client: fix mix of spaces & tabs

This commit is contained in:
Philippe Teuwen 2019-03-09 23:35:06 +01:00
commit 0d9223a547
197 changed files with 49383 additions and 49383 deletions

View file

@ -10,33 +10,33 @@
#define __ELF_H__
typedef struct {
uint32_t p_type;
uint32_t p_offset;
uint32_t p_vaddr;
uint32_t p_paddr;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;
uint32_t p_type;
uint32_t p_offset;
uint32_t p_vaddr;
uint32_t p_paddr;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;
} __attribute__((__packed__)) Elf32_Phdr;
#define EI_NIDENT 16
typedef struct {
unsigned char e_ident[EI_NIDENT];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
uint32_t e_entry;
uint32_t e_phoff;
uint32_t e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shtrndx;
unsigned char e_ident[EI_NIDENT];
uint16_t e_type;
uint16_t e_machine;
uint32_t e_version;
uint32_t e_entry;
uint32_t e_phoff;
uint32_t e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shtrndx;
} __attribute__((__packed__)) Elf32_Ehdr;
#define PT_NULL 0

View file

@ -26,448 +26,448 @@
#define BLOCK_SIZE 0x100
static const uint8_t elf_ident[] = {
0x7f, 'E', 'L', 'F',
ELFCLASS32,
ELFDATA2LSB,
EV_CURRENT
0x7f, 'E', 'L', 'F',
ELFCLASS32,
ELFDATA2LSB,
EV_CURRENT
};
// Turn PHDRs into flasher segments, checking for PHDR sanity and merging adjacent
// unaligned segments if needed
static int build_segs_from_phdrs(flash_file_t *ctx, FILE *fd, Elf32_Phdr *phdrs, int num_phdrs)
{
Elf32_Phdr *phdr = phdrs;
flash_seg_t *seg;
uint32_t last_end = 0;
Elf32_Phdr *phdr = phdrs;
flash_seg_t *seg;
uint32_t last_end = 0;
ctx->segments = calloc(sizeof(flash_seg_t) * num_phdrs, sizeof(uint8_t));
if (!ctx->segments) {
fprintf(stderr, "Out of memory\n");
return -1;
}
ctx->num_segs = 0;
seg = ctx->segments;
ctx->segments = calloc(sizeof(flash_seg_t) * num_phdrs, sizeof(uint8_t));
if (!ctx->segments) {
fprintf(stderr, "Out of memory\n");
return -1;
}
ctx->num_segs = 0;
seg = ctx->segments;
fprintf(stderr, "Loading usable ELF segments:\n");
for (int i = 0; i < num_phdrs; i++) {
if (le32(phdr->p_type) != PT_LOAD) {
phdr++;
continue;
}
uint32_t vaddr = le32(phdr->p_vaddr);
uint32_t paddr = le32(phdr->p_paddr);
uint32_t filesz = le32(phdr->p_filesz);
uint32_t memsz = le32(phdr->p_memsz);
uint32_t offset = le32(phdr->p_offset);
uint32_t flags = le32(phdr->p_flags);
if (!filesz) {
phdr++;
continue;
}
fprintf(stderr, "%d: V 0x%08x P 0x%08x (0x%08x->0x%08x) [%c%c%c] @0x%x\n",
i, vaddr, paddr, filesz, memsz,
flags & PF_R ? 'R' : ' ',
flags & PF_W ? 'W' : ' ',
flags & PF_X ? 'X' : ' ',
offset);
if (filesz != memsz) {
fprintf(stderr, "Error: PHDR file size does not equal memory size\n"
"(DATA+BSS PHDRs do not make sense on ROM platforms!)\n");
return -1;
}
if (paddr < last_end) {
fprintf(stderr, "Error: PHDRs not sorted or overlap\n");
return -1;
}
if (paddr < FLASH_START || (paddr+filesz) > FLASH_END) {
fprintf(stderr, "Error: PHDR is not contained in Flash\n");
return -1;
}
if (vaddr >= FLASH_START && vaddr < FLASH_END && (flags & PF_W)) {
fprintf(stderr, "Error: Flash VMA segment is writable\n");
return -1;
}
fprintf(stderr, "Loading usable ELF segments:\n");
for (int i = 0; i < num_phdrs; i++) {
if (le32(phdr->p_type) != PT_LOAD) {
phdr++;
continue;
}
uint32_t vaddr = le32(phdr->p_vaddr);
uint32_t paddr = le32(phdr->p_paddr);
uint32_t filesz = le32(phdr->p_filesz);
uint32_t memsz = le32(phdr->p_memsz);
uint32_t offset = le32(phdr->p_offset);
uint32_t flags = le32(phdr->p_flags);
if (!filesz) {
phdr++;
continue;
}
fprintf(stderr, "%d: V 0x%08x P 0x%08x (0x%08x->0x%08x) [%c%c%c] @0x%x\n",
i, vaddr, paddr, filesz, memsz,
flags & PF_R ? 'R' : ' ',
flags & PF_W ? 'W' : ' ',
flags & PF_X ? 'X' : ' ',
offset);
if (filesz != memsz) {
fprintf(stderr, "Error: PHDR file size does not equal memory size\n"
"(DATA+BSS PHDRs do not make sense on ROM platforms!)\n");
return -1;
}
if (paddr < last_end) {
fprintf(stderr, "Error: PHDRs not sorted or overlap\n");
return -1;
}
if (paddr < FLASH_START || (paddr+filesz) > FLASH_END) {
fprintf(stderr, "Error: PHDR is not contained in Flash\n");
return -1;
}
if (vaddr >= FLASH_START && vaddr < FLASH_END && (flags & PF_W)) {
fprintf(stderr, "Error: Flash VMA segment is writable\n");
return -1;
}
uint8_t *data;
// make extra space if we need to move the data forward
data = calloc(filesz + BLOCK_SIZE, sizeof(uint8_t));
if (!data) {
fprintf(stderr, "Out of memory\n");
return -1;
}
if (fseek(fd, offset, SEEK_SET) < 0 || fread(data, 1, filesz, fd) != filesz) {
fprintf(stderr, "Error while reading PHDR payload\n");
free(data);
return -1;
}
uint8_t *data;
// make extra space if we need to move the data forward
data = calloc(filesz + BLOCK_SIZE, sizeof(uint8_t));
if (!data) {
fprintf(stderr, "Out of memory\n");
return -1;
}
if (fseek(fd, offset, SEEK_SET) < 0 || fread(data, 1, filesz, fd) != filesz) {
fprintf(stderr, "Error while reading PHDR payload\n");
free(data);
return -1;
}
uint32_t block_offset = paddr & (BLOCK_SIZE-1);
if (block_offset) {
if (ctx->num_segs) {
flash_seg_t *prev_seg = seg - 1;
uint32_t this_end = paddr + filesz;
uint32_t this_firstblock = paddr & ~(BLOCK_SIZE-1);
uint32_t prev_lastblock = (last_end - 1) & ~(BLOCK_SIZE-1);
uint32_t block_offset = paddr & (BLOCK_SIZE-1);
if (block_offset) {
if (ctx->num_segs) {
flash_seg_t *prev_seg = seg - 1;
uint32_t this_end = paddr + filesz;
uint32_t this_firstblock = paddr & ~(BLOCK_SIZE-1);
uint32_t prev_lastblock = (last_end - 1) & ~(BLOCK_SIZE-1);
if (this_firstblock == prev_lastblock) {
uint32_t new_length = this_end - prev_seg->start;
uint32_t this_offset = paddr - prev_seg->start;
uint32_t hole = this_offset - prev_seg->length;
uint8_t *new_data = calloc(new_length, sizeof(uint8_t));
if (!new_data) {
fprintf(stderr, "Out of memory\n");
free(data);
return -1;
}
memset(new_data, 0xff, new_length);
memcpy(new_data, prev_seg->data, prev_seg->length);
memcpy(new_data + this_offset, data, filesz);
fprintf(stderr, "Note: Extending previous segment from 0x%x to 0x%x bytes\n",
prev_seg->length, new_length);
if (hole)
fprintf(stderr, "Note: 0x%x-byte hole created\n", hole);
free(data);
free(prev_seg->data);
prev_seg->data = new_data;
prev_seg->length = new_length;
last_end = this_end;
phdr++;
continue;
}
}
fprintf(stderr, "Warning: segment does not begin on a block boundary, will pad\n");
memmove(data + block_offset, data, filesz);
memset(data, 0xFF, block_offset);
filesz += block_offset;
paddr -= block_offset;
}
if (this_firstblock == prev_lastblock) {
uint32_t new_length = this_end - prev_seg->start;
uint32_t this_offset = paddr - prev_seg->start;
uint32_t hole = this_offset - prev_seg->length;
uint8_t *new_data = calloc(new_length, sizeof(uint8_t));
if (!new_data) {
fprintf(stderr, "Out of memory\n");
free(data);
return -1;
}
memset(new_data, 0xff, new_length);
memcpy(new_data, prev_seg->data, prev_seg->length);
memcpy(new_data + this_offset, data, filesz);
fprintf(stderr, "Note: Extending previous segment from 0x%x to 0x%x bytes\n",
prev_seg->length, new_length);
if (hole)
fprintf(stderr, "Note: 0x%x-byte hole created\n", hole);
free(data);
free(prev_seg->data);
prev_seg->data = new_data;
prev_seg->length = new_length;
last_end = this_end;
phdr++;
continue;
}
}
fprintf(stderr, "Warning: segment does not begin on a block boundary, will pad\n");
memmove(data + block_offset, data, filesz);
memset(data, 0xFF, block_offset);
filesz += block_offset;
paddr -= block_offset;
}
seg->data = data;
seg->start = paddr;
seg->length = filesz;
seg++;
ctx->num_segs++;
seg->data = data;
seg->start = paddr;
seg->length = filesz;
seg++;
ctx->num_segs++;
last_end = paddr + filesz;
phdr++;
}
return 0;
last_end = paddr + filesz;
phdr++;
}
return 0;
}
// Sanity check segments and check for bootloader writes
static int check_segs(flash_file_t *ctx, int can_write_bl) {
for (int i = 0; i < ctx->num_segs; i++) {
flash_seg_t *seg = &ctx->segments[i];
for (int i = 0; i < ctx->num_segs; i++) {
flash_seg_t *seg = &ctx->segments[i];
if (seg->start & (BLOCK_SIZE-1)) {
fprintf(stderr, "Error: Segment is not aligned\n");
return -1;
}
if (seg->start < FLASH_START) {
fprintf(stderr, "Error: Segment is outside of flash bounds\n");
return -1;
}
if (seg->start + seg->length > FLASH_END) {
fprintf(stderr, "Error: Segment is outside of flash bounds\n");
return -1;
}
if (!can_write_bl && seg->start < BOOTLOADER_END) {
fprintf(stderr, "Attempted to write bootloader but bootloader writes are not enabled\n");
return -1;
}
}
return 0;
if (seg->start & (BLOCK_SIZE-1)) {
fprintf(stderr, "Error: Segment is not aligned\n");
return -1;
}
if (seg->start < FLASH_START) {
fprintf(stderr, "Error: Segment is outside of flash bounds\n");
return -1;
}
if (seg->start + seg->length > FLASH_END) {
fprintf(stderr, "Error: Segment is outside of flash bounds\n");
return -1;
}
if (!can_write_bl && seg->start < BOOTLOADER_END) {
fprintf(stderr, "Attempted to write bootloader but bootloader writes are not enabled\n");
return -1;
}
}
return 0;
}
// Load an ELF file and prepare it for flashing
int flash_load(flash_file_t *ctx, const char *name, int can_write_bl)
{
FILE *fd = NULL;
Elf32_Ehdr ehdr;
Elf32_Phdr *phdrs = NULL;
int num_phdrs;
int res;
FILE *fd = NULL;
Elf32_Ehdr ehdr;
Elf32_Phdr *phdrs = NULL;
int num_phdrs;
int res;
fd = fopen(name, "rb");
if (!fd) {
fprintf(stderr, "Could not open file '%s': ", name);
perror(NULL);
goto fail;
}
fd = fopen(name, "rb");
if (!fd) {
fprintf(stderr, "Could not open file '%s': ", name);
perror(NULL);
goto fail;
}
fprintf(stderr, "Loading ELF file '%s'...\n", name);
fprintf(stderr, "Loading ELF file '%s'...\n", name);
if (fread(&ehdr, sizeof(ehdr), 1, fd) != 1) {
fprintf(stderr, "Error while reading ELF file header\n");
goto fail;
}
if (memcmp(ehdr.e_ident, elf_ident, sizeof(elf_ident))
|| le32(ehdr.e_version) != 1)
{
fprintf(stderr, "Not an ELF file or wrong ELF type\n");
goto fail;
}
if (le16(ehdr.e_type) != ET_EXEC) {
fprintf(stderr, "ELF is not executable\n");
goto fail;
}
if (le16(ehdr.e_machine) != EM_ARM) {
fprintf(stderr, "Wrong ELF architecture\n");
goto fail;
}
if (!ehdr.e_phnum || !ehdr.e_phoff) {
fprintf(stderr, "ELF has no PHDRs\n");
goto fail;
}
if (le16(ehdr.e_phentsize) != sizeof(Elf32_Phdr)) {
// could be a structure padding issue...
fprintf(stderr, "Either the ELF file or this code is made of fail\n");
goto fail;
}
num_phdrs = le16(ehdr.e_phnum);
if (fread(&ehdr, sizeof(ehdr), 1, fd) != 1) {
fprintf(stderr, "Error while reading ELF file header\n");
goto fail;
}
if (memcmp(ehdr.e_ident, elf_ident, sizeof(elf_ident))
|| le32(ehdr.e_version) != 1)
{
fprintf(stderr, "Not an ELF file or wrong ELF type\n");
goto fail;
}
if (le16(ehdr.e_type) != ET_EXEC) {
fprintf(stderr, "ELF is not executable\n");
goto fail;
}
if (le16(ehdr.e_machine) != EM_ARM) {
fprintf(stderr, "Wrong ELF architecture\n");
goto fail;
}
if (!ehdr.e_phnum || !ehdr.e_phoff) {
fprintf(stderr, "ELF has no PHDRs\n");
goto fail;
}
if (le16(ehdr.e_phentsize) != sizeof(Elf32_Phdr)) {
// could be a structure padding issue...
fprintf(stderr, "Either the ELF file or this code is made of fail\n");
goto fail;
}
num_phdrs = le16(ehdr.e_phnum);
phdrs = calloc(le16(ehdr.e_phnum) * sizeof(Elf32_Phdr), sizeof(uint8_t));
if (!phdrs) {
fprintf(stderr, "Out of memory\n");
goto fail;
}
if (fseek(fd, le32(ehdr.e_phoff), SEEK_SET) < 0) {
fprintf(stderr, "Error while reading ELF PHDRs\n");
goto fail;
}
if (fread(phdrs, sizeof(Elf32_Phdr), num_phdrs, fd) != num_phdrs) {
fprintf(stderr, "Error while reading ELF PHDRs\n");
goto fail;
}
phdrs = calloc(le16(ehdr.e_phnum) * sizeof(Elf32_Phdr), sizeof(uint8_t));
if (!phdrs) {
fprintf(stderr, "Out of memory\n");
goto fail;
}
if (fseek(fd, le32(ehdr.e_phoff), SEEK_SET) < 0) {
fprintf(stderr, "Error while reading ELF PHDRs\n");
goto fail;
}
if (fread(phdrs, sizeof(Elf32_Phdr), num_phdrs, fd) != num_phdrs) {
fprintf(stderr, "Error while reading ELF PHDRs\n");
goto fail;
}
res = build_segs_from_phdrs(ctx, fd, phdrs, num_phdrs);
if (res < 0)
goto fail;
res = check_segs(ctx, can_write_bl);
if (res < 0)
goto fail;
res = build_segs_from_phdrs(ctx, fd, phdrs, num_phdrs);
if (res < 0)
goto fail;
res = check_segs(ctx, can_write_bl);
if (res < 0)
goto fail;
free(phdrs);
fclose(fd);
ctx->filename = name;
return 0;
free(phdrs);
fclose(fd);
ctx->filename = name;
return 0;
fail:
if (phdrs)
free(phdrs);
if (fd)
fclose(fd);
flash_free(ctx);
return -1;
if (phdrs)
free(phdrs);
if (fd)
fclose(fd);
flash_free(ctx);
return -1;
}
// Get the state of the proxmark, backwards compatible
static int get_proxmark_state(uint32_t *state)
{
UsbCommand c = {CMD_DEVICE_INFO};
SendCommand(&c);
UsbCommand resp;
ReceiveCommand(&resp);
UsbCommand c = {CMD_DEVICE_INFO};
SendCommand(&c);
UsbCommand resp;
ReceiveCommand(&resp);
// Three outcomes:
// 1. The old bootrom code will ignore CMD_DEVICE_INFO, but respond with an ACK
// 2. The old os code will respond with CMD_DEBUG_PRINT_STRING and "unknown command"
// 3. The new bootrom and os codes will respond with CMD_DEVICE_INFO and flags
// Three outcomes:
// 1. The old bootrom code will ignore CMD_DEVICE_INFO, but respond with an ACK
// 2. The old os code will respond with CMD_DEBUG_PRINT_STRING and "unknown command"
// 3. The new bootrom and os codes will respond with CMD_DEVICE_INFO and flags
switch (resp.cmd) {
case CMD_ACK:
*state = DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM;
break;
case CMD_DEBUG_PRINT_STRING:
*state = DEVICE_INFO_FLAG_CURRENT_MODE_OS;
break;
case CMD_DEVICE_INFO:
*state = resp.arg[0];
break;
default:
fprintf(stderr, "Error: Couldn't get proxmark state, bad response type: 0x%04x\n", resp.cmd);
return -1;
break;
}
switch (resp.cmd) {
case CMD_ACK:
*state = DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM;
break;
case CMD_DEBUG_PRINT_STRING:
*state = DEVICE_INFO_FLAG_CURRENT_MODE_OS;
break;
case CMD_DEVICE_INFO:
*state = resp.arg[0];
break;
default:
fprintf(stderr, "Error: Couldn't get proxmark state, bad response type: 0x%04x\n", resp.cmd);
return -1;
break;
}
return 0;
return 0;
}
// Enter the bootloader to be able to start flashing
static int enter_bootloader(void)
{
uint32_t state;
uint32_t state;
if (get_proxmark_state(&state) < 0)
return -1;
if (get_proxmark_state(&state) < 0)
return -1;
if (state & DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM) {
/* Already in flash state, we're done. */
return 0;
}
if (state & DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM) {
/* Already in flash state, we're done. */
return 0;
}
if (state & DEVICE_INFO_FLAG_CURRENT_MODE_OS) {
fprintf(stderr,"Entering bootloader...\n");
UsbCommand c;
memset(&c, 0, sizeof (c));
if (state & DEVICE_INFO_FLAG_CURRENT_MODE_OS) {
fprintf(stderr,"Entering bootloader...\n");
UsbCommand c;
memset(&c, 0, sizeof (c));
if ((state & DEVICE_INFO_FLAG_BOOTROM_PRESENT)
&& (state & DEVICE_INFO_FLAG_OSIMAGE_PRESENT))
{
// New style handover: Send CMD_START_FLASH, which will reset the board
// and enter the bootrom on the next boot.
c.cmd = CMD_START_FLASH;
SendCommand(&c);
fprintf(stderr,"(Press and release the button only to abort)\n");
} else {
// Old style handover: Ask the user to press the button, then reset the board
c.cmd = CMD_HARDWARE_RESET;
SendCommand(&c);
fprintf(stderr,"Press and hold down button NOW if your bootloader requires it.\n");
}
fprintf(stderr,"Waiting for Proxmark to reappear on USB...");
if ((state & DEVICE_INFO_FLAG_BOOTROM_PRESENT)
&& (state & DEVICE_INFO_FLAG_OSIMAGE_PRESENT))
{
// New style handover: Send CMD_START_FLASH, which will reset the board
// and enter the bootrom on the next boot.
c.cmd = CMD_START_FLASH;
SendCommand(&c);
fprintf(stderr,"(Press and release the button only to abort)\n");
} else {
// Old style handover: Ask the user to press the button, then reset the board
c.cmd = CMD_HARDWARE_RESET;
SendCommand(&c);
fprintf(stderr,"Press and hold down button NOW if your bootloader requires it.\n");
}
fprintf(stderr,"Waiting for Proxmark to reappear on USB...");
CloseProxmark();
msleep(1000);
while (!OpenProxmark(0)) {
msleep(1000);
fprintf(stderr, "."); fflush(stdout);
}
fprintf(stderr," Found.\n");
CloseProxmark();
msleep(1000);
while (!OpenProxmark(0)) {
msleep(1000);
fprintf(stderr, "."); fflush(stdout);
}
fprintf(stderr," Found.\n");
return 0;
}
return 0;
}
fprintf(stderr, "Error: Unknown Proxmark mode\n");
return -1;
fprintf(stderr, "Error: Unknown Proxmark mode\n");
return -1;
}
static int wait_for_ack(void)
{
UsbCommand ack;
ReceiveCommand(&ack);
if (ack.cmd != CMD_ACK) {
printf("Error: Unexpected reply 0x%04x (expected ACK)\n", ack.cmd);
return -1;
}
return 0;
UsbCommand ack;
ReceiveCommand(&ack);
if (ack.cmd != CMD_ACK) {
printf("Error: Unexpected reply 0x%04x (expected ACK)\n", ack.cmd);
return -1;
}
return 0;
}
// Go into flashing mode
int flash_start_flashing(int enable_bl_writes)
{
uint32_t state;
uint32_t state;
if (enter_bootloader() < 0)
return -1;
if (enter_bootloader() < 0)
return -1;
if (get_proxmark_state(&state) < 0)
return -1;
if (get_proxmark_state(&state) < 0)
return -1;
if (state & DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH) {
// This command is stupid. Why the heck does it care which area we're
// flashing, as long as it's not the bootloader area? The mind boggles.
UsbCommand c = {CMD_START_FLASH};
if (state & DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH) {
// This command is stupid. Why the heck does it care which area we're
// flashing, as long as it's not the bootloader area? The mind boggles.
UsbCommand c = {CMD_START_FLASH};
if (enable_bl_writes) {
c.arg[0] = FLASH_START;
c.arg[1] = FLASH_END;
c.arg[2] = START_FLASH_MAGIC;
} else {
c.arg[0] = BOOTLOADER_END;
c.arg[1] = FLASH_END;
c.arg[2] = 0;
}
SendCommand(&c);
return wait_for_ack();
} else {
fprintf(stderr, "Note: Your bootloader does not understand the new START_FLASH command\n");
fprintf(stderr, " It is recommended that you update your bootloader\n\n");
}
if (enable_bl_writes) {
c.arg[0] = FLASH_START;
c.arg[1] = FLASH_END;
c.arg[2] = START_FLASH_MAGIC;
} else {
c.arg[0] = BOOTLOADER_END;
c.arg[1] = FLASH_END;
c.arg[2] = 0;
}
SendCommand(&c);
return wait_for_ack();
} else {
fprintf(stderr, "Note: Your bootloader does not understand the new START_FLASH command\n");
fprintf(stderr, " It is recommended that you update your bootloader\n\n");
}
return 0;
return 0;
}
static int write_block(uint32_t address, uint8_t *data, uint32_t length)
{
uint8_t block_buf[BLOCK_SIZE];
uint8_t block_buf[BLOCK_SIZE];
memset(block_buf, 0xFF, BLOCK_SIZE);
memcpy(block_buf, data, length);
memset(block_buf, 0xFF, BLOCK_SIZE);
memcpy(block_buf, data, length);
UsbCommand c = {CMD_SETUP_WRITE};
for (int i = 0; i < 240; i += 48) {
memcpy(c.d.asBytes, block_buf + i, 48);
c.arg[0] = i / 4;
SendCommand(&c);
if (wait_for_ack() < 0)
return -1;
}
UsbCommand c = {CMD_SETUP_WRITE};
for (int i = 0; i < 240; i += 48) {
memcpy(c.d.asBytes, block_buf + i, 48);
c.arg[0] = i / 4;
SendCommand(&c);
if (wait_for_ack() < 0)
return -1;
}
c.cmd = CMD_FINISH_WRITE;
c.arg[0] = address;
memcpy(c.d.asBytes, block_buf+240, 16);
SendCommand(&c);
return wait_for_ack();
c.cmd = CMD_FINISH_WRITE;
c.arg[0] = address;
memcpy(c.d.asBytes, block_buf+240, 16);
SendCommand(&c);
return wait_for_ack();
}
// Write a file's segments to Flash
int flash_write(flash_file_t *ctx)
{
fprintf(stderr, "Writing segments for file: %s\n", ctx->filename);
for (int i = 0; i < ctx->num_segs; i++) {
flash_seg_t *seg = &ctx->segments[i];
fprintf(stderr, "Writing segments for file: %s\n", ctx->filename);
for (int i = 0; i < ctx->num_segs; i++) {
flash_seg_t *seg = &ctx->segments[i];
uint32_t length = seg->length;
uint32_t blocks = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
uint32_t end = seg->start + length;
uint32_t length = seg->length;
uint32_t blocks = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
uint32_t end = seg->start + length;
fprintf(stderr, " 0x%08x..0x%08x [0x%x / %d blocks]",
seg->start, end - 1, length, blocks);
fprintf(stderr, " 0x%08x..0x%08x [0x%x / %d blocks]",
seg->start, end - 1, length, blocks);
int block = 0;
uint8_t *data = seg->data;
uint32_t baddr = seg->start;
int block = 0;
uint8_t *data = seg->data;
uint32_t baddr = seg->start;
while (length) {
uint32_t block_size = length;
if (block_size > BLOCK_SIZE)
block_size = BLOCK_SIZE;
while (length) {
uint32_t block_size = length;
if (block_size > BLOCK_SIZE)
block_size = BLOCK_SIZE;
if (write_block(baddr, data, block_size) < 0) {
fprintf(stderr, " ERROR\n");
fprintf(stderr, "Error writing block %d of %d\n", block, blocks);
return -1;
}
if (write_block(baddr, data, block_size) < 0) {
fprintf(stderr, " ERROR\n");
fprintf(stderr, "Error writing block %d of %d\n", block, blocks);
return -1;
}
data += block_size;
baddr += block_size;
length -= block_size;
block++;
fprintf(stderr, "."); fflush(stdout);
}
fprintf(stderr, " OK\n");
}
return 0;
data += block_size;
baddr += block_size;
length -= block_size;
block++;
fprintf(stderr, "."); fflush(stdout);
}
fprintf(stderr, " OK\n");
}
return 0;
}
// free a file context
void flash_free(flash_file_t *ctx)
{
if (!ctx)
return;
if (ctx->segments) {
for (int i = 0; i < ctx->num_segs; i++)
free(ctx->segments[i].data);
free(ctx->segments);
ctx->segments = NULL;
ctx->num_segs = 0;
}
if (!ctx)
return;
if (ctx->segments) {
for (int i = 0; i < ctx->num_segs; i++)
free(ctx->segments[i].data);
free(ctx->segments);
ctx->segments = NULL;
ctx->num_segs = 0;
}
}
// just reset the unit
int flash_stop_flashing(void) {
UsbCommand c = {CMD_HARDWARE_RESET};
SendCommand(&c);
return 0;
UsbCommand c = {CMD_HARDWARE_RESET};
SendCommand(&c);
return 0;
}

View file

@ -13,16 +13,16 @@
#include "elf.h"
typedef struct {
void *data;
uint32_t start;
uint32_t length;
void *data;
uint32_t start;
uint32_t length;
} flash_seg_t;
typedef struct {
const char *filename;
int can_write_bl;
int num_segs;
flash_seg_t *segments;
const char *filename;
int can_write_bl;
int num_segs;
flash_seg_t *segments;
} flash_file_t;
int flash_load(flash_file_t *ctx, const char *name, int can_write_bl);

View file

@ -15,79 +15,79 @@
static void usage(char *argv0)
{
fprintf(stderr, "Usage: %s [-b] image.elf [image.elf...]\n\n", argv0);
fprintf(stderr, "\t-b\tEnable flashing of bootloader area (DANGEROUS)\n\n");
fprintf(stderr, "Example: %s path/to/osimage.elf path/to/fpgaimage.elf\n", argv0);
fprintf(stderr, "Usage: %s [-b] image.elf [image.elf...]\n\n", argv0);
fprintf(stderr, "\t-b\tEnable flashing of bootloader area (DANGEROUS)\n\n");
fprintf(stderr, "Example: %s path/to/osimage.elf path/to/fpgaimage.elf\n", argv0);
}
#define MAX_FILES 4
int main(int argc, char **argv)
{
int can_write_bl = 0;
int num_files = 0;
int res;
flash_file_t files[MAX_FILES];
int can_write_bl = 0;
int num_files = 0;
int res;
flash_file_t files[MAX_FILES];
memset(files, 0, sizeof(files));
memset(files, 0, sizeof(files));
if (argc < 2) {
usage(argv[0]);
return -1;
}
if (argc < 2) {
usage(argv[0]);
return -1;
}
for (int i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
if (!strcmp(argv[i], "-b")) {
can_write_bl = 1;
} else {
usage(argv[0]);
return -1;
}
} else {
res = flash_load(&files[num_files], argv[i], can_write_bl);
if (res < 0) {
fprintf(stderr, "Error while loading %s\n", argv[i]);
return -1;
}
fprintf(stderr, "\n");
num_files++;
}
}
for (int i = 1; i < argc; i++) {
if (argv[i][0] == '-') {
if (!strcmp(argv[i], "-b")) {
can_write_bl = 1;
} else {
usage(argv[0]);
return -1;
}
} else {
res = flash_load(&files[num_files], argv[i], can_write_bl);
if (res < 0) {
fprintf(stderr, "Error while loading %s\n", argv[i]);
return -1;
}
fprintf(stderr, "\n");
num_files++;
}
}
usb_init();
usb_init();
fprintf(stderr, "Waiting for Proxmark to appear on USB...");
while (!OpenProxmark(1)) {
msleep(1000);
fprintf(stderr, "."); fflush(stdout);
}
fprintf(stderr, " Found.\n");
fprintf(stderr, "Waiting for Proxmark to appear on USB...");
while (!OpenProxmark(1)) {
msleep(1000);
fprintf(stderr, "."); fflush(stdout);
}
fprintf(stderr, " Found.\n");
res = flash_start_flashing(can_write_bl);
if (res < 0)
return -1;
res = flash_start_flashing(can_write_bl);
if (res < 0)
return -1;
fprintf(stderr, "\nFlashing...\n");
fprintf(stderr, "\nFlashing...\n");
for (int i = 0; i < num_files; i++) {
res = flash_write(&files[i]);
if (res < 0)
return -1;
flash_free(&files[i]);
fprintf(stderr, "\n");
}
for (int i = 0; i < num_files; i++) {
res = flash_write(&files[i]);
if (res < 0)
return -1;
flash_free(&files[i]);
fprintf(stderr, "\n");
}
fprintf(stderr, "Resetting hardware...\n");
fprintf(stderr, "Resetting hardware...\n");
res = flash_stop_flashing();
if (res < 0)
return -1;
res = flash_stop_flashing();
if (res < 0)
return -1;
CloseProxmark();
CloseProxmark();
fprintf(stderr, "All done.\n\n");
fprintf(stderr, "Have a nice day!\n");
fprintf(stderr, "All done.\n\n");
fprintf(stderr, "Have a nice day!\n");
return 0;
return 0;
}

View file

@ -34,12 +34,12 @@
static inline uint16_t le16(uint16_t v)
{
return (v>>8) | (v<<8);
return (v>>8) | (v<<8);
}
static inline uint32_t le32(uint32_t v)
{
return (le16(v)<<16) | (le16(v>>16));
return (le16(v)<<16) | (le16(v>>16));
}
#endif // HOST_LITTLE_ENDIAN

View file

@ -97,76 +97,76 @@ void ReceiveCommand(UsbCommand *c)
usb_dev_handle* findProxmark(int verbose, unsigned int *iface)
{
struct usb_bus *busses, *bus;
usb_dev_handle *handle = NULL;
struct prox_unit units[50];
int iUnit = 0;
struct usb_bus *busses, *bus;
usb_dev_handle *handle = NULL;
struct prox_unit units[50];
int iUnit = 0;
usb_find_busses();
usb_find_devices();
usb_find_busses();
usb_find_devices();
busses = usb_get_busses();
busses = usb_get_busses();
for (bus = busses; bus; bus = bus->next) {
struct usb_device *dev;
for (bus = busses; bus; bus = bus->next) {
struct usb_device *dev;
for (dev = bus->devices; dev; dev = dev->next) {
struct usb_device_descriptor *desc = &(dev->descriptor);
for (dev = bus->devices; dev; dev = dev->next) {
struct usb_device_descriptor *desc = &(dev->descriptor);
if ((desc->idProduct == 0x4b8f) && (desc->idVendor == 0x9ac4)) {
handle = usb_open(dev);
if (!handle) {
if (verbose)
fprintf(stderr, "open fabiled: %s!\n", usb_strerror());
//return NULL;
continue;
}
*iface = dev->config[0].interface[0].altsetting[0].bInterfaceNumber;
if ((desc->idProduct == 0x4b8f) && (desc->idVendor == 0x9ac4)) {
handle = usb_open(dev);
if (!handle) {
if (verbose)
fprintf(stderr, "open fabiled: %s!\n", usb_strerror());
//return NULL;
continue;
}
*iface = dev->config[0].interface[0].altsetting[0].bInterfaceNumber;
struct prox_unit unit = {handle, {0}};
usb_get_string_simple(handle, desc->iSerialNumber, unit.serial_number, sizeof(unit.serial_number));
units[iUnit++] = unit;
struct prox_unit unit = {handle, {0}};
usb_get_string_simple(handle, desc->iSerialNumber, unit.serial_number, sizeof(unit.serial_number));
units[iUnit++] = unit;
//return handle;
}
}
}
//return handle;
}
}
}
if (iUnit > 0) {
int iSelection = 0;
if (iUnit > 0) {
int iSelection = 0;
fprintf(stdout, "\nConnected units:\n");
fprintf(stdout, "\nConnected units:\n");
for (int i = 0; i < iUnit; i++) {
struct usb_device * dev = usb_device(units[i].handle);
fprintf(stdout, "\t%d. SN: %s [%s/%s]\n", i+1, units[i].serial_number, dev->bus->dirname, dev->filename);
}
if (iUnit > 1) {
while (iSelection < 1 || iSelection > iUnit) {
fprintf(stdout, "Which unit do you want to connect to? ");
int res = fscanf(stdin, "%d", &iSelection);
if ( res != 1 ) {
fprintf(stderr, "Input parse error");
fflush(stderr);
abort();
}
}
}
else {
iSelection = 1;
}
for (int i = 0; i < iUnit; i++) {
struct usb_device * dev = usb_device(units[i].handle);
fprintf(stdout, "\t%d. SN: %s [%s/%s]\n", i+1, units[i].serial_number, dev->bus->dirname, dev->filename);
}
if (iUnit > 1) {
while (iSelection < 1 || iSelection > iUnit) {
fprintf(stdout, "Which unit do you want to connect to? ");
int res = fscanf(stdin, "%d", &iSelection);
if ( res != 1 ) {
fprintf(stderr, "Input parse error");
fflush(stderr);
abort();
}
}
}
else {
iSelection = 1;
}
iSelection --;
iSelection --;
for (int i = 0; i < iUnit; i++) {
if (iSelection == i) continue;
usb_close(units[i].handle);
units[i].handle = NULL;
}
for (int i = 0; i < iUnit; i++) {
if (iSelection == i) continue;
usb_close(units[i].handle);
units[i].handle = NULL;
}
return units[iSelection].handle;
}
return NULL;
return units[iSelection].handle;
}
return NULL;
}
usb_dev_handle* OpenProxmark(int verbose)

View file

@ -24,12 +24,12 @@ typedef BYTE uint8_t;
#endif
typedef struct {
uint32_t cmd;
uint32_t arg[3];
union {
uint8_t asBytes[48];
uint32_t asDwords[12];
} d;
uint32_t cmd;
uint32_t arg[3];
union {
uint8_t asBytes[48];
uint32_t asDwords[12];
} d;
} PACKED UsbCommand;
// For the bootloader
@ -50,19 +50,19 @@ typedef struct {
#define CMD_BUFF_CLEAR 0x0105
#define CMD_READ_MEM 0x0106
#define CMD_VERSION 0x0107
#define CMD_STATUS 0x0108
#define CMD_PING 0x0109
#define CMD_STATUS 0x0108
#define CMD_PING 0x0109
#define CMD_DOWNLOAD_EML_BIGBUF 0x0110
#define CMD_DOWNLOADED_EML_BIGBUF 0x0111
#define CMD_DOWNLOAD_EML_BIGBUF 0x0110
#define CMD_DOWNLOADED_EML_BIGBUF 0x0111
// RDV40, Flash memory operations
#define CMD_FLASHMEM_READ 0x0120
#define CMD_FLASHMEM_WRITE 0x0121
#define CMD_FLASHMEM_WIPE 0x0122
#define CMD_FLASHMEM_DOWNLOAD 0x0123
#define CMD_FLASHMEM_DOWNLOADED 0x0124
#define CMD_FLASHMEM_INFO 0x0125
#define CMD_FLASHMEM_READ 0x0120
#define CMD_FLASHMEM_WRITE 0x0121
#define CMD_FLASHMEM_WIPE 0x0122
#define CMD_FLASHMEM_DOWNLOAD 0x0123
#define CMD_FLASHMEM_DOWNLOADED 0x0124
#define CMD_FLASHMEM_INFO 0x0125
// For low-frequency tags
#define CMD_READ_TI_TYPE 0x0202
@ -72,7 +72,7 @@ typedef struct {
#define CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K 0x0206
#define CMD_DOWNLOAD_RAW_ADC_SAMPLES_125K 0x0207
#define CMD_DOWNLOADED_RAW_ADC_SAMPLES_125K 0x0208
#define CMD_UPLOAD_SIM_SAMPLES_125K 0x0209
#define CMD_UPLOAD_SIM_SAMPLES_125K 0x0209
#define CMD_SIMULATE_TAG_125K 0x020A
#define CMD_HID_DEMOD_FSK 0x020B
#define CMD_HID_SIM_TAG 0x020C
@ -87,7 +87,7 @@ typedef struct {
#define CMD_T55XX_READ_BLOCK 0x0214
#define CMD_T55XX_WRITE_BLOCK 0x0215
#define CMD_T55XX_RESET_READ 0x0216
#define CMD_T55XX_WAKEUP 0x0224
#define CMD_T55XX_WAKEUP 0x0224
#define CMD_PCF7931_READ 0x0217
#define CMD_PCF7931_WRITE 0x0223
@ -103,15 +103,15 @@ typedef struct {
#define CMD_PSK_SIM_TAG 0x0220
#define CMD_AWID_DEMOD_FSK 0x0221
#define CMD_VIKING_CLONE_TAG 0x0222
#define CMD_T55XX_WAKEUP 0x0224
#define CMD_COTAG 0x0225
#define CMD_SET_LF_T55XX_CONFIG 0x0226
#define CMD_T55XX_WAKEUP 0x0224
#define CMD_COTAG 0x0225
#define CMD_SET_LF_T55XX_CONFIG 0x0226
/* CMD_SET_ADC_MUX: ext1 is 0 for lopkd, 1 for loraw, 2 for hipkd, 3 for hiraw */
// For the 13.56 MHz tags
#define CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_15693 0x0300
#define CMD_READ_SRI_TAG 0x0303
#define CMD_READ_SRI_TAG 0x0303
#define CMD_ISO_14443B_COMMAND 0x0305
#define CMD_READER_ISO_15693 0x0310
#define CMD_SIMTAG_ISO_15693 0x0311
@ -128,12 +128,12 @@ typedef struct {
// For HitagS
#define CMD_SIMULATE_HITAG_S 0x0368
#define CMD_TEST_HITAGS_TRACES 0x0367
#define CMD_READ_HITAG_S 0x0373
#define CMD_WR_HITAG_S 0x0375
#define CMD_EMU_HITAG_S 0x0376
#define CMD_TEST_HITAGS_TRACES 0x0367
#define CMD_READ_HITAG_S 0x0373
#define CMD_WR_HITAG_S 0x0375
#define CMD_EMU_HITAG_S 0x0376
#define CMD_ANTIFUZZ_ISO_14443a 0x0380
#define CMD_ANTIFUZZ_ISO_14443a 0x0380
#define CMD_SIMULATE_TAG_ISO_14443B 0x0381
#define CMD_SNOOP_ISO_14443B 0x0382
#define CMD_SNOOP_ISO_14443a 0x0383
@ -147,15 +147,15 @@ typedef struct {
#define CMD_EPA_PACE_COLLECT_NONCE 0x038A
#define CMD_EPA_PACE_REPLAY 0x038B
#define CMD_LEGIC_INFO 0x03BC
#define CMD_LEGIC_ESET 0x03BD
#define CMD_LEGIC_EGET 0x03BE
#define CMD_LEGIC_INFO 0x03BC
#define CMD_LEGIC_ESET 0x03BD
#define CMD_LEGIC_EGET 0x03BE
#define CMD_SNOOP_ICLASS 0x0392
#define CMD_SIMULATE_TAG_ICLASS 0x0393
#define CMD_READER_ICLASS 0x0394
#define CMD_READER_ICLASS_REPLAY 0x0395
#define CMD_ICLASS_ISO14443A_WRITE 0x0397
#define CMD_ICLASS_ISO14443A_WRITE 0x0397
#define CMD_ICLASS_EML_MEMSET 0x0398
// For measurements of the antenna tuning
@ -183,7 +183,7 @@ typedef struct {
#define CMD_READER_MIFARE 0x0611
#define CMD_MIFARE_NESTED 0x0612
#define CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES 0x0613
#define CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES 0x0613
#define CMD_MIFARE_READBL 0x0620
@ -191,8 +191,8 @@ typedef struct {
#define CMD_MIFARE_READSC 0x0621
#define CMD_MIFAREU_READCARD 0x0721
#define CMD_MIFARE_WRITEBL 0x0622
#define CMD_MIFAREU_WRITEBL 0x0722
#define CMD_MIFAREU_WRITEBL_COMPAT 0x0723
#define CMD_MIFAREU_WRITEBL 0x0722
#define CMD_MIFAREU_WRITEBL_COMPAT 0x0723
#define CMD_MIFARE_CHKKEYS 0x0623
#define CMD_MIFARE_SETMOD 0x0624
@ -213,44 +213,44 @@ typedef struct {
#define CMD_MIFARE_DESFIRE_INFO 0x072d
#define CMD_MIFARE_DESFIRE 0x072e
#define CMD_MIFARE_COLLECT_NONCES 0x072f
#define CMD_MIFARE_COLLECT_NONCES 0x072f
#define CMD_HF_SNIFFER 0x0800
#define CMD_UNKNOWN 0xFFFF
//Mifare simulation flags
#define FLAG_INTERACTIVE 0x01
#define FLAG_4B_UID_IN_DATA 0x02
#define FLAG_7B_UID_IN_DATA 0x04
#define FLAG_10B_UID_IN_DATA 0x08
#define FLAG_UID_IN_EMUL 0x10
#define FLAG_NR_AR_ATTACK 0x20
#define FLAG_INTERACTIVE 0x01
#define FLAG_4B_UID_IN_DATA 0x02
#define FLAG_7B_UID_IN_DATA 0x04
#define FLAG_10B_UID_IN_DATA 0x08
#define FLAG_UID_IN_EMUL 0x10
#define FLAG_NR_AR_ATTACK 0x20
//Iclass reader flags
#define FLAG_ICLASS_READER_ONLY_ONCE 0x01
#define FLAG_ICLASS_READER_CC 0x02
#define FLAG_ICLASS_READER_CSN 0x04
#define FLAG_ICLASS_READER_CONF 0x08
#define FLAG_ICLASS_READER_AIA 0x10
#define FLAG_ICLASS_READER_ONE_TRY 0x20
#define FLAG_ICLASS_READER_ONLY_ONCE 0x01
#define FLAG_ICLASS_READER_CC 0x02
#define FLAG_ICLASS_READER_CSN 0x04
#define FLAG_ICLASS_READER_CONF 0x08
#define FLAG_ICLASS_READER_AIA 0x10
#define FLAG_ICLASS_READER_ONE_TRY 0x20
// CMD_DEVICE_INFO response packet has flags in arg[0], flag definitions:
/* Whether a bootloader that understands the common_area is present */
#define DEVICE_INFO_FLAG_BOOTROM_PRESENT (1<<0)
#define DEVICE_INFO_FLAG_BOOTROM_PRESENT (1<<0)
/* Whether a osimage that understands the common_area is present */
#define DEVICE_INFO_FLAG_OSIMAGE_PRESENT (1<<1)
#define DEVICE_INFO_FLAG_OSIMAGE_PRESENT (1<<1)
/* Set if the bootloader is currently executing */
#define DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM (1<<2)
#define DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM (1<<2)
/* Set if the OS is currently executing */
#define DEVICE_INFO_FLAG_CURRENT_MODE_OS (1<<3)
#define DEVICE_INFO_FLAG_CURRENT_MODE_OS (1<<3)
/* Set if this device understands the extend start flash command */
#define DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH (1<<4)
#define DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH (1<<4)
/* CMD_START_FLASH may have three arguments: start of area to flash,
end of area to flash, optional magic.