ADD: "hf legic eload" - Load binary file to emulator memory. Use "h" for help text

ADD:  "hf legic esave" - Save emulator memory to binary file. Use "h" for help text
This commit is contained in:
iceman1001 2016-10-06 19:13:23 +02:00
commit 0e8cabed8d
8 changed files with 358 additions and 269 deletions

View file

@ -407,19 +407,15 @@ int legic_read_byte( uint16_t index, uint8_t cmd_sz) {
* - wait until the tag sends back an ACK ('1' bit unencrypted)
* - forward the prng based on the timing
*/
//int legic_write_byte(int byte, int addr, int addr_sz, int PrngCorrection) {
int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
//do not write UID, CRC at offset 0-4.
if (addr <= 4) return 0;
int legic_write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) {
// crc
crc_clear(&legic_crc);
crc_update(&legic_crc, 0, 1); /* CMD_WRITE */
crc_update(&legic_crc, addr, addr_sz);
crc_update(&legic_crc, index, addr_sz);
crc_update(&legic_crc, byte, 8);
uint32_t crc = crc_finish(&legic_crc);
uint32_t crc2 = legic4Crc(LEGIC_WRITE, addr, byte, addr_sz+1);
uint32_t crc2 = legic4Crc(LEGIC_WRITE, index, byte, addr_sz+1);
if ( crc != crc2 ) {
Dbprintf("crc is missmatch");
return 1;
@ -427,8 +423,8 @@ int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
// send write command
uint32_t cmd = ((crc <<(addr_sz+1+8)) //CRC
|(byte <<(addr_sz+1)) //Data
|(addr <<1) //Address
| LEGIC_WRITE); //CMD = Write
|(index <<1) //index
| LEGIC_WRITE); //CMD = Write
uint32_t cmd_sz = addr_sz+1+8+4; //crc+data+cmd
@ -437,15 +433,16 @@ int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
WaitTicks(330);
frame_sendAsReader(cmd, cmd_sz);
// wait for ack
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_DIN;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DIN;
// wait for ack
int t, old_level = 0, edges = 0;
int next_bit_at = 0;
WaitTicks(TAG_FRAME_WAIT);
// ACK 3.6ms = 3600us * 1.5 = 5400ticks.
WaitTicks(5360);
for( t = 0; t < 80; ++t) {
edges = 0;
@ -457,7 +454,8 @@ int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
old_level = level;
}
if(edges > 20 ) { /* expected are 42 edges */
/* expected are 42 edges (ONE) */
if(edges > 20 ) {
int t = timer->TC_CV;
int c = t / TAG_BIT_PERIOD;
@ -467,7 +465,6 @@ int legic_write_byte(uint8_t byte, uint16_t addr, uint8_t addr_sz) {
}
}
ResetTimer(timer);
return -1;
}
@ -512,51 +509,16 @@ OUT:
return 0;
}
/*int _LegicRfWriter(int offset, int bytes, int addr_sz, uint8_t *BigBuf, int RoundBruteforceValue) {
int byte_index=0;
void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) {
LED_B_ON();
setup_phase_reader(iv);
//legic_prng_forward(2);
while(byte_index < bytes) {
int r;
//check if the DCF should be changed
if ( (offset == 0x05) && (bytes == 0x02) ) {
//write DCF in reverse order (addr 0x06 before 0x05)
r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
//legic_prng_forward(1);
if(r == 0) {
byte_index++;
r = legic_write_byte(BigBuf[(0x06-byte_index)], (0x06-byte_index), addr_sz, RoundBruteforceValue);
}
//legic_prng_forward(1);
}
else {
r = legic_write_byte(BigBuf[byte_index+offset], byte_index+offset, addr_sz, RoundBruteforceValue);
}
if((r != 0) || BUTTON_PRESS()) {
Dbprintf("operation aborted @ 0x%03.3x", byte_index);
switch_off_tag_rwd();
LED_B_OFF();
LED_C_OFF();
return -1;
}
WDT_HIT();
byte_index++;
if(byte_index & 0x10) LED_C_ON(); else LED_C_OFF();
}
LED_B_OFF();
LED_C_OFF();
DbpString("write successful");
return 0;
}*/
void LegicRfWriter(uint16_t offset, uint16_t bytes, uint8_t iv) {
int byte_index = 0;
uint8_t isOK = 1;
// UID not is writeable.
if ( offset <= 4 ) {
isOK = 0;
goto OUT;
}
legic_card_select_t card;
LegicCommonInit();
@ -566,63 +528,40 @@ void LegicRfWriter(uint16_t offset, uint16_t bytes, uint8_t iv) {
goto OUT;
}
switch_off_tag_rwd();
switch(card.tagtype) {
case 0x0d:
if(offset+bytes > 22) {
Dbprintf("Error: can not write to 0x%03.3x on MIM22", offset + bytes);
return;
}
if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
break;
case 0x1d:
if(offset+bytes > 0x100) {
Dbprintf("Error: can not write to 0x%03.3x on MIM256", offset + bytes);
return;
}
if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing 0x%02.2x - 0x%02.2x ...", offset, offset + bytes);
break;
case 0x3d:
if(offset+bytes > 0x400) {
Dbprintf("Error: can not write to 0x%03.3x on MIM1024", offset + bytes);
return;
}
if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing 0x%03.3x - 0x%03.3x ...", offset, offset + bytes);
break;
default:
return;
}
if (len + offset >= card.cardsize)
len = card.cardsize - offset;
LED_B_ON();
setup_phase_reader(iv);
LED_B_ON();
int r = 0;
while(byte_index < bytes) {
// how about we write backwards instead. no need for this extra DCF check.
// index = len - cardsize
// stops uid 01234,
/*
len = 20
offset = 5
index = 20+5 = 25
if ( index > cardsize ) return -1;
loop
write( cardmem[index], index , card.addrsize);
--index;
end loop
*/
uint16_t index = len;
while(index > 4) {
//check if the DCF should be changed
if ( ((byte_index+offset) == 0x05) && (bytes >= 0x02) ) {
//write DCF in reverse order (addr 0x06 before 0x05)
r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize);
// write second byte on success
if(r == 0) {
byte_index++;
r = legic_write_byte(cardmem[(0x06-byte_index)], (0x06-byte_index), card.addrsize);
}
}
else {
r = legic_write_byte(cardmem[byte_index+offset], byte_index+offset, card.addrsize);
}
r = legic_write_byte( index, cardmem[ index ], card.addrsize);
if ((r != 0) || BUTTON_PRESS()) {
Dbprintf("operation aborted @ 0x%03.3x", byte_index);
if ( r ) {
Dbprintf("operation aborted @ 0x%03.3x", index);
isOK = 0;
goto OUT;
}
WDT_HIT();
byte_index++;
--index;
WDT_HIT();
}
OUT:
@ -631,66 +570,6 @@ OUT:
LEDsoff();
}
void LegicRfRawWriter(int address, int byte, uint8_t iv) {
int byte_index = 0, addr_sz = 0;
LegicCommonInit();
if ( MF_DBGLEVEL >= 2) DbpString("setting up legic card");
uint32_t tag_type = setup_phase_reader(iv);
switch_off_tag_rwd();
switch(tag_type) {
case 0x0d:
if(address > 22) {
Dbprintf("Error: can not write to 0x%03.3x on MIM22", address);
return;
}
addr_sz = 5;
if ( MF_DBGLEVEL >= 2) Dbprintf("MIM22 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
break;
case 0x1d:
if(address > 0x100) {
Dbprintf("Error: can not write to 0x%03.3x on MIM256", address);
return;
}
addr_sz = 8;
if ( MF_DBGLEVEL >= 2) Dbprintf("MIM256 card found, writing at addr 0x%02.2x - value 0x%02.2x ...", address, byte);
break;
case 0x3d:
if(address > 0x400) {
Dbprintf("Error: can not write to 0x%03.3x on MIM1024", address);
return;
}
addr_sz = 10;
if ( MF_DBGLEVEL >= 2) Dbprintf("MIM1024 card found, writing at addr 0x%03.3x - value 0x%03.3x ...", address, byte);
break;
default:
Dbprintf("No or unknown card found, aborting");
return;
}
Dbprintf("integer value: %d address: %d addr_sz: %d", byte, address, addr_sz);
LED_B_ON();
setup_phase_reader(iv);
int r = legic_write_byte(byte, address, addr_sz);
if((r != 0) || BUTTON_PRESS()) {
Dbprintf("operation aborted @ 0x%03.3x (%1d)", byte_index, r);
switch_off_tag_rwd();
LEDsoff();
return;
}
LEDsoff();
if ( MF_DBGLEVEL >= 1) DbpString("write successful");
}
int legic_select_card_iv(legic_card_select_t *p_card, uint8_t iv){
if ( p_card == NULL ) return 1;
@ -725,8 +604,42 @@ int legic_select_card(legic_card_select_t *p_card){
return legic_select_card_iv(p_card, 0x01);
}
//-----------------------------------------------------------------------------
// Work with emulator memory
//
// Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not
// involved in dealing with emulator memory. But if it is called later, it might
// destroy the Emulator Memory.
//-----------------------------------------------------------------------------
// arg0 = offset
// arg1 = num of bytes
void LegicEMemSet(uint32_t arg0, uint32_t arg1, uint8_t *data) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
legic_emlset_mem(data, arg0, arg1);
}
// arg0 = offset
// arg1 = num of bytes
void LegicEMemGet(uint32_t arg0, uint32_t arg1) {
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
uint8_t buf[USB_CMD_DATA_SIZE] = {0x00};
legic_emlget_mem(buf, arg0, arg1);
LED_B_ON();
cmd_send(CMD_ACK, arg0, arg1, 0, buf, USB_CMD_DATA_SIZE);
LED_B_OFF();
}
void legic_emlset_mem(uint8_t *data, int offset, int numofbytes) {
cardmem = BigBuf_get_EM_addr();
memcpy(cardmem + offset, data, numofbytes);
}
void legic_emlget_mem(uint8_t *data, int offset, int numofbytes) {
cardmem = BigBuf_get_EM_addr();
memcpy(data, cardmem + offset, numofbytes);
}
void LegicRfInfo(void){
int r;
uint8_t buf[sizeof(legic_card_select_t)] = {0x00};
legic_card_select_t *card = (legic_card_select_t*) buf;
@ -739,7 +652,7 @@ void LegicRfInfo(void){
// read UID bytes
for ( uint8_t i = 0; i < sizeof(card->uid); ++i) {
int r = legic_read_byte(i, card->cmdsize);
r = legic_read_byte(i, card->cmdsize);
if ( r == -1 ) {
cmd_send(CMD_ACK,0,0,0,0,0);
goto OUT;
@ -747,6 +660,15 @@ void LegicRfInfo(void){
card->uid[i] = r & 0xFF;
}
// MCC byte.
r = legic_read_byte(4, card->cmdsize);
uint32_t calc_mcc = CRC8Legic(card->uid, 4);;
if ( r != calc_mcc) {
cmd_send(CMD_ACK,0,0,0,0,0);
goto OUT;
}
// OK
cmd_send(CMD_ACK, 1, 0, 0, buf, sizeof(legic_card_select_t));
OUT: