter to sync our other signals off it
|
||||
// we read the ADC value when pck_divider=7 and shift it out on counts 8..15
|
||||
always @(posedge pck0)
|
||||
begin
|
||||
if((pck_divider == 8'd7) && !ant_lo)
|
||||
to_arm_shiftreg <= adc_d;
|
||||
else
|
||||
begin
|
||||
to_arm_shiftreg[7:1] <= to_arm_shiftreg[6:0];
|
||||
// simulation showed a glitch occuring due to the LSB of the shifter
|
||||
// not being set as we shift bits out
|
||||
// this ensures the ssp_din remains low after a transfer and suppresses
|
||||
// the glitch that would occur when the last data shifted out ended in
|
||||
// a 1 bit and the next data shifted out started with a 0 bit
|
||||
to_arm_shiftreg[0] <= 1'b0;
|
||||
end
|
||||
end
|
||||
|
||||
// ADC samples on falling edge of adc_clk, data available on the rising edge
|
||||
|
||||
// example of ssp transfer of binary value 1100101
|
||||
// start of transfer is indicated by the rise of the ssp_frame signal
|
||||
// ssp_din changes on the rising edge of the ssp_clk clock and is clocked into
|
||||
// the ARM by the falling edge of ssp_clk
|
||||
// _______________________________
|
||||
// ssp_frame__| |__
|
||||
// _______ ___ ___
|
||||
// ssp_din __| |_______| |___| |______
|
||||
// _ _ _ _ _ _ _ _ _ _
|
||||
// ssp_clk |_| |_| |_| |_| |_| |_| |_| |_| |_| |_
|
||||
|
||||
// serialized SSP data is gated by ant_lo to suppress unwanted signal
|
||||
assign ssp_din = to_arm_shiftreg[7] && !ant_lo;
|
||||
// SSP clock always runs at 24Mhz
|
||||
assign ssp_clk = pck0;
|
||||
// SSP frame is gated by ant_lo and goes high when pck_divider=8..15
|
||||
assign ssp_frame = (pck_divider[7:3] == 5'd1) && !ant_lo;
|
||||
// unused signals tied low
|
||||
assign pwr_hi = 1'b0;
|
||||
assign pwr_oe1 = 1'b0;
|
||||
assign pwr_oe2 = 1'b0;
|
||||
assign pwr_oe3 = 1'b0;
|
||||
assign pwr_oe4 = 1'b0;
|
||||
// this is the antenna driver signal
|
||||
assign pwr_lo = ant_lo;
|
||||
// ADC clock out of phase with antenna driver
|
||||
assign adc_clk = ~ant_lo;
|
||||
// ADC clock also routed to debug pin
|
||||
assign dbg = adc_clk;
|
||||
endmodule
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue