make style

This commit is contained in:
Philippe Teuwen 2019-03-10 00:00:59 +01:00
commit 0373696662
483 changed files with 56514 additions and 52451 deletions

View file

@ -95,19 +95,21 @@ static madAIDDescr madKnownClusterCodes[] = {
static const char unknownAID[] = "";
static const char *GetAIDDescription(uint16_t AID) {
for(int i = 0; i < ARRAYLEN(madKnownAIDs); i++)
static const char *GetAIDDescription(uint16_t AID)
{
for (int i = 0; i < ARRAYLEN(madKnownAIDs); i++)
if (madKnownAIDs[i].AID == AID)
return madKnownAIDs[i].Description;
for(int i = 0; i < ARRAYLEN(madKnownClusterCodes); i++)
for (int i = 0; i < ARRAYLEN(madKnownClusterCodes); i++)
if (madKnownClusterCodes[i].AID == (AID >> 8)) // high byte - cluster code
return madKnownClusterCodes[i].Description;
return unknownAID;
}
int madCRCCheck(uint8_t *sector, bool verbose, int MADver) {
int madCRCCheck(uint8_t *sector, bool verbose, int MADver)
{
if (MADver == 1) {
uint8_t crc = CRC8Mad(&sector[16 + 1], 15 + 16);
if (crc != sector[16]) {
@ -125,14 +127,16 @@ int madCRCCheck(uint8_t *sector, bool verbose, int MADver) {
return 0;
}
uint16_t madGetAID(uint8_t *sector, int MADver, int sectorNo) {
uint16_t madGetAID(uint8_t *sector, int MADver, int sectorNo)
{
if (MADver == 1)
return (sector[16 + 2 + (sectorNo - 1) * 2] << 8) + (sector[16 + 2 + (sectorNo - 1) * 2 + 1]);
else
return (sector[2 + (sectorNo - 1) * 2] << 8) + (sector[2 + (sectorNo - 1) * 2 + 1]);
}
int MADCheck(uint8_t *sector0, uint8_t *sector10, bool verbose, bool *haveMAD2) {
int MADCheck(uint8_t *sector0, uint8_t *sector10, bool verbose, bool *haveMAD2)
{
int res = 0;
if (!sector0)
@ -186,7 +190,8 @@ int MADCheck(uint8_t *sector0, uint8_t *sector10, bool verbose, bool *haveMAD2)
return res;
}
int MADDecode(uint8_t *sector0, uint8_t *sector10, uint16_t *mad, size_t *madlen) {
int MADDecode(uint8_t *sector0, uint8_t *sector10, uint16_t *mad, size_t *madlen)
{
*madlen = 0;
bool haveMAD2 = false;
MADCheck(sector0, sector10, false, &haveMAD2);
@ -211,7 +216,8 @@ int MADDecode(uint8_t *sector0, uint8_t *sector10, uint16_t *mad, size_t *madlen
}
int MAD1DecodeAndPrint(uint8_t *sector, bool verbose, bool *haveMAD2) {
int MAD1DecodeAndPrint(uint8_t *sector, bool verbose, bool *haveMAD2)
{
// check MAD1 only
MADCheck(sector, NULL, verbose, haveMAD2);
@ -228,7 +234,7 @@ int MAD1DecodeAndPrint(uint8_t *sector, bool verbose, bool *haveMAD2) {
PrintAndLogEx(WARNING, "Info byte error");
PrintAndLogEx(NORMAL, "00 MAD1");
for(int i = 1; i < 16; i++) {
for (int i = 1; i < 16; i++) {
uint16_t AID = madGetAID(sector, 1, i);
PrintAndLogEx(NORMAL, "%02d [%04X] %s", i, AID, GetAIDDescription(AID));
};
@ -236,7 +242,8 @@ int MAD1DecodeAndPrint(uint8_t *sector, bool verbose, bool *haveMAD2) {
return 0;
};
int MAD2DecodeAndPrint(uint8_t *sector, bool verbose) {
int MAD2DecodeAndPrint(uint8_t *sector, bool verbose)
{
PrintAndLogEx(NORMAL, "16 MAD2");
int res = madCRCCheck(sector, true, 2);
@ -247,7 +254,7 @@ int MAD2DecodeAndPrint(uint8_t *sector, bool verbose) {
uint8_t InfoByte = sector[1] & 0x3f;
PrintAndLogEx(NORMAL, "MAD2 Card publisher sector: 0x%02x", InfoByte);
for(int i = 1; i < 8 + 8 + 7 + 1; i++) {
for (int i = 1; i < 8 + 8 + 7 + 1; i++) {
uint16_t AID = madGetAID(sector, 2, i);
PrintAndLogEx(NORMAL, "%02d [%04X] %s", i + 16, AID, GetAIDDescription(AID));
};

View file

@ -12,14 +12,16 @@
#include "mfkey.h"
// MIFARE
int compare_uint64(const void *a, const void *b) {
if (*(uint64_t*)b == *(uint64_t*)a) return 0;
if (*(uint64_t*)b < *(uint64_t*)a) return 1;
int compare_uint64(const void *a, const void *b)
{
if (*(uint64_t *)b == *(uint64_t *)a) return 0;
if (*(uint64_t *)b < * (uint64_t *)a) return 1;
return -1;
}
// create the intersection (common members) of two sorted lists. Lists are terminated by -1. Result will be in list1. Number of elements is returned.
uint32_t intersection(uint64_t *listA, uint64_t *listB) {
uint32_t intersection(uint64_t *listA, uint64_t *listB)
{
if (listA == NULL || listB == NULL)
return 0;
@ -27,12 +29,11 @@ uint32_t intersection(uint64_t *listA, uint64_t *listB) {
p1 = p3 = listA;
p2 = listB;
while ( *p1 != -1 && *p2 != -1 ) {
while (*p1 != -1 && *p2 != -1) {
if (compare_uint64(p1, p2) == 0) {
*p3++ = *p1++;
p2++;
}
else {
} else {
while (compare_uint64(p1, p2) < 0) ++p1;
while (compare_uint64(p1, p2) > 0) ++p2;
}
@ -43,7 +44,8 @@ uint32_t intersection(uint64_t *listA, uint64_t *listB) {
// Darkside attack (hf mf mifare)
// if successful it will return a list of keys, not just one.
uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys) {
uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t par_info, uint64_t ks_info, uint64_t **keys)
{
struct Crypto1State *states;
uint32_t i, pos;
uint8_t bt, ks3x[8], par[8][8];
@ -53,18 +55,18 @@ uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t
// Reset the last three significant bits of the reader nonce
nr &= 0xFFFFFF1F;
for ( pos = 0; pos < 8; pos++ ) {
ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0F;
bt = (par_info >> (pos*8)) & 0xFF;
for (pos = 0; pos < 8; pos++) {
ks3x[7 - pos] = (ks_info >> (pos * 8)) & 0x0F;
bt = (par_info >> (pos * 8)) & 0xFF;
par[7-pos][0] = (bt >> 0) & 1;
par[7-pos][1] = (bt >> 1) & 1;
par[7-pos][2] = (bt >> 2) & 1;
par[7-pos][3] = (bt >> 3) & 1;
par[7-pos][4] = (bt >> 4) & 1;
par[7-pos][5] = (bt >> 5) & 1;
par[7-pos][6] = (bt >> 6) & 1;
par[7-pos][7] = (bt >> 7) & 1;
par[7 - pos][0] = (bt >> 0) & 1;
par[7 - pos][1] = (bt >> 1) & 1;
par[7 - pos][2] = (bt >> 2) & 1;
par[7 - pos][3] = (bt >> 3) & 1;
par[7 - pos][4] = (bt >> 4) & 1;
par[7 - pos][5] = (bt >> 5) & 1;
par[7 - pos][6] = (bt >> 6) & 1;
par[7 - pos][7] = (bt >> 7) & 1;
}
states = lfsr_common_prefix(nr, ar, ks3x, par, (par_info == 0));
@ -74,11 +76,11 @@ uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t
return 0;
}
keylist = (uint64_t*)states;
keylist = (uint64_t *)states;
for (i = 0; keylist[i]; i++) {
lfsr_rollback_word(states+i, uid ^ nt, 0);
crypto1_get_lfsr(states+i, &key_recovered);
lfsr_rollback_word(states + i, uid ^ nt, 0);
crypto1_get_lfsr(states + i, &key_recovered);
keylist[i] = key_recovered;
}
keylist[i] = -1;
@ -88,8 +90,9 @@ uint32_t nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint32_t ar, uint64_t
}
// recover key from 2 different reader responses on same tag challenge
bool mfkey32(nonces_t data, uint64_t *outputkey) {
struct Crypto1State *s,*t;
bool mfkey32(nonces_t data, uint64_t *outputkey)
{
struct Crypto1State *s, *t;
uint64_t outkey = 0;
uint64_t key = 0; // recovered key
bool isSuccess = false;
@ -99,7 +102,7 @@ bool mfkey32(nonces_t data, uint64_t *outputkey) {
uint32_t p641 = prng_successor(data.nonce2, 64);
s = lfsr_recovery32(data.ar ^ p640, 0);
for(t = s; t->odd | t->even; ++t) {
for (t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, data.nr, 1);
lfsr_rollback_word(t, data.cuid ^ data.nonce, 0);
@ -113,14 +116,15 @@ bool mfkey32(nonces_t data, uint64_t *outputkey) {
}
}
isSuccess = (counter == 1);
*outputkey = ( isSuccess ) ? outkey : 0;
*outputkey = (isSuccess) ? outkey : 0;
crypto1_destroy(s);
return isSuccess;
}
// recover key from 2 reader responses on 2 different tag challenges
// skip "several found keys". Only return true if ONE key is found
bool mfkey32_moebius(nonces_t data, uint64_t *outputkey) {
bool mfkey32_moebius(nonces_t data, uint64_t *outputkey)
{
struct Crypto1State *s, *t;
uint64_t outkey = 0;
uint64_t key = 0; // recovered key
@ -131,7 +135,7 @@ bool mfkey32_moebius(nonces_t data, uint64_t *outputkey) {
s = lfsr_recovery32(data.ar ^ p640, 0);
for(t = s; t->odd | t->even; ++t) {
for (t = s; t->odd | t->even; ++t) {
lfsr_rollback_word(t, 0, 0);
lfsr_rollback_word(t, data.nr, 1);
lfsr_rollback_word(t, data.cuid ^ data.nonce, 0);
@ -146,13 +150,14 @@ bool mfkey32_moebius(nonces_t data, uint64_t *outputkey) {
}
}
isSuccess = (counter == 1);
*outputkey = ( isSuccess ) ? outkey : 0;
*outputkey = (isSuccess) ? outkey : 0;
crypto1_destroy(s);
return isSuccess;
}
// recover key from reader response and tag response of one authentication sequence
int mfkey64(nonces_t data, uint64_t *outputkey){
int mfkey64(nonces_t data, uint64_t *outputkey)
{
uint64_t key = 0; // recovered key
uint32_t ks2; // keystream used to encrypt reader response
uint32_t ks3; // keystream used to encrypt tag response

View file

@ -18,7 +18,8 @@
#include "crypto/libpcrypto.h"
static bool VerboseMode = false;
void mfpSetVerboseMode(bool verbose) {
void mfpSetVerboseMode(bool verbose)
{
VerboseMode = verbose;
}
@ -42,8 +43,9 @@ static const PlusErrorsElm PlusErrors[] = {
};
int PlusErrorsLen = sizeof(PlusErrors) / sizeof(PlusErrorsElm);
const char * mfpGetErrorDescription(uint8_t errorCode) {
for(int i = 0; i < PlusErrorsLen; i++)
const char *mfpGetErrorDescription(uint8_t errorCode)
{
for (int i = 0; i < PlusErrorsLen; i++)
if (errorCode == PlusErrors[i].Code)
return PlusErrors[i].Description;
@ -72,7 +74,8 @@ AccessConditions_t MFAccessConditionsTrailer[] = {
{0x07, "rdCbyAB"}
};
char *mfGetAccessConditionsDesc(uint8_t blockn, uint8_t *data) {
char *mfGetAccessConditionsDesc(uint8_t blockn, uint8_t *data)
{
static char StaticNone[] = "none";
uint8_t data1 = ((data[1] >> 4) & 0x0f) >> blockn;
@ -96,7 +99,8 @@ char *mfGetAccessConditionsDesc(uint8_t blockn, uint8_t *data) {
return StaticNone;
};
int CalculateEncIVCommand(mf4Session *session, uint8_t *iv, bool verbose) {
int CalculateEncIVCommand(mf4Session *session, uint8_t *iv, bool verbose)
{
memcpy(&iv[0], session->TI, 4);
memcpy(&iv[4], &session->R_Ctr, 2);
memcpy(&iv[6], &session->W_Ctr, 2);
@ -108,7 +112,8 @@ int CalculateEncIVCommand(mf4Session *session, uint8_t *iv, bool verbose) {
return 0;
}
int CalculateEncIVResponse(mf4Session *session, uint8_t *iv, bool verbose) {
int CalculateEncIVResponse(mf4Session *session, uint8_t *iv, bool verbose)
{
memcpy(&iv[0], &session->R_Ctr, 2);
memcpy(&iv[2], &session->W_Ctr, 2);
memcpy(&iv[4], &session->R_Ctr, 2);
@ -121,46 +126,47 @@ int CalculateEncIVResponse(mf4Session *session, uint8_t *iv, bool verbose) {
}
int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t blockCount, uint8_t *data, int datalen, uint8_t *mac, bool verbose) {
int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t blockCount, uint8_t *data, int datalen, uint8_t *mac, bool verbose)
{
if (!session || !session->Authenticated || !mac || !data || !datalen || datalen < 1)
return 1;
memset(mac, 0x00, 8);
uint16_t ctr = session->R_Ctr;
switch(mtype) {
case mtypWriteCmd:
case mtypWriteResp:
ctr = session->W_Ctr;
break;
case mtypReadCmd:
case mtypReadResp:
break;
switch (mtype) {
case mtypWriteCmd:
case mtypWriteResp:
ctr = session->W_Ctr;
break;
case mtypReadCmd:
case mtypReadResp:
break;
}
uint8_t macdata[2049] = {data[0], (ctr & 0xFF), (ctr >> 8), 0};
int macdatalen = datalen;
memcpy(&macdata[3], session->TI, 4);
switch(mtype) {
case mtypReadCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypReadResp:
macdata[7] = blockNum;
macdata[8] = 0;
macdata[9] = blockCount;
memcpy(&macdata[10], &data[1], datalen - 1);
macdatalen = datalen + 9;
break;
case mtypWriteCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypWriteResp:
macdatalen = 1 + 6;
break;
switch (mtype) {
case mtypReadCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypReadResp:
macdata[7] = blockNum;
macdata[8] = 0;
macdata[9] = blockCount;
memcpy(&macdata[10], &data[1], datalen - 1);
macdatalen = datalen + 9;
break;
case mtypWriteCmd:
memcpy(&macdata[7], &data[1], datalen - 1);
macdatalen = datalen + 6;
break;
case mtypWriteResp:
macdatalen = 1 + 6;
break;
}
if (verbose)
@ -169,7 +175,8 @@ int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t
return aes_cmac8(NULL, session->Kmac, macdata, mac, macdatalen);
}
int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateField, bool leaveSignalON, bool verbose) {
int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateField, bool leaveSignalON, bool verbose)
{
uint8_t data[257] = {0};
int datalen = 0;
@ -260,7 +267,7 @@ int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateF
uint8_t kenc[16] = {0};
memcpy(&kenc[0], &RndA[11], 5);
memcpy(&kenc[5], &RndB[11], 5);
for(int i = 0; i < 5; i++)
for (int i = 0; i < 5; i++)
kenc[10 + i] = RndA[4 + i] ^ RndB[4 + i];
kenc[15] = 0x11;
@ -272,7 +279,7 @@ int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateF
uint8_t kmac[16] = {0};
memcpy(&kmac[0], &RndA[7], 5);
memcpy(&kmac[5], &RndB[7], 5);
for(int i = 0; i < 5; i++)
for (int i = 0; i < 5; i++)
kmac[10 + i] = RndA[0 + i] ^ RndB[0 + i];
kmac[15] = 0x22;
@ -308,69 +315,75 @@ int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateF
return 0;
}
int intExchangeRAW14aPlus(uint8_t *datain, int datainlen, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
if(VerboseMode)
int intExchangeRAW14aPlus(uint8_t *datain, int datainlen, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen)
{
if (VerboseMode)
PrintAndLogEx(INFO, ">>> %s", sprint_hex(datain, datainlen));
int res = ExchangeRAW14a(datain, datainlen, activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if(VerboseMode)
if (VerboseMode)
PrintAndLogEx(INFO, "<<< %s", sprint_hex(dataout, *dataoutlen));
return res;
}
int MFPWritePerso(uint8_t *keyNum, uint8_t *key, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
int MFPWritePerso(uint8_t *keyNum, uint8_t *key, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen)
{
uint8_t rcmd[3 + 16] = {0xa8, keyNum[1], keyNum[0], 0x00};
memmove(&rcmd[3], key, 16);
return intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
}
int MFPCommitPerso(bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen) {
int MFPCommitPerso(bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen)
{
uint8_t rcmd[1] = {0xaa};
return intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
}
int MFPReadBlock(mf4Session *session, bool plain, uint8_t blockNum, uint8_t blockCount, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac) {
uint8_t rcmd[4 + 8] = {(plain?(0x37):(0x33)), blockNum, 0x00, blockCount};
int MFPReadBlock(mf4Session *session, bool plain, uint8_t blockNum, uint8_t blockCount, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac)
{
uint8_t rcmd[4 + 8] = {(plain ? (0x37) : (0x33)), blockNum, 0x00, blockCount};
if (!plain && session)
CalculateMAC(session, mtypReadCmd, blockNum, blockCount, rcmd, 4, &rcmd[4], VerboseMode);
int res = intExchangeRAW14aPlus(rcmd, plain?4:sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if(res)
int res = intExchangeRAW14aPlus(rcmd, plain ? 4 : sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if (res)
return res;
if (session)
session->R_Ctr++;
if(session && mac && *dataoutlen > 11)
if (session && mac && *dataoutlen > 11)
CalculateMAC(session, mtypReadResp, blockNum, blockCount, dataout, *dataoutlen - 8 - 2, mac, VerboseMode);
return 0;
}
int MFPWriteBlock(mf4Session *session, uint8_t blockNum, uint8_t *data, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac) {
int MFPWriteBlock(mf4Session *session, uint8_t blockNum, uint8_t *data, bool activateField, bool leaveSignalON, uint8_t *dataout, int maxdataoutlen, int *dataoutlen, uint8_t *mac)
{
uint8_t rcmd[1 + 2 + 16 + 8] = {0xA3, blockNum, 0x00};
memmove(&rcmd[3], data, 16);
if (session)
CalculateMAC(session, mtypWriteCmd, blockNum, 1, rcmd, 19, &rcmd[19], VerboseMode);
int res = intExchangeRAW14aPlus(rcmd, sizeof(rcmd), activateField, leaveSignalON, dataout, maxdataoutlen, dataoutlen);
if(res)
if (res)
return res;
if (session)
session->W_Ctr++;
if(session && mac && *dataoutlen > 3)
if (session && mac && *dataoutlen > 3)
CalculateMAC(session, mtypWriteResp, blockNum, 1, dataout, *dataoutlen, mac, VerboseMode);
return 0;
}
int mfpReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *dataout, bool verbose){
int mfpReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *dataout, bool verbose)
{
uint8_t keyn[2] = {0};
bool plain = false;
@ -391,7 +404,7 @@ int mfpReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data
int datalen = 0;
uint8_t mac[8] = {0};
uint8_t firstBlockNo = mfFirstBlockOfSector(sectorNo);
for(int n = firstBlockNo; n < firstBlockNo + mfNumBlocksPerSector(sectorNo); n++) {
for (int n = firstBlockNo; n < firstBlockNo + mfNumBlocksPerSector(sectorNo); n++) {
res = MFPReadBlock(&session, plain, n & 0xff, 1, false, true, data, sizeof(data), &datalen, mac);
if (res) {
PrintAndLogEx(ERR, "Sector %d read error: %d", sectorNo, res);
@ -423,7 +436,7 @@ int mfpReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data
if (!verbose)
return 7;
} else {
if(verbose)
if (verbose)
PrintAndLogEx(INFO, "MAC: %s", sprint_hex(&data[1 + 16], 8));
}
}
@ -434,33 +447,38 @@ int mfpReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data
// Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards),
// plus evtl. 8 sectors with 16 blocks each (4k cards)
uint8_t mfNumBlocksPerSector(uint8_t sectorNo) {
uint8_t mfNumBlocksPerSector(uint8_t sectorNo)
{
if (sectorNo < 32)
return 4;
else
return 16;
}
uint8_t mfFirstBlockOfSector(uint8_t sectorNo) {
uint8_t mfFirstBlockOfSector(uint8_t sectorNo)
{
if (sectorNo < 32)
return sectorNo * 4;
else
return 32 * 4 + (sectorNo - 32) * 16;
}
uint8_t mfSectorTrailer(uint8_t blockNo) {
if (blockNo < 32*4) {
uint8_t mfSectorTrailer(uint8_t blockNo)
{
if (blockNo < 32 * 4) {
return (blockNo | 0x03);
} else {
return (blockNo | 0x0f);
}
}
bool mfIsSectorTrailer(uint8_t blockNo) {
bool mfIsSectorTrailer(uint8_t blockNo)
{
return (blockNo == mfSectorTrailer(blockNo));
}
uint8_t mfSectorNum(uint8_t blockNo) {
uint8_t mfSectorNum(uint8_t blockNo)
{
if (blockNo < 32 * 4)
return blockNo / 4;
else

View file

@ -29,7 +29,7 @@ typedef struct {
uint8_t Kmac[16];
uint16_t R_Ctr;
uint16_t W_Ctr;
}mf4Session;
} mf4Session;
typedef enum {
mtypReadCmd,
@ -44,7 +44,7 @@ typedef struct {
} AccessConditions_t;
extern void mfpSetVerboseMode(bool verbose);
extern const char * mfpGetErrorDescription(uint8_t errorCode);
extern const char *mfpGetErrorDescription(uint8_t errorCode);
extern int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t blockCount, uint8_t *data, int datalen, uint8_t *mac, bool verbose);
extern int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateField, bool leaveSignalON, bool verbose);

View file

@ -15,8 +15,7 @@
#define MIFARE_DEFAULTKEYS_SIZE sizeof(g_mifare_default_keys) / sizeof(uint64_t)
static const uint64_t g_mifare_default_keys[] =
{
static const uint64_t g_mifare_default_keys[] = {
0xffffffffffff, // Default key (first key used by program if no user defined key)
0x000000000000, // Blank key
0xa0a1a2a3a4a5, // NFCForum MAD key

View file

@ -10,7 +10,8 @@
#include "mifarehost.h"
#include "cmdmain.h"
int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key)
{
uint32_t uid = 0;
uint32_t nt = 0, nr = 0, ar = 0;
uint64_t par_list = 0, ks_list = 0;
@ -32,15 +33,18 @@ int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
//flush queue
while (ukbhit()) {
int gc = getchar(); (void)gc;
int gc = getchar();
(void)gc;
return -5;
}
// wait cycle
while (true) {
printf("."); fflush(stdout);
printf(".");
fflush(stdout);
if (ukbhit()) {
int gc = getchar(); (void)gc;
int gc = getchar();
(void)gc;
return -5;
}
@ -75,7 +79,7 @@ int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
}
// only parity zero attack
if (par_list == 0 ) {
if (par_list == 0) {
qsort(keylist, keycount, sizeof(*keylist), compare_uint64);
keycount = intersection(last_keylist, keylist);
if (keycount == 0) {
@ -96,9 +100,9 @@ int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
int size = keycount - i > max_keys ? max_keys : keycount - i;
for (int j = 0; j < size; j++) {
if (par_list == 0) {
num_to_bytes(last_keylist[i*max_keys + j], 6, keyBlock+(j*6));
num_to_bytes(last_keylist[i * max_keys + j], 6, keyBlock + (j * 6));
} else {
num_to_bytes(keylist[i*max_keys + j], 6, keyBlock+(j*6));
num_to_bytes(keylist[i * max_keys + j], 6, keyBlock + (j * 6));
}
}
@ -120,7 +124,8 @@ int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) {
free(keylist);
return 0;
}
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){
int mfCheckKeys(uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t *keyBlock, uint64_t *key)
{
*key = -1;
UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType << 8)), clear_trace, keycnt}};
memcpy(c.d.asBytes, keyBlock, 6 * keycnt);
@ -137,22 +142,24 @@ int mfCheckKeys(uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keyc
// 0 == ok all keys found
// 1 ==
// 2 == Time-out, aborting
int mfCheckKeys_fast( uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk, uint8_t strategy,
uint32_t size, uint8_t *keyBlock, sector_t *e_sector, bool use_flashmemory) {
int mfCheckKeys_fast(uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk, uint8_t strategy,
uint32_t size, uint8_t *keyBlock, sector_t *e_sector, bool use_flashmemory)
{
uint64_t t2 = msclock();
uint32_t timeout = 0;
// send keychunk
UsbCommand c = {CMD_MIFARE_CHKKEYS_FAST, { (sectorsCnt | (firstChunk << 8) | (lastChunk << 12) ), ((use_flashmemory << 8) | strategy), size}};
UsbCommand c = {CMD_MIFARE_CHKKEYS_FAST, { (sectorsCnt | (firstChunk << 8) | (lastChunk << 12)), ((use_flashmemory << 8) | strategy), size}};
memcpy(c.d.asBytes, keyBlock, 6 * size);
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
while ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) {
while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) {
timeout++;
printf("."); fflush(stdout);
printf(".");
fflush(stdout);
// max timeout for one chunk of 85keys, 60*3sec = 180seconds
// s70 with 40*2 keys to check, 80*85 = 6800 auth.
// takes about 97s, still some margin before abort
@ -166,47 +173,47 @@ int mfCheckKeys_fast( uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk,
// time to convert the returned data.
uint8_t curr_keys = resp.arg[0];
PrintAndLogEx(SUCCESS, "\nChunk: %.1fs | found %u/%u keys (%u)", (float)(t2/1000.0), curr_keys, (sectorsCnt<<1), size);
PrintAndLogEx(SUCCESS, "\nChunk: %.1fs | found %u/%u keys (%u)", (float)(t2 / 1000.0), curr_keys, (sectorsCnt << 1), size);
// all keys?
if ( curr_keys == sectorsCnt*2 || lastChunk ) {
if (curr_keys == sectorsCnt * 2 || lastChunk) {
// success array. each byte is status of key
uint8_t arr[80];
uint64_t foo = 0;
uint16_t bar = 0;
foo = bytes_to_num(resp.d.asBytes+480, 8);
foo = bytes_to_num(resp.d.asBytes + 480, 8);
bar = (resp.d.asBytes[489] << 8 | resp.d.asBytes[488]);
for (uint8_t i = 0; i < 64; i++)
arr[i] = (foo >> i) & 0x1;
for (uint8_t i = 0; i < 16; i++)
arr[i+64] = (bar >> i) & 0x1;
arr[i + 64] = (bar >> i) & 0x1;
// initialize storage for found keys
icesector_t *tmp = calloc(sectorsCnt, sizeof(icesector_t));
if (tmp == NULL)
return 1;
memcpy(tmp, resp.d.asBytes, sectorsCnt * sizeof(icesector_t) );
memcpy(tmp, resp.d.asBytes, sectorsCnt * sizeof(icesector_t));
for ( int i = 0; i < sectorsCnt; i++) {
for (int i = 0; i < sectorsCnt; i++) {
// key A
if ( !e_sector[i].foundKey[0] ) {
e_sector[i].Key[0] = bytes_to_num( tmp[i].keyA, 6);
e_sector[i].foundKey[0] = arr[ (i*2) ];
if (!e_sector[i].foundKey[0]) {
e_sector[i].Key[0] = bytes_to_num(tmp[i].keyA, 6);
e_sector[i].foundKey[0] = arr[(i * 2) ];
}
// key B
if ( !e_sector[i].foundKey[1] ) {
e_sector[i].Key[1] = bytes_to_num( tmp[i].keyB, 6);
e_sector[i].foundKey[1] = arr[ (i*2) + 1 ];
if (!e_sector[i].foundKey[1]) {
e_sector[i].Key[1] = bytes_to_num(tmp[i].keyB, 6);
e_sector[i].foundKey[1] = arr[(i * 2) + 1 ];
}
}
free(tmp);
if ( curr_keys == sectorsCnt*2 )
if (curr_keys == sectorsCnt * 2)
return 0;
if ( lastChunk )
if (lastChunk)
return 1;
}
return 1;
@ -214,11 +221,12 @@ int mfCheckKeys_fast( uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk,
// PM3 imp of J-Run mf_key_brute (part 2)
// ref: https://github.com/J-Run/mf_key_brute
int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey){
int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey)
{
#define KEYS_IN_BLOCK 85
#define KEYBLOCK_SIZE 510
#define CANDIDATE_SIZE 0xFFFF * 6
#define KEYS_IN_BLOCK 85
#define KEYBLOCK_SIZE 510
#define CANDIDATE_SIZE 0xFFFF * 6
uint8_t found = false;
uint64_t key64 = 0;
uint8_t candidates[CANDIDATE_SIZE] = {0x00};
@ -238,7 +246,7 @@ int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultk
candidates[5 + j] = key[5];
}
uint32_t counter, i;
for ( i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter){
for (i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter) {
key64 = 0;
@ -253,16 +261,17 @@ int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultk
}
// progress
if ( counter % 20 == 0 )
PrintAndLogEx(SUCCESS, "tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK );
if (counter % 20 == 0)
PrintAndLogEx(SUCCESS, "tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK);
}
return found;
}
// Compare 16 Bits out of cryptostate
int Compare16Bits(const void * a, const void * b) {
if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0;
if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1;
int Compare16Bits(const void *a, const void *b)
{
if ((*(uint64_t *)b & 0x00ff000000ff0000) == (*(uint64_t *)a & 0x00ff000000ff0000)) return 0;
if ((*(uint64_t *)b & 0x00ff000000ff0000) > (*(uint64_t *)a & 0x00ff000000ff0000)) return 1;
return -1;
}
@ -273,12 +282,13 @@ void
__attribute__((force_align_arg_pointer))
#endif
#endif
*nested_worker_thread(void *arg) {
*nested_worker_thread(void *arg)
{
struct Crypto1State *p1;
StateList_t *statelist = arg;
statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid);
for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++) {};
for (p1 = statelist->head.slhead; * (uint64_t *)p1 != 0; p1++) {};
statelist->len = p1 - statelist->head.slhead;
statelist->tail.sltail = --p1;
@ -287,7 +297,8 @@ __attribute__((force_align_arg_pointer))
return statelist->head.slhead;
}
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate) {
int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *resultKey, bool calibrate)
{
uint16_t i;
uint32_t uid;
UsbCommand resp;
@ -309,7 +320,7 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
statelists[i].blockNo = resp.arg[2] & 0xff;
statelists[i].keyType = (resp.arg[2] >> 8) & 0xff;
statelists[i].uid = uid;
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4);
memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4);
}
@ -322,7 +333,7 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
// wait for threads to terminate:
for (i = 0; i < 2; i++)
pthread_join(thread_id[i], (void*)&statelists[i].head.slhead);
pthread_join(thread_id[i], (void *)&statelists[i].head.slhead);
// the first 16 Bits of the cryptostate already contain part of our key.
// Create the intersection of the two lists based on these 16 Bits and
@ -335,28 +346,27 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
struct Crypto1State savestate, *savep = &savestate;
savestate = *p1;
while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
while (Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) {
*p3 = *p1;
lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0);
p3++;
p1++;
}
savestate = *p2;
while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
while (Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) {
*p4 = *p2;
lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0);
p4++;
p2++;
}
}
else {
} else {
while (Compare16Bits(p1, p2) == -1) p1++;
while (Compare16Bits(p1, p2) == 1) p2++;
}
}
*(uint64_t*)p3 = -1;
*(uint64_t*)p4 = -1;
*(uint64_t *)p3 = -1;
*(uint64_t *)p4 = -1;
statelists[0].len = p3 - statelists[0].head.slhead;
statelists[1].len = p4 - statelists[1].head.slhead;
statelists[0].tail.sltail = --p3;
@ -371,13 +381,13 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
//statelists[0].tail.keytail = --p7;
uint32_t keycnt = statelists[0].len;
if ( keycnt == 0 ) goto out;
if (keycnt == 0) goto out;
memset(resultKey, 0, 6);
uint64_t key64 = -1;
// The list may still contain several key candidates. Test each of them with mfCheckKeys
uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt;
uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE / 6) ? (USB_CMD_DATA_SIZE / 6) : keycnt;
uint8_t keyBlock[USB_CMD_DATA_SIZE] = {0x00};
for (int i = 0; i < keycnt; i += max_keys) {
@ -395,19 +405,19 @@ int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo
num_to_bytes(key64, 6, resultKey);
PrintAndLogEx(SUCCESS, "target block:%3u key type: %c -- found valid key [%012" PRIx64 "]",
(uint16_t)resp.arg[2] & 0xff,
(resp.arg[2] >> 8) ? 'B' : 'A',
key64
);
(uint16_t)resp.arg[2] & 0xff,
(resp.arg[2] >> 8) ? 'B' : 'A',
key64
);
return -5;
}
}
out:
PrintAndLogEx(SUCCESS, "target block:%3u key type: %c",
(uint16_t)resp.arg[2] & 0xff,
(resp.arg[2] >> 8) ? 'B' : 'A'
);
(uint16_t)resp.arg[2] & 0xff,
(resp.arg[2] >> 8) ? 'B' : 'A'
);
free(statelists[0].head.slhead);
free(statelists[1].head.slhead);
@ -415,7 +425,8 @@ out:
}
// MIFARE
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data) {
int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data)
{
UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}};
memcpy(c.d.asBytes, key, 6);
@ -441,7 +452,8 @@ int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data)
}
// EMULATOR
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount)
{
UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}};
clearCommandBuffer();
SendCommand(&c);
@ -451,11 +463,13 @@ int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) {
return 0;
}
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) {
int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount)
{
return mfEmlSetMem_xt(data, blockNum, blocksCount, 16);
}
int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) {
int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth)
{
UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}};
memcpy(c.d.asBytes, data, blocksCount * blockBtWidth);
clearCommandBuffer();
@ -464,7 +478,8 @@ int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidt
}
// "MAGIC" CARD
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) {
int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard)
{
uint8_t params = MAGIC_SINGLE;
uint8_t block0[16];
@ -482,22 +497,23 @@ int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_
// Mifare UID BCC
block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3];
// mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed)
if ( sak != NULL )
if (sak != NULL)
block0[5] = sak[0];
if ( atqa != NULL ) {
if (atqa != NULL) {
block0[6] = atqa[1];
block0[7] = atqa[0];
}
PrintAndLogEx(SUCCESS, "new block 0: %s", sprint_hex(block0,16));
PrintAndLogEx(SUCCESS, "new block 0: %s", sprint_hex(block0, 16));
if ( wipecard ) params |= MAGIC_WIPE;
if ( oldUID == NULL) params |= MAGIC_UID;
if (wipecard) params |= MAGIC_WIPE;
if (oldUID == NULL) params |= MAGIC_UID;
return mfCSetBlock(0, block0, oldUID, params);
}
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params)
{
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}};
@ -518,7 +534,8 @@ int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) {
return 0;
}
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) {
int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params)
{
uint8_t isOK = 0;
UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}};
clearCommandBuffer();
@ -562,23 +579,27 @@ uint32_t nr_enc = 0; // encrypted reader challenge
uint32_t ar_enc = 0; // encrypted reader response
uint32_t at_enc = 0; // encrypted tag response
int isTraceCardEmpty(void) {
int isTraceCardEmpty(void)
{
return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0));
}
int isBlockEmpty(int blockN) {
int isBlockEmpty(int blockN)
{
for (int i = 0; i < 16; i++)
if (traceCard[blockN * 16 + i] != 0) return 0;
return 1;
}
int isBlockTrailer(int blockN) {
int isBlockTrailer(int blockN)
{
return ((blockN & 0x03) == 0x03);
}
int loadTraceCard(uint8_t *tuid, uint8_t uidlen) {
FILE * f;
int loadTraceCard(uint8_t *tuid, uint8_t uidlen)
{
FILE *f;
char buf[64] = {0x00};
uint8_t buf8[64] = {0x00};
int i, blockNum;
@ -597,7 +618,7 @@ int loadTraceCard(uint8_t *tuid, uint8_t uidlen) {
blockNum = 0;
while (!feof(f)){
while (!feof(f)) {
memset(buf, 0, sizeof(buf));
if (fgets(buf, sizeof(buf), f) == NULL) {
@ -608,7 +629,7 @@ int loadTraceCard(uint8_t *tuid, uint8_t uidlen) {
return 2;
}
if (strlen(buf) < 32){
if (strlen(buf) < 32) {
if (feof(f)) break;
PrintAndLogEx(FAILED, "File content error. Block data must include 32 HEX symbols");
if (f) {
@ -631,13 +652,14 @@ int loadTraceCard(uint8_t *tuid, uint8_t uidlen) {
return 0;
}
int saveTraceCard(void) {
int saveTraceCard(void)
{
if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0;
FILE * f;
FILE *f;
f = fopen(traceFileName, "w+");
if ( !f ) return 1;
if (!f) return 1;
// given 4096 tracecard size, these loop will only match a 1024, 1kb card memory
// 4086/16 == 256blocks.
@ -646,7 +668,7 @@ int saveTraceCard(void) {
fprintf(f, "%02X", *(traceCard + i * 16 + j));
// no extra line in the end
if ( i < 255 )
if (i < 255)
fprintf(f, "\n");
}
fflush(f);
@ -654,7 +676,8 @@ int saveTraceCard(void) {
return 0;
}
//
int mfTraceInit(uint8_t *tuid, uint8_t uidlen, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) {
int mfTraceInit(uint8_t *tuid, uint8_t uidlen, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile)
{
if (traceCrypto1)
crypto1_destroy(traceCrypto1);
@ -668,12 +691,13 @@ int mfTraceInit(uint8_t *tuid, uint8_t uidlen, uint8_t *atqa, uint8_t sak, bool
traceCard[5] = sak;
memcpy(&traceCard[6], atqa, 2);
traceCurBlock = 0;
cuid = bytes_to_num(tuid + (uidlen-4), 4);
cuid = bytes_to_num(tuid + (uidlen - 4), 4);
traceState = TRACE_IDLE;
return 0;
}
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){
void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted)
{
uint8_t bt = 0;
int i;
@ -690,7 +714,8 @@ void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool i
}
}
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile)
{
if (traceState == TRACE_ERROR)
return 1;
@ -712,161 +737,162 @@ int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) {
}
switch (traceState) {
case TRACE_IDLE:
// check packet crc16!
if ((len >= 4) && (!check_crc(CRC_14443_A, data, len))) {
PrintAndLogEx(NORMAL, "DEC| CRC ERROR!!!");
AddLogLine(logHexFileName, "DEC| ", "CRC ERROR!!!");
traceState = TRACE_ERROR; // do not decrypt the next commands
return 1;
}
// AUTHENTICATION
if ((len == 4) && ((data[0] == MIFARE_AUTH_KEYA) || (data[0] == MIFARE_AUTH_KEYB))) {
traceState = TRACE_AUTH1;
traceCurBlock = data[1];
traceCurKey = data[0] == 60 ? 1:0;
return 0;
}
// READ
if ((len == 4) && ((data[0] == ISO14443A_CMD_READBLOCK))) {
traceState = TRACE_READ_DATA;
traceCurBlock = data[1];
return 0;
}
// WRITE
if ((len == 4) && ((data[0] == ISO14443A_CMD_WRITEBLOCK))) {
traceState = TRACE_WRITE_OK;
traceCurBlock = data[1];
return 0;
}
// HALT
if ((len == 4) && ((data[0] == ISO14443A_CMD_HALT) && (data[1] == 0x00))) {
traceState = TRACE_ERROR; // do not decrypt the next commands
return 0;
}
return 0;
case TRACE_READ_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
if (isBlockTrailer(traceCurBlock)) {
memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
} else {
memcpy(traceCard + traceCurBlock * 16, data, 16);
case TRACE_IDLE:
// check packet crc16!
if ((len >= 4) && (!check_crc(CRC_14443_A, data, len))) {
PrintAndLogEx(NORMAL, "DEC| CRC ERROR!!!");
AddLogLine(logHexFileName, "DEC| ", "CRC ERROR!!!");
traceState = TRACE_ERROR; // do not decrypt the next commands
return 1;
}
// AUTHENTICATION
if ((len == 4) && ((data[0] == MIFARE_AUTH_KEYA) || (data[0] == MIFARE_AUTH_KEYB))) {
traceState = TRACE_AUTH1;
traceCurBlock = data[1];
traceCurKey = data[0] == 60 ? 1 : 0;
return 0;
}
// READ
if ((len == 4) && ((data[0] == ISO14443A_CMD_READBLOCK))) {
traceState = TRACE_READ_DATA;
traceCurBlock = data[1];
return 0;
}
// WRITE
if ((len == 4) && ((data[0] == ISO14443A_CMD_WRITEBLOCK))) {
traceState = TRACE_WRITE_OK;
traceCurBlock = data[1];
return 0;
}
// HALT
if ((len == 4) && ((data[0] == ISO14443A_CMD_HALT) && (data[1] == 0x00))) {
traceState = TRACE_ERROR; // do not decrypt the next commands
return 0;
}
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_OK:
if ((len == 1) && (data[0] == 0x0a)) {
traceState = TRACE_WRITE_DATA;
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
memcpy(traceCard + traceCurBlock * 16, data, 16);
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH1:
if (len == 4) {
traceState = TRACE_AUTH2;
nt = bytes_to_num(data, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH2:
if (len == 8) {
traceState = TRACE_AUTH_OK;
nr_enc = bytes_to_num(data, 4);
ar_enc = bytes_to_num(data + 4, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH_OK:
if (len == 4) {
traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4);
// mfkey64 recover key.
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, cuid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
PrintAndLogEx(SUCCESS, "found Key: [%012" PRIx64 "]", key);
case TRACE_READ_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
//if ( tryMfk64(cuid, nt, nr_enc, ar_enc, at_enc, &key) )
AddLogUint64(logHexFileName, "Found Key: ", key);
if (isBlockTrailer(traceCurBlock)) {
memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4);
} else {
memcpy(traceCard + traceCurBlock * 16, data, 16);
}
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_OK:
if ((len == 1) && (data[0] == 0x0a)) {
traceState = TRACE_WRITE_DATA;
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_WRITE_DATA:
if (len == 18) {
traceState = TRACE_IDLE;
memcpy(traceCard + traceCurBlock * 16, data, 16);
if (wantSaveToEmlFile) saveTraceCard();
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH1:
if (len == 4) {
traceState = TRACE_AUTH2;
nt = bytes_to_num(data, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH2:
if (len == 8) {
traceState = TRACE_AUTH_OK;
nr_enc = bytes_to_num(data, 4);
ar_enc = bytes_to_num(data + 4, 4);
return 0;
} else {
traceState = TRACE_ERROR;
return 1;
}
break;
case TRACE_AUTH_OK:
if (len == 4) {
traceState = TRACE_IDLE;
at_enc = bytes_to_num(data, 4);
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
if (isBlockEmpty((traceCurBlock & 0xFC) + 3))
memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
// mfkey64 recover key.
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
revstate = lfsr_recovery64(ks2, ks3);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, 0, 0);
lfsr_rollback_word(revstate, nr_enc, 1);
lfsr_rollback_word(revstate, cuid ^ nt, 0);
crypto1_get_lfsr(revstate, &key);
PrintAndLogEx(SUCCESS, "found Key: [%012" PRIx64 "]", key);
// keytype A/B
if (traceCurKey)
num_to_bytes(key, 6, traceCard + blockShift + 10);
else
num_to_bytes(key, 6, traceCard + blockShift);
//if ( tryMfk64(cuid, nt, nr_enc, ar_enc, at_enc, &key) )
AddLogUint64(logHexFileName, "Found Key: ", key);
if (wantSaveToEmlFile)
saveTraceCard();
int blockShift = ((traceCurBlock & 0xFC) + 3) * 16;
if (isBlockEmpty((traceCurBlock & 0xFC) + 3))
memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4);
if (traceCrypto1)
// keytype A/B
if (traceCurKey)
num_to_bytes(key, 6, traceCard + blockShift + 10);
else
num_to_bytes(key, 6, traceCard + blockShift);
if (wantSaveToEmlFile)
saveTraceCard();
if (traceCrypto1)
crypto1_destroy(traceCrypto1);
// set cryptosystem state
traceCrypto1 = lfsr_recovery64(ks2, ks3);
} else {
PrintAndLogEx(NORMAL, "[!] nested key recovery not implemented!\n");
at_enc = bytes_to_num(data, 4);
crypto1_destroy(traceCrypto1);
// set cryptosystem state
traceCrypto1 = lfsr_recovery64(ks2, ks3);
} else {
PrintAndLogEx(NORMAL, "[!] nested key recovery not implemented!\n");
at_enc = bytes_to_num(data, 4);
crypto1_destroy(traceCrypto1);
traceState = TRACE_ERROR;
}
break;
default:
traceState = TRACE_ERROR;
}
break;
default:
traceState = TRACE_ERROR;
return 1;
return 1;
}
return 0;
}
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){
PrintAndLogEx(SUCCESS, "\nencrypted data: [%s]", sprint_hex(data, len) );
int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len)
{
PrintAndLogEx(SUCCESS, "\nencrypted data: [%s]", sprint_hex(data, len));
struct Crypto1State *s;
ks2 = ar_enc ^ prng_successor(nt, 64);
ks3 = at_enc ^ prng_successor(nt, 96);
s = lfsr_recovery64(ks2, ks3);
mf_crypto1_decrypt(s, data, len, false);
PrintAndLogEx(SUCCESS, "decrypted data: [%s]", sprint_hex(data, len) );
PrintAndLogEx(SUCCESS, "decrypted data: [%s]", sprint_hex(data, len));
crypto1_destroy(s);
return 0;
}
@ -878,7 +904,8 @@ int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data,
* TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack)
* FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key)
*/
int detect_classic_prng(void){
int detect_classic_prng(void)
{
UsbCommand resp, respA;
uint8_t cmd[] = {MIFARE_AUTH_KEYA, 0x00};
@ -896,7 +923,7 @@ int detect_classic_prng(void){
}
// if select tag failed.
if ( resp.arg[0] == 0 ) {
if (resp.arg[0] == 0) {
PrintAndLogEx(WARNING, "error: selecting tag failed, can't detect prng\n");
return -2;
}
@ -922,14 +949,15 @@ returns:
2 = has not nack bug
3 = always leak nacks (clones)
*/
int detect_classic_nackbug(bool verbose){
int detect_classic_nackbug(bool verbose)
{
UsbCommand c = {CMD_MIFARE_NACK_DETECT, {0, 0, 0}};
clearCommandBuffer();
SendCommand(&c);
UsbCommand resp;
if ( verbose )
if (verbose)
PrintAndLogEx(SUCCESS, "press pm3-button on the proxmark3 device to abort both proxmark3 and client.\n");
// for nice animation
@ -945,16 +973,17 @@ int detect_classic_nackbug(bool verbose){
printf(".");
} else {
printf(
#if defined(__linux__) || (__APPLE__)
"\e[32m\e[s%c\e[u\e[0m", star[ (staridx++ % 4) ]
#else
"."
#endif
#if defined(__linux__) || (__APPLE__)
"\e[32m\e[s%c\e[u\e[0m", star[(staridx++ % 4) ]
#else
"."
#endif
);
}
fflush(stdout);
if (ukbhit()) {
int gc = getchar(); (void)gc;
int gc = getchar();
(void)gc;
return -1;
break;
}
@ -965,30 +994,40 @@ int detect_classic_nackbug(bool verbose){
uint32_t auths = resp.arg[2];
PrintAndLogEx(NORMAL, "");
if ( verbose ) {
if (verbose) {
PrintAndLogEx(SUCCESS, "num of auth requests : %u", auths);
PrintAndLogEx(SUCCESS, "num of received NACK : %u", nacks);
}
switch( ok ) {
case 99 : PrintAndLogEx(WARNING, "button pressed. Aborted."); return 0;
switch (ok) {
case 99 :
PrintAndLogEx(WARNING, "button pressed. Aborted.");
return 0;
case 96 :
case 98 : {
if (verbose)
PrintAndLogEx(FAILED, "card random number generator is not predictable.");
PrintAndLogEx(WARNING, "detection failed");
return 2;
}
if (verbose)
PrintAndLogEx(FAILED, "card random number generator is not predictable.");
PrintAndLogEx(WARNING, "detection failed");
return 2;
}
case 97 : {
if (verbose) {
PrintAndLogEx(FAILED, "card random number generator seems to be based on the well-known generating polynomial");
PrintAndLogEx(NORMAL, "[- ]with 16 effective bits only, but shows unexpected behavior, try again.");
}
return 2;
}
case 2 : PrintAndLogEx(SUCCESS, _GREEN_(always leak NACK detected)); return 3;
case 1 : PrintAndLogEx(SUCCESS, _GREEN_(NACK bug detected)); return 1;
case 0 : PrintAndLogEx(SUCCESS, "No NACK bug detected"); return 2;
default : PrintAndLogEx(WARNING, "errorcode from device [%i]", ok); return 0;
if (verbose) {
PrintAndLogEx(FAILED, "card random number generator seems to be based on the well-known generating polynomial");
PrintAndLogEx(NORMAL, "[- ]with 16 effective bits only, but shows unexpected behavior, try again.");
}
return 2;
}
case 2 :
PrintAndLogEx(SUCCESS, _GREEN_(always leak NACK detected));
return 3;
case 1 :
PrintAndLogEx(SUCCESS, _GREEN_(NACK bug detected));
return 1;
case 0 :
PrintAndLogEx(SUCCESS, "No NACK bug detected");
return 2;
default :
PrintAndLogEx(WARNING, "errorcode from device [%i]", ok);
return 0;
}
break;
}
@ -996,7 +1035,8 @@ int detect_classic_nackbug(bool verbose){
return 0;
}
/* try to see if card responses to "chinese magic backdoor" commands. */
void detect_classic_magic(void) {
void detect_classic_magic(void)
{
uint8_t isGeneration = 0;
UsbCommand resp;
@ -1006,10 +1046,16 @@ void detect_classic_magic(void) {
if (WaitForResponseTimeout(CMD_ACK, &resp, 1500))
isGeneration = resp.arg[0] & 0xff;
switch( isGeneration ){
case 1: PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 1a): " _GREEN_(YES)); break;
case 2: PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 1b): " _GREEN_(YES)); break;
switch (isGeneration) {
case 1:
PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 1a): " _GREEN_(YES));
break;
case 2:
PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 1b): " _GREEN_(YES));
break;
//case 4: PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 2): " _GREEN_(YES)); break;
default: PrintAndLogEx(INFO, "Answers to magic commands: " _YELLOW_(NO)); break;
default:
PrintAndLogEx(INFO, "Answers to magic commands: " _YELLOW_(NO));
break;
}
}

View file

@ -40,20 +40,20 @@
#define TRACE_ERROR 0xFF
typedef struct {
union {
struct Crypto1State *slhead;
uint64_t *keyhead;
} head;
union {
struct Crypto1State *sltail;
uint64_t *keytail;
} tail;
uint32_t len;
uint32_t uid;
uint32_t blockNo;
uint32_t keyType;
uint32_t nt;
uint32_t ks1;
union {
struct Crypto1State *slhead;
uint64_t *keyhead;
} head;
union {
struct Crypto1State *sltail;
uint64_t *keytail;
} tail;
uint32_t len;
uint32_t uid;
uint32_t blockNo;
uint32_t keyType;
uint32_t nt;
uint32_t ks1;
} StateList_t;
typedef struct {
@ -70,10 +70,10 @@ typedef struct {
extern char logHexFileName[FILE_PATH_SIZE];
extern int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key);
extern int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * ResultKeys, bool calibrate);
extern int mfCheckKeys (uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key);
extern int mfCheckKeys_fast( uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk,
uint8_t strategy, uint32_t size, uint8_t *keyBlock, sector_t *e_sector, bool use_flashmemory);
extern int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *ResultKeys, bool calibrate);
extern int mfCheckKeys(uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t *keyBlock, uint64_t *key);
extern int mfCheckKeys_fast(uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk,
uint8_t strategy, uint32_t size, uint8_t *keyBlock, sector_t *e_sector, bool use_flashmemory);
extern int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey);
extern int mfReadSector(uint8_t sectorNo, uint8_t keyType, uint8_t *key, uint8_t *data);

View file

@ -80,7 +80,8 @@ static const char *URI_s[] = {
"urn:nfc:" // 0x23
};
uint16_t ndefTLVGetLength(uint8_t *data, size_t *indx) {
uint16_t ndefTLVGetLength(uint8_t *data, size_t *indx)
{
uint16_t len = 0;
if (data[0] == 0xff) {
len = (data[1] << 8) + data[2];
@ -93,7 +94,8 @@ uint16_t ndefTLVGetLength(uint8_t *data, size_t *indx) {
return len;
}
int ndefDecodeHeader(uint8_t *data, size_t datalen, NDEFHeader_t *header) {
int ndefDecodeHeader(uint8_t *data, size_t datalen, NDEFHeader_t *header)
{
header->Type = NULL;
header->Payload = NULL;
header->ID = NULL;
@ -130,7 +132,8 @@ int ndefDecodeHeader(uint8_t *data, size_t datalen, NDEFHeader_t *header) {
return 0;
}
int ndefPrintHeader(NDEFHeader_t *header) {
int ndefPrintHeader(NDEFHeader_t *header)
{
PrintAndLogEx(INFO, "Header:");
PrintAndLogEx(NORMAL, "\tMessage Begin: %s", STRBOOL(header->MessageBegin));
@ -149,7 +152,8 @@ int ndefPrintHeader(NDEFHeader_t *header) {
return 0;
}
int ndefDecodeSig(uint8_t *sig, size_t siglen) {
int ndefDecodeSig(uint8_t *sig, size_t siglen)
{
size_t indx = 0;
PrintAndLogEx(NORMAL, "\tsignature version: 0x%02x", sig[0]);
if (sig[0] != 0x01) {
@ -174,8 +178,8 @@ int ndefDecodeSig(uint8_t *sig, size_t siglen) {
uint8_t sval[300] = {0};
int res = ecdsa_asn1_get_signature(&sig[indx], intsiglen, rval, sval);
if (!res) {
PrintAndLogEx(NORMAL ,"\t\tr: %s", sprint_hex(rval, 32));
PrintAndLogEx(NORMAL ,"\t\ts: %s", sprint_hex(sval, 32));
PrintAndLogEx(NORMAL, "\t\tr: %s", sprint_hex(rval, 32));
PrintAndLogEx(NORMAL, "\t\ts: %s", sprint_hex(sval, 32));
}
}
indx += intsiglen;
@ -215,38 +219,40 @@ int ndefDecodeSig(uint8_t *sig, size_t siglen) {
return 0;
};
int ndefDecodePayload(NDEFHeader_t *ndef) {
int ndefDecodePayload(NDEFHeader_t *ndef)
{
switch(ndef->TypeNameFormat) {
case tnfWellKnownRecord:
PrintAndLogEx(INFO, "Well Known Record");
PrintAndLogEx(NORMAL, "\ttype: %.*s", ndef->TypeLen, ndef->Type);
switch (ndef->TypeNameFormat) {
case tnfWellKnownRecord:
PrintAndLogEx(INFO, "Well Known Record");
PrintAndLogEx(NORMAL, "\ttype: %.*s", ndef->TypeLen, ndef->Type);
if (!strncmp((char *)ndef->Type, "T", ndef->TypeLen)) {
PrintAndLogEx(NORMAL, "\ttext : %.*s", ndef->PayloadLen, ndef->Payload);
}
if (!strncmp((char *)ndef->Type, "T", ndef->TypeLen)) {
PrintAndLogEx(NORMAL, "\ttext : %.*s", ndef->PayloadLen, ndef->Payload);
}
if (!strncmp((char *)ndef->Type, "U", ndef->TypeLen)) {
PrintAndLogEx(NORMAL, "\turi : %s%.*s", (ndef->Payload[0] <= 0x23 ? URI_s[ndef->Payload[0]] : "[err]"), ndef->PayloadLen, &ndef->Payload[1]);
}
if (!strncmp((char *)ndef->Type, "U", ndef->TypeLen)) {
PrintAndLogEx(NORMAL, "\turi : %s%.*s", (ndef->Payload[0] <= 0x23 ? URI_s[ndef->Payload[0]] : "[err]"), ndef->PayloadLen, &ndef->Payload[1]);
}
if (!strncmp((char *)ndef->Type, "Sig", ndef->TypeLen)) {
ndefDecodeSig(ndef->Payload, ndef->PayloadLen);
}
if (!strncmp((char *)ndef->Type, "Sig", ndef->TypeLen)) {
ndefDecodeSig(ndef->Payload, ndef->PayloadLen);
}
break;
case tnfAbsoluteURIRecord:
PrintAndLogEx(INFO, "Absolute URI Record");
PrintAndLogEx(NORMAL, "\ttype: %.*s", ndef->TypeLen, ndef->Type);
PrintAndLogEx(NORMAL, "\tpayload: %.*s", ndef->PayloadLen, ndef->Payload);
break;
default:
break;
break;
case tnfAbsoluteURIRecord:
PrintAndLogEx(INFO, "Absolute URI Record");
PrintAndLogEx(NORMAL, "\ttype: %.*s", ndef->TypeLen, ndef->Type);
PrintAndLogEx(NORMAL, "\tpayload: %.*s", ndef->PayloadLen, ndef->Payload);
break;
default:
break;
}
return 0;
}
int ndefRecordDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen) {
int ndefRecordDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen)
{
NDEFHeader_t NDEFHeader = {0};
int res = ndefDecodeHeader(ndefRecord, ndefRecordLen, &NDEFHeader);
if (res)
@ -272,7 +278,8 @@ int ndefRecordDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen) {
return 0;
}
int ndefRecordsDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen) {
int ndefRecordsDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen)
{
bool firstRec = true;
size_t len = 0;
@ -306,7 +313,8 @@ int ndefRecordsDecodeAndPrint(uint8_t *ndefRecord, size_t ndefRecordLen) {
return 0;
}
int NDEFDecodeAndPrint(uint8_t *ndef, size_t ndefLen, bool verbose) {
int NDEFDecodeAndPrint(uint8_t *ndef, size_t ndefLen, bool verbose)
{
size_t indx = 0;