adapt and fix memoryleaks in Em4x50

This commit is contained in:
iceman1001 2020-12-09 12:18:01 +01:00
commit 01b2c14616
4 changed files with 409 additions and 545 deletions

View file

@ -55,19 +55,17 @@
int gHigh = 190;
int gLow = 60;
// do nothing for <period> using timer0
static void wait_timer(uint32_t period) {
// do nothing for <period> using timer0
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < period);
}
// extract and check parities
// return result of parity check and extracted plain data
static bool extract_parities(uint64_t word, uint32_t *data) {
// extract and check parities
// return result of parity check and extracted plain data
uint8_t row_parities = 0x0, col_parities = 0x0;
uint8_t row_parities_calculated = 0x0, col_parities_calculated = 0x0;
@ -172,11 +170,10 @@ static void em4x50_setup_sim(void) {
AT91C_BASE_PIOA->PIO_ODR = GPIO_SSC_CLK;
}
// calculate signal properties (mean amplitudes) from measured data:
// 32 amplitudes (maximum values) -> mean amplitude value -> gHigh -> gLow
static bool get_signalproperties(void) {
// calculate signal properties (mean amplitudes) from measured data:
// 32 amplitudes (maximum values) -> mean amplitude value -> gHigh -> gLow
bool signal_found = false;
int no_periods = 32, pct = 75, noise = 140;
uint8_t sample_ref = 127;
@ -236,13 +233,12 @@ static bool get_signalproperties(void) {
return true;
}
// returns true if bit is undefined by evaluating a single sample within
// a bit period (given there is no LIW, ACK or NAK)
// This function is used for identifying a listen window in functions
// "find_double_listen_window" and "check_ack"
static bool invalid_bit(void) {
// returns true if bit is undefined by evaluating a single sample within
// a bit period (given there is no LIW, ACK or NAK)
// This function is used for identifying a listen window in functions
// "find_double_listen_window" and "check_ack"
// get sample at 3/4 of bit period
wait_timer(T0 * EM4X50_T_TAG_THREE_QUARTER_PERIOD);
@ -292,17 +288,13 @@ static uint32_t get_pulse_length(void) {
}
// check if pulse length <pl> corresponds to given length <length>
static bool check_pulse_length(uint32_t pl, int length) {
// check if pulse length <pl> corresponds to given length <length>
return ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) && (pl <= T0 * (length + EM4X50_TAG_TOLERANCE)));
return ((pl >= T0 * (length - EM4X50_TAG_TOLERANCE)) && (pl <= T0 * (length + EM4X50_TAG_TOLERANCE)));
}
// send single bit according to EM4x50 application note and datasheet
static void em4x50_reader_send_bit(int bit) {
// send single bit according to EM4x50 application note and datasheet
// reset clock for the next bit
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
@ -330,19 +322,15 @@ static void em4x50_reader_send_bit(int bit) {
}
}
// send byte (without parity)
static void em4x50_reader_send_byte(uint8_t byte) {
// send byte (without parity)
for (int i = 0; i < 8; i++)
for (int i = 0; i < 8; i++) {
em4x50_reader_send_bit((byte >> (7 - i)) & 1);
}
}
// send byte followed by its (equal) parity bit
static void em4x50_reader_send_byte_with_parity(uint8_t byte) {
// send byte followed by its (equal) parity bit
int parity = 0, bit = 0;
for (int i = 0; i < 8; i++) {
@ -354,11 +342,9 @@ static void em4x50_reader_send_byte_with_parity(uint8_t byte) {
em4x50_reader_send_bit(parity);
}
// send 32 bit word with parity bits according to EM4x50 datasheet
// word hast be sent in msb notation
static void em4x50_reader_send_word(const uint32_t word) {
// send 32 bit word with parity bits according to EM4x50 datasheet
// word hast be sent in msb notation
uint8_t bytes[4] = {0x0, 0x0, 0x0, 0x0};
for (int i = 0; i < 4; i++) {
@ -373,10 +359,8 @@ static void em4x50_reader_send_word(const uint32_t word) {
em4x50_reader_send_bit(0);
}
// find single listen window
static bool find_single_listen_window(void) {
// find single listen window
int cnt_pulses = 0;
LED_B_ON();
@ -398,18 +382,15 @@ static bool find_single_listen_window(void) {
}
LED_B_OFF();
return false;
}
// find two successive listen windows that indicate the beginning of
// data transmission
// double listen window to be detected within 1600 pulses -> worst case
// reason: first detectable double listen window after 34 words
// -> 34 words + 34 single listen windows -> about 1600 pulses
static int find_double_listen_window(bool bcommand) {
// find two successive listen windows that indicate the beginning of
// data transmission
// double listen window to be detected within 1600 pulses -> worst case
// reason: first detectable double listen window after 34 words
// -> 34 words + 34 single listen windows -> about 1600 pulses
int cnt_pulses = 0;
LED_B_ON();
@ -471,34 +452,29 @@ static int find_double_listen_window(bool bcommand) {
cnt_pulses++;
}
LED_B_OFF();
LED_B_OFF();
return PM3_EFAILED;
}
// function is used to check wether a tag on the proxmark is an
// EM4x50 tag or not -> speed up "lf search" process
static bool find_em4x50_tag(void) {
// function is used to check wether a tag on the proxmark is an
// EM4x50 tag or not -> speed up "lf search" process
return find_single_listen_window();
}
// To issue a command we have to find a listen window first.
// Because identification and synchronization at the same time is not
// possible when using pulse lengths a double listen window is used.
static int request_receive_mode(void) {
// To issue a command we have to find a listen window first.
// Because identification and synchronization at the same time is not
// possible when using pulse lengths a double listen window is used.
return find_double_listen_window(true);
}
// returns true if signal structue corresponds to ACK, anything else is
// counted as NAK (-> false)
// Only relevant for pasword writing function:
// If <bliw> is true then within the single listen window right after the
// ack signal a RM request has to be sent.
static bool check_ack(bool bliw) {
// returns true if signal structue corresponds to ACK, anything else is
// counted as NAK (-> false)
// Only relevant for pasword writing function:
// If <bliw> is true then within the single listen window right after the
// ack signal a RM request has to be sent.
AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG;
while (AT91C_BASE_TC0->TC_CV < T0 * 4 * EM4X50_T_TAG_FULL_PERIOD) {
@ -547,12 +523,10 @@ static bool check_ack(bool bliw) {
return false;
}
// decodes one word by evaluating pulse lengths and previous bit;
// word must have 45 bits in total:
// 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit
static int get_word_from_bitstream(uint32_t *data) {
// decodes one word by evaluating pulse lengths and previous bit;
// word must have 45 bits in total:
// 32 data bits + 4 row parity bits + 8 column parity bits + 1 stop bit
bool bitchange = false;
int cnt = 0;
uint32_t pl = 0;
@ -707,10 +681,10 @@ static bool em4x50_sim_send_byte_with_parity(uint8_t byte) {
for (int i = 0; i < 8; i++)
parity ^= (byte >> i) & 1;
if (!em4x50_sim_send_byte(byte))
if (em4x50_sim_send_byte(byte) == false)
return false;;
if (!em4x50_sim_send_bit(parity))
if (em4x50_sim_send_bit(parity) == false)
return false;
return true;
@ -724,9 +698,11 @@ bool em4x50_sim_send_word(uint32_t word) {
word = reflect32(word);
// 4 bytes each with even row parity bit
for (int i = 0; i < 4; i++)
if (!em4x50_sim_send_byte_with_parity((word >> ((3 - i) * 8)) & 0xFF))
for (int i = 0; i < 4; i++) {
if (em4x50_sim_send_byte_with_parity((word >> ((3 - i) * 8)) & 0xFF) == false) {
return false;
}
}
// column parity
for (int i = 0; i < 8; i++) {
@ -735,11 +711,11 @@ bool em4x50_sim_send_word(uint32_t word) {
cparity ^= (((word >> ((3 - j) * 8)) & 0xFF) >> (7 - i)) & 1;
}
}
if (!em4x50_sim_send_byte(cparity))
if (em4x50_sim_send_byte(cparity) == false)
return false;
// stop bit
if (!em4x50_sim_send_bit(0))
if (em4x50_sim_send_bit(0) == false)
return false;
return true;
@ -790,11 +766,9 @@ bool em4x50_sim_send_listen_window(void) {
return true;
}
// simple login to EM4x50,
// used in operations that require authentication
static bool login(uint32_t password) {
// simple login to EM4x50,
// used in operations that require authentication
if (request_receive_mode() == PM3_SUCCESS) {
// send login command
@ -817,10 +791,8 @@ static bool login(uint32_t password) {
return PM3_EFAILED;
}
// searching for password in given range
static bool brute(uint32_t start, uint32_t stop, uint32_t *pwd) {
// searching for password in given range
bool pwd_found = false;
int cnt = 0;
@ -868,42 +840,33 @@ static bool brute(uint32_t start, uint32_t stop, uint32_t *pwd) {
return pwd_found;
}
// login into EM4x50
void em4x50_login(uint32_t *password) {
// login into EM4x50
uint8_t status = PM3_EFAILED;
em4x50_setup_read();
// set gHigh and gLow
uint8_t status = PM3_EFAILED;
if (get_signalproperties() && find_em4x50_tag())
status = login(*password);
lf_finalize();
reply_ng(CMD_LF_EM4X50_LOGIN, status, 0, 0);
reply_ng(CMD_LF_EM4X50_LOGIN, status, NULL, 0);
}
// envoke password search
void em4x50_brute(em4x50_data_t *etd) {
// envoke password search
em4x50_setup_read();
bool bsuccess = false;
uint32_t pwd = 0x0;
em4x50_setup_read();
if (get_signalproperties() && find_em4x50_tag())
bsuccess = brute(etd->password1, etd->password2, &pwd);
lf_finalize();
reply_ng(CMD_LF_EM4X50_BRUTE, bsuccess, (uint8_t *)(&pwd), 32);
reply_ng(CMD_LF_EM4X50_BRUTE, bsuccess ? PM3_SUCCESS : PM3_EFAILED, (uint8_t *)(&pwd), sizeof(pwd));
}
// check passwords from dictionary content in flash memory
void em4x50_chk(uint8_t *filename) {
// check passwords from dictionary content in flash memory
int status = PM3_EFAILED;
uint32_t pwd = 0x0;
@ -951,13 +914,11 @@ void em4x50_chk(uint8_t *filename) {
#endif
lf_finalize();
reply_ng(CMD_LF_EM4X50_CHK, status, (uint8_t *)&pwd, 32);
reply_ng(CMD_LF_EM4X50_CHK, status, (uint8_t *)&pwd, sizeof(pwd));
}
// resets EM4x50 tag (used by write function)
static int reset(void) {
// resets EM4x50 tag (used by write function)
if (request_receive_mode() == PM3_SUCCESS) {
// send reset command
@ -974,11 +935,10 @@ static int reset(void) {
return PM3_EFAILED;
}
// reads data that tag transmits when exposed to reader field
// (standard read mode); number of read words is saved in <now>
static int standard_read(int *now, uint32_t *words) {
// reads data that tag transmits when exposed to reader field
// (standard read mode); number of read words is saved in <now>
int fwr = *now, res = PM3_EFAILED;
// start with the identification of two successive listening windows
@ -999,11 +959,10 @@ static int standard_read(int *now, uint32_t *words) {
return res;
}
// reads from "first word read" (fwr) to "last word read" (lwr)
// result is verified by "standard read mode"
static int selective_read(uint32_t addresses, uint32_t *words) {
// reads from "first word read" (fwr) to "last word read" (lwr)
// result is verified by "standard read mode"
int status = PM3_EFAILED;
uint8_t fwr = addresses & 0xFF; // first word read (first byte)
uint8_t lwr = (addresses >> 8) & 0xFF; // last word read (second byte)
@ -1033,10 +992,8 @@ static int selective_read(uint32_t addresses, uint32_t *words) {
return status;
}
// reads by using "selective read mode" -> bidirectional communication
void em4x50_read(em4x50_data_t *etd) {
// reads by using "selective read mode" -> bidirectional communication
bool blogin = true;
int status = PM3_EFAILED;
uint32_t words[EM4X50_NO_WORDS] = {0x0};
@ -1057,13 +1014,14 @@ void em4x50_read(em4x50_data_t *etd) {
LOW(GPIO_SSC_DOUT);
lf_finalize();
// iceman: this hardcoded 136 value....
reply_ng(CMD_LF_EM4X50_READ, status, (uint8_t *)words, 136);
}
// collects as much information as possible via selective read mode
void em4x50_info(em4x50_data_t *etd) {
// collects as much information as possible via selective read mode
bool blogin = true;
int status = PM3_EFAILED;
uint32_t addresses = 0x00002100; // read from fwr = 0 to lwr = 33 (0x21)
@ -1071,7 +1029,6 @@ void em4x50_info(em4x50_data_t *etd) {
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login with given password
@ -1083,19 +1040,19 @@ void em4x50_info(em4x50_data_t *etd) {
}
lf_finalize();
// iceman: this hardcoded 136 value....
reply_ng(CMD_LF_EM4X50_INFO, status, (uint8_t *)words, 136);
}
// reads data that tag transmits "voluntarily" -> standard read mode
void em4x50_reader(void) {
// reads data that tag transmits "voluntarily" -> standard read mode
int now = 0;
uint32_t words[EM4X50_NO_WORDS] = {0x0};
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag())
standard_read(&now, words);
@ -1104,9 +1061,8 @@ void em4x50_reader(void) {
reply_ng(CMD_LF_EM4X50_READER, now, (uint8_t *)words, 4 * now);
}
// writes <word> to specified <addresses>
static int write(uint32_t word, uint32_t addresses) {
// writes <word> to specified <addresses>
if (request_receive_mode() == PM3_SUCCESS) {
@ -1144,10 +1100,8 @@ static int write(uint32_t word, uint32_t addresses) {
return PM3_EFAILED;
}
// changes password from <password> to <new_password>
static int write_password(uint32_t password, uint32_t new_password) {
// changes password from <password> to <new_password>
if (request_receive_mode() == PM3_SUCCESS) {
// send write password command
@ -1187,18 +1141,15 @@ static int write_password(uint32_t password, uint32_t new_password) {
return PM3_EFAILED;
}
// write operation process for EM4x50 tag,
// single word is written to given address, verified by selective read operation
// wrong password -> return with PM3_EFAILED
void em4x50_write(em4x50_data_t *etd) {
// write operation process for EM4x50 tag,
// single word is written to given address, verified by selective read operation
// wrong password -> return with PM3_EFAILED
int status = PM3_EFAILED;
uint32_t words[EM4X50_NO_WORDS] = {0x0};
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// if password is given try to login first
@ -1245,15 +1196,12 @@ void em4x50_write(em4x50_data_t *etd) {
reply_ng(CMD_LF_EM4X50_WRITE, status, (uint8_t *)words, 136);
}
// simple change of password
void em4x50_writepwd(em4x50_data_t *etd) {
// simple change of password
int status = PM3_EFAILED;
em4x50_setup_read();
// set gHigh and gLow
if (get_signalproperties() && find_em4x50_tag()) {
// login and change password
@ -1268,14 +1216,12 @@ void em4x50_writepwd(em4x50_data_t *etd) {
}
lf_finalize();
reply_ng(CMD_LF_EM4X50_WRITEPWD, status, 0, 0);
reply_ng(CMD_LF_EM4X50_WRITEPWD, status, NULL, 0);
}
// simulate uploaded data in emulator memory
// (currently simulation allows only a one-way communication)
void em4x50_sim(uint8_t *filename) {
// simulate uploaded data in emulator memory
// (currently simulation allows only a one-way communication)
int status = PM3_SUCCESS;
uint8_t *em4x50_mem = BigBuf_get_EM_addr();
uint32_t words[EM4X50_NO_WORDS] = {0x0};
@ -1313,7 +1259,8 @@ void em4x50_sim(uint8_t *filename) {
em4x50_setup_sim();
while (!BUTTON_PRESS()) {
// iceman, will need a usb cmd check to break as well
while (BUTTON_PRESS() == false) {
WDT_HIT();
em4x50_sim_send_listen_window();
@ -1333,5 +1280,5 @@ void em4x50_sim(uint8_t *filename) {
BigBuf_free();
lf_finalize();
reply_ng(CMD_LF_EM4X50_SIM, status, 0, 0);
reply_ng(CMD_LF_EM4X50_SIM, status, NULL, 0);
}