make style

This commit is contained in:
Philippe Teuwen 2019-03-10 00:00:59 +01:00
commit 0373696662
483 changed files with 56514 additions and 52451 deletions

View file

@ -16,7 +16,7 @@
#include "legic_prng.h" /* legic PRNG impl */
#include "legic.h" /* legic_card_select_t struct */
static uint8_t* legic_mem; /* card memory, used for sim */
static uint8_t *legic_mem; /* card memory, used for sim */
static legic_card_select_t card;/* metadata of currently selected card */
static crc_t legic_crc;
@ -58,13 +58,14 @@ static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */
//-----------------------------------------------------------------------------
// Returns true if a pulse/pause is received within timeout
static inline bool wait_for(bool value, const uint32_t timeout) {
while ((bool)(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN) != value) {
if (GetCountSspClk() > timeout) {
return false;
static inline bool wait_for(bool value, const uint32_t timeout)
{
while ((bool)(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_DIN) != value) {
if (GetCountSspClk() > timeout) {
return false;
}
}
}
return true;
return true;
}
// Returns a demedulated bit or -1 on code violation
@ -76,30 +77,31 @@ static inline bool wait_for(bool value, const uint32_t timeout) {
// - A bit length >80.2us is a 1
// - A bit length <80.2us is a 0
// - A bit length >148.6us is a code violation
static inline int8_t rx_bit() {
// backup ts for threshold calculation
uint32_t bit_start = last_frame_end;
static inline int8_t rx_bit()
{
// backup ts for threshold calculation
uint32_t bit_start = last_frame_end;
// wait for pause to end
if (!wait_for(RWD_PULSE, bit_start + RWD_TIME_1*3/2)) {
return -1;
}
// wait for pause to end
if (!wait_for(RWD_PULSE, bit_start + RWD_TIME_1 * 3 / 2)) {
return -1;
}
// wait for next pause
if (!wait_for(RWD_PAUSE, bit_start + RWD_TIME_1*3/2)) {
return -1;
}
// wait for next pause
if (!wait_for(RWD_PAUSE, bit_start + RWD_TIME_1 * 3 / 2)) {
return -1;
}
// update bit and frame end
last_frame_end = GetCountSspClk();
// update bit and frame end
last_frame_end = GetCountSspClk();
// check for code violation (bit to short)
if (last_frame_end - bit_start < RWD_TIME_PAUSE) {
return -1;
}
// check for code violation (bit to short)
if (last_frame_end - bit_start < RWD_TIME_PAUSE) {
return -1;
}
// apply threshold (average of RWD_TIME_0 and )
return (last_frame_end - bit_start > (RWD_TIME_0 + RWD_TIME_1) / 2);
// apply threshold (average of RWD_TIME_0 and )
return (last_frame_end - bit_start > (RWD_TIME_0 + RWD_TIME_1) / 2);
}
//-----------------------------------------------------------------------------
@ -119,21 +121,22 @@ static inline int8_t rx_bit() {
// Note: The Subcarrier is not disabled during bits to prevent glitches. This is
// not mandatory but results in a cleaner signal. tx_frame will disable
// the subcarrier when the frame is done.
static inline void tx_bit(bool bit) {
LED_C_ON();
static inline void tx_bit(bool bit)
{
LED_C_ON();
if (bit) {
// modulate subcarrier
HIGH(GPIO_SSC_DOUT);
} else {
// do not modulate subcarrier
LOW(GPIO_SSC_DOUT);
}
if (bit) {
// modulate subcarrier
HIGH(GPIO_SSC_DOUT);
} else {
// do not modulate subcarrier
LOW(GPIO_SSC_DOUT);
}
// wait for tx timeslot to end
last_frame_end += TAG_BIT_PERIOD;
while (GetCountSspClk() < last_frame_end) { };
LED_C_OFF();
// wait for tx timeslot to end
last_frame_end += TAG_BIT_PERIOD;
while (GetCountSspClk() < last_frame_end) { };
LED_C_OFF();
}
//-----------------------------------------------------------------------------
@ -146,49 +149,51 @@ static inline void tx_bit(bool bit) {
// and depends only the command received (IV, ACK, READ or WRITE).
//-----------------------------------------------------------------------------
static void tx_frame(uint32_t frame, uint8_t len) {
// wait for next tx timeslot
last_frame_end += TAG_FRAME_WAIT;
legic_prng_forward(TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1);
while (GetCountSspClk() < last_frame_end) { };
static void tx_frame(uint32_t frame, uint8_t len)
{
// wait for next tx timeslot
last_frame_end += TAG_FRAME_WAIT;
legic_prng_forward(TAG_FRAME_WAIT / TAG_BIT_PERIOD - 1);
while (GetCountSspClk() < last_frame_end) { };
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// transmit frame, MSB first
for (uint8_t i = 0; i < len; ++i) {
bool bit = (frame >> i) & 0x01;
tx_bit(bit ^ legic_prng_get_bit());
legic_prng_forward(1);
};
// transmit frame, MSB first
for (uint8_t i = 0; i < len; ++i) {
bool bit = (frame >> i) & 0x01;
tx_bit(bit ^ legic_prng_get_bit());
legic_prng_forward(1);
};
// disable subcarrier
LOW(GPIO_SSC_DOUT);
// disable subcarrier
LOW(GPIO_SSC_DOUT);
// log
uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
// log
uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
}
static void tx_ack() {
// wait for ack timeslot
last_frame_end += TAG_ACK_WAIT;
legic_prng_forward(TAG_ACK_WAIT/TAG_BIT_PERIOD - 1);
while (GetCountSspClk() < last_frame_end) { };
static void tx_ack()
{
// wait for ack timeslot
last_frame_end += TAG_ACK_WAIT;
legic_prng_forward(TAG_ACK_WAIT / TAG_BIT_PERIOD - 1);
while (GetCountSspClk() < last_frame_end) { };
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// transmit ack (ack is not encrypted)
tx_bit(true);
legic_prng_forward(1);
// transmit ack (ack is not encrypted)
tx_bit(true);
legic_prng_forward(1);
// disable subcarrier
LOW(GPIO_SSC_DOUT);
// disable subcarrier
LOW(GPIO_SSC_DOUT);
// log
uint8_t cmdbytes[] = {1, 1};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
// log
uint8_t cmdbytes[] = {1, 1};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false);
}
// Returns a demedulated frame or -1 on code violation
@ -198,126 +203,129 @@ static void tx_ack() {
// - forward prng based on ts/TAG_BIT_PERIOD
// - receive the frame
// - detect end of frame (last pause)
static int32_t rx_frame(uint8_t *len) {
int32_t frame = 0;
static int32_t rx_frame(uint8_t *len)
{
int32_t frame = 0;
// add 2 SSP clock cycles (1 for tx and 1 for rx pipeline delay)
// those will be substracted at the end of the rx phase
last_frame_end -= 2;
// add 2 SSP clock cycles (1 for tx and 1 for rx pipeline delay)
// those will be substracted at the end of the rx phase
last_frame_end -= 2;
// wait for first pause (start of frame)
for (uint8_t i = 0; true; ++i) {
// increment prng every TAG_BIT_PERIOD
last_frame_end += TAG_BIT_PERIOD;
legic_prng_forward(1);
// wait for first pause (start of frame)
for (uint8_t i = 0; true; ++i) {
// increment prng every TAG_BIT_PERIOD
last_frame_end += TAG_BIT_PERIOD;
legic_prng_forward(1);
// if start of frame was received exit delay loop
if (wait_for(RWD_PAUSE, last_frame_end)) {
last_frame_end = GetCountSspClk();
break;
// if start of frame was received exit delay loop
if (wait_for(RWD_PAUSE, last_frame_end)) {
last_frame_end = GetCountSspClk();
break;
}
// check for code violation
if (i > RWD_CMD_TIMEOUT) {
return -1;
}
}
// check for code violation
if (i > RWD_CMD_TIMEOUT) {
return -1;
}
}
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// backup ts for trace log
uint32_t last_frame_start = last_frame_end;
// receive frame
for (*len = 0; true; ++(*len)) {
// receive next bit
LED_B_ON();
int8_t bit = rx_bit();
LED_B_OFF();
// receive frame
for (*len = 0; true; ++(*len)) {
// receive next bit
LED_B_ON();
int8_t bit = rx_bit();
LED_B_OFF();
// check for code violation and to short / long frame
if ((bit < 0) && ((*len < RWD_MIN_FRAME_LEN) || (*len > RWD_MAX_FRAME_LEN))) {
return -1;
}
// check for code violation and to short / long frame
if ((bit < 0) && ((*len < RWD_MIN_FRAME_LEN) || (*len > RWD_MAX_FRAME_LEN))) {
return -1;
// check for code violation caused by end of frame
if (bit < 0) {
break;
}
// append bit
frame |= (bit ^ legic_prng_get_bit()) << (*len);
legic_prng_forward(1);
}
// check for code violation caused by end of frame
if (bit < 0) {
break;
}
// rx_bit sets coordination timestamp to start of pause, append pause duration
// and substract 2 SSP clock cycles (1 for rx and 1 for tx pipeline delay) to
// obtain exact end of frame.
last_frame_end += RWD_TIME_PAUSE - 2;
// append bit
frame |= (bit ^ legic_prng_get_bit()) << (*len);
legic_prng_forward(1);
}
// rx_bit sets coordination timestamp to start of pause, append pause duration
// and substract 2 SSP clock cycles (1 for rx and 1 for tx pipeline delay) to
// obtain exact end of frame.
last_frame_end += RWD_TIME_PAUSE - 2;
// log
uint8_t cmdbytes[] = {*len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true);
return frame;
// log
uint8_t cmdbytes[] = {*len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)};
LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true);
return frame;
}
//-----------------------------------------------------------------------------
// Legic Simulator
//-----------------------------------------------------------------------------
static int32_t init_card(uint8_t cardtype, legic_card_select_t *p_card) {
p_card->tagtype = cardtype;
static int32_t init_card(uint8_t cardtype, legic_card_select_t *p_card)
{
p_card->tagtype = cardtype;
switch (p_card->tagtype) {
case 0:
p_card->cmdsize = 6;
p_card->addrsize = 5;
p_card->cardsize = 22;
break;
case 1:
p_card->cmdsize = 9;
p_card->addrsize = 8;
p_card->cardsize = 256;
break;
case 2:
p_card->cmdsize = 11;
p_card->addrsize = 10;
p_card->cardsize = 1024;
break;
default:
p_card->cmdsize = 0;
p_card->addrsize = 0;
p_card->cardsize = 0;
return 2;
}
return 0;
switch (p_card->tagtype) {
case 0:
p_card->cmdsize = 6;
p_card->addrsize = 5;
p_card->cardsize = 22;
break;
case 1:
p_card->cmdsize = 9;
p_card->addrsize = 8;
p_card->cardsize = 256;
break;
case 2:
p_card->cmdsize = 11;
p_card->addrsize = 10;
p_card->cardsize = 1024;
break;
default:
p_card->cmdsize = 0;
p_card->addrsize = 0;
p_card->cardsize = 0;
return 2;
}
return 0;
}
static void init_tag() {
// configure FPGA
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
static void init_tag()
{
// configure FPGA
FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR
| FPGA_HF_SIMULATOR_MODULATE_212K);
SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
// configure SSC with defaults
FpgaSetupSsc();
// configure SSC with defaults
FpgaSetupSsc();
// first pull output to low to prevent glitches then re-claim GPIO_SSC_DOUT
LOW(GPIO_SSC_DOUT);
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// first pull output to low to prevent glitches then re-claim GPIO_SSC_DOUT
LOW(GPIO_SSC_DOUT);
AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT;
AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT;
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
legic_mem = BigBuf_get_EM_addr();
// reserve a cardmem, meaning we can use the tracelog function in bigbuff easier.
legic_mem = BigBuf_get_EM_addr();
// start trace
clear_trace();
set_tracing(true);
// start trace
clear_trace();
set_tracing(true);
// init crc calculator
crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
// init crc calculator
crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0);
// start 212kHz timer (running from SSP Clock)
StartCountSspClk();
// start 212kHz timer (running from SSP Clock)
StartCountSspClk();
}
// Setup reader to card connection
@ -326,119 +334,122 @@ static void init_tag() {
// - Receive initialisation vector 7 bits
// - Transmit card type 6 bits
// - Receive Acknowledge 6 bits
static int32_t setup_phase(legic_card_select_t *p_card) {
uint8_t len = 0;
static int32_t setup_phase(legic_card_select_t *p_card)
{
uint8_t len = 0;
// init coordination timestamp
last_frame_end = GetCountSspClk();
// init coordination timestamp
last_frame_end = GetCountSspClk();
// reset prng
legic_prng_init(0);
// reset prng
legic_prng_init(0);
// wait for iv
int32_t iv = rx_frame(&len);
if ((len != 7) || (iv < 0)) {
return -1;
}
// configure prng
legic_prng_init(iv);
// reply with card type
switch (p_card->tagtype) {
case 0:
tx_frame(0x0D, 6);
break;
case 1:
tx_frame(0x1D, 6);
break;
case 2:
tx_frame(0x3D, 6);
break;
}
// wait for ack
int32_t ack = rx_frame(&len);
if ((len != 6) || (ack < 0)) {
return -1;
}
// validate data
switch (p_card->tagtype) {
case 0:
if(ack != 0x19) return -1;
break;
case 1:
if(ack != 0x39) return -1;
break;
case 2:
if(ack != 0x39) return -1;
break;
}
// During rx the prng is clocked using the variable reader period.
// Since rx_frame detects end of frame by detecting a code violation,
// the prng is off by one bit period after each rx phase. Hence, tx
// code advances the prng by (TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1).
// This is not possible for back to back rx, so this quirk reduces
// the gap by one period.
last_frame_end += TAG_BIT_PERIOD;
return 0;
}
static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) {
crc_clear(&legic_crc);
crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
return crc_finish(&legic_crc);
}
static int32_t connected_phase(legic_card_select_t *p_card) {
uint8_t len = 0;
// wait for command
int32_t cmd = rx_frame(&len);
if (cmd < 0) {
return -1;
}
// check if command is LEGIC_READ
if (len == p_card->cmdsize) {
// prepare data
uint8_t byte = legic_mem[cmd >> 1];
uint8_t crc = calc_crc4(cmd, p_card->cmdsize, byte);
// transmit data
tx_frame((crc << 8) | byte, 12);
return 0;
}
// check if command is LEGIC_WRITE
if (len == p_card->cmdsize + 8 + 4) {
// decode data
uint16_t mask = (1 << p_card->addrsize) - 1;
uint16_t addr = (cmd >> 1) & mask;
uint8_t byte = (cmd >> p_card->cmdsize) & 0xff;
uint8_t crc = (cmd >> (p_card->cmdsize + 8)) & 0xf;
// check received against calculated crc
uint8_t calc_crc = calc_crc4(addr << 1, p_card->cmdsize, byte);
if (calc_crc != crc) {
Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
return -1;
// wait for iv
int32_t iv = rx_frame(&len);
if ((len != 7) || (iv < 0)) {
return -1;
}
// store data
legic_mem[addr] = byte;
// configure prng
legic_prng_init(iv);
// transmit ack
tx_ack();
// reply with card type
switch (p_card->tagtype) {
case 0:
tx_frame(0x0D, 6);
break;
case 1:
tx_frame(0x1D, 6);
break;
case 2:
tx_frame(0x3D, 6);
break;
}
// wait for ack
int32_t ack = rx_frame(&len);
if ((len != 6) || (ack < 0)) {
return -1;
}
// validate data
switch (p_card->tagtype) {
case 0:
if (ack != 0x19) return -1;
break;
case 1:
if (ack != 0x39) return -1;
break;
case 2:
if (ack != 0x39) return -1;
break;
}
// During rx the prng is clocked using the variable reader period.
// Since rx_frame detects end of frame by detecting a code violation,
// the prng is off by one bit period after each rx phase. Hence, tx
// code advances the prng by (TAG_FRAME_WAIT/TAG_BIT_PERIOD - 1).
// This is not possible for back to back rx, so this quirk reduces
// the gap by one period.
last_frame_end += TAG_BIT_PERIOD;
return 0;
}
}
return -1;
static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value)
{
crc_clear(&legic_crc);
crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz);
return crc_finish(&legic_crc);
}
static int32_t connected_phase(legic_card_select_t *p_card)
{
uint8_t len = 0;
// wait for command
int32_t cmd = rx_frame(&len);
if (cmd < 0) {
return -1;
}
// check if command is LEGIC_READ
if (len == p_card->cmdsize) {
// prepare data
uint8_t byte = legic_mem[cmd >> 1];
uint8_t crc = calc_crc4(cmd, p_card->cmdsize, byte);
// transmit data
tx_frame((crc << 8) | byte, 12);
return 0;
}
// check if command is LEGIC_WRITE
if (len == p_card->cmdsize + 8 + 4) {
// decode data
uint16_t mask = (1 << p_card->addrsize) - 1;
uint16_t addr = (cmd >> 1) & mask;
uint8_t byte = (cmd >> p_card->cmdsize) & 0xff;
uint8_t crc = (cmd >> (p_card->cmdsize + 8)) & 0xf;
// check received against calculated crc
uint8_t calc_crc = calc_crc4(addr << 1, p_card->cmdsize, byte);
if (calc_crc != crc) {
Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc);
return -1;
}
// store data
legic_mem[addr] = byte;
// transmit ack
tx_ack();
return 0;
}
return -1;
}
//-----------------------------------------------------------------------------
@ -447,39 +458,40 @@ static int32_t connected_phase(legic_card_select_t *p_card) {
// Only this function is public / called from appmain.c
//-----------------------------------------------------------------------------
void LegicRfSimulate(uint8_t cardtype) {
// configure ARM and FPGA
init_tag();
void LegicRfSimulate(uint8_t cardtype)
{
// configure ARM and FPGA
init_tag();
// verify command line input
if (init_card(cardtype, &card) != 0) {
DbpString("Unknown tagtype.");
goto OUT;
}
LED_A_ON();
DbpString("Starting Legic emulator, press button to end");
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
// wait for carrier, restart after timeout
if (!wait_for(RWD_PULSE, GetCountSspClk() + TAG_BIT_PERIOD)) {
continue;
// verify command line input
if (init_card(cardtype, &card) != 0) {
DbpString("Unknown tagtype.");
goto OUT;
}
// wait for connection, restart on error
if (setup_phase(&card)) {
continue;
}
LED_A_ON();
DbpString("Starting Legic emulator, press button to end");
while (!BUTTON_PRESS() && !usb_poll_validate_length()) {
WDT_HIT();
// conection is established, process commands until one fails
while (!connected_phase(&card)) {
WDT_HIT();
// wait for carrier, restart after timeout
if (!wait_for(RWD_PULSE, GetCountSspClk() + TAG_BIT_PERIOD)) {
continue;
}
// wait for connection, restart on error
if (setup_phase(&card)) {
continue;
}
// conection is established, process commands until one fails
while (!connected_phase(&card)) {
WDT_HIT();
}
}
}
OUT:
DbpString("Stopped");
switch_off();
StopTicks();
DbpString("Stopped");
switch_off();
StopTicks();
}