DeepFaceLive/xlib/image/ImageProcessor.py

595 lines
18 KiB
Python

from enum import IntEnum
from typing import Tuple, Union
import cv2
import numexpr as ne
import numpy as np
class ImageProcessor:
"""
Generic image processor for numpy or cupy images
arguments
img np.ndarray|
cp.ndarray
HW (2 ndim)
HWC (3 ndim)
NHWC (4 ndim)
for cupy you should set device before using ImageProcessor
"""
def __init__(self, img : Union[np.ndarray,'cp.ndarray'], copy=False):
if img.__class__ == np.ndarray:
self._xp = np
import scipy
import scipy.ndimage
self._sp = scipy
if copy:
img = img.copy()
else:
import cupy as cp # BUG eats 1.8Gb paging file per process, so import on demand
import cupyx.scipy.ndimage
self._xp = cp
self._sp = cupyx.scipy
ndim = img.ndim
if ndim not in [2,3,4]:
raise ValueError(f'img.ndim must be 2,3,4, not {ndim}.')
# Make internal image as NHWC
if ndim == 2:
N, (H,W), C = 0, img.shape, 0
img = img[None,:,:,None]
elif ndim == 3:
N, (H,W,C) = 0, img.shape
img = img[None,...]
else:
N,H,W,C = img.shape
self._img : np.ndarray = img
def copy(self) -> 'ImageProcessor':
"""
"""
ip = ImageProcessor.__new__(ImageProcessor)
ip._img = self._img
ip._xp = self._xp
ip._sp = self._sp
return ip
def get_dims(self) -> Tuple[int,int,int,int]:
"""
returns dimensions of current working image
returns N,H,W,C (ints) , each >= 1
"""
return self._img.shape
def get_dtype(self):
return self._img.dtype
def adjust_gamma(self, red : float, green : float, blue : float) -> 'ImageProcessor':
dtype = self.get_dtype()
self.to_ufloat32()
xp, img = self._xp , self._img,
xp.power(img, xp.array([1.0 / blue, 1.0 / green, 1.0 / red], xp.float32), out=img)
xp.clip(img, 0, 1.0, out=img)
self._img = img
self.to_dtype(dtype)
return self
def apply(self, func) -> 'ImageProcessor':
"""
apply your own function on internal image
image has NHWC format. Do not change format, but dims can be changed.
func callable (img) -> img
example:
.apply( lambda img: img-[102,127,63] )
"""
img = self._img
dtype = img.dtype
new_img = func(self._img).astype(dtype)
if new_img.ndim != 4:
raise Exception('func used in ImageProcessor.apply changed format of image')
self._img = new_img
return self
def fit_in (self, TW = None, TH = None, pad_to_target : bool = False, allow_upscale : bool = False, interpolation : 'ImageProcessor.Interpolation' = None) -> float:
"""
fit image in w,h keeping aspect ratio
TW,TH int/None target width,height
pad_to_target bool pad remain area with zeros
allow_upscale bool if image smaller than TW,TH it will be upscaled
interpolation ImageProcessor.Interpolation. value
returns scale float value
"""
#if interpolation is None:
# interpolation = ImageProcessor.Interpolation.LINEAR
xp, sp = self._xp, self._sp
img = self._img
N,H,W,C = img.shape
if TW is not None and TH is None:
scale = TW / W
elif TW is None and TH is not None:
scale = TH / H
elif TW is not None and TH is not None:
SW = W / TW
SH = H / TH
scale = 1.0
if SW > 1.0 or SH > 1.0 or (SW < 1.0 and SH < 1.0):
scale /= max(SW, SH)
else:
raise ValueError('TW or TH should be specified')
if not allow_upscale and scale > 1.0:
scale = 1.0
if scale != 1.0:
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
if self._xp == np:
img = cv2.resize (img, ( int(W*scale), int(H*scale) ), interpolation=ImageProcessor.Interpolation.LINEAR)
else:
img = sp.ndimage.zoom(img, (scale, scale, 1.0), order=1)
H,W,_ = img.shape
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
if pad_to_target:
w_pad = (TW-W) if TW is not None else 0
h_pad = (TH-H) if TH is not None else 0
if w_pad != 0 or h_pad != 0:
img = xp.pad(img, ( (0,0), (0,h_pad), (0,w_pad), (0,0) ))
self._img = img
return scale
def clip(self, min, max) -> 'ImageProcessor':
xp = self._xp
xp.clip(self._img, min, max, out=self._img)
return self
def clip2(self, low_check, low_val, high_check, high_val) -> 'ImageProcessor':
img = self._img
l, h = img < low_check, img > high_check
img[l] = low_val
img[h] = high_val
return self
def degrade_resize(self, power : float, interpolation : 'ImageProcessor.Interpolation' = None) -> 'ImageProcessor':
"""
power float 0 .. 1.0
"""
power = min(1, max(0, power))
if power == 0:
return self
if interpolation is None:
interpolation = ImageProcessor.Interpolation.LINEAR
xp, sp, img = self._xp, self._sp, self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
if xp == np:
W_lr = max(4, int(W*(1.0-power)))
H_lr = max(4, int(H*(1.0-power)))
img = cv2.resize (img, (W_lr,H_lr), interpolation=_cv_inter[interpolation])
img = cv2.resize (img, (W,H) , interpolation=_cv_inter[interpolation])
else:
W_lr = max(4, round(W*(1.0-power)))
H_lr = max(4, round(H*(1.0-power)))
img = sp.ndimage.zoom(img, (H_lr/H, W_lr/W, 1), order=_scipy_order[interpolation])
img = sp.ndimage.zoom(img, (H/img.shape[0], W/img.shape[1], 1), order=_scipy_order[interpolation])
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
self._img = img
return self
def median_blur(self, size : int, power : float) -> 'ImageProcessor':
"""
size int median kernel size
power float 0 .. 1.0
"""
power = min(1, max(0, power))
if power == 0:
return self
dtype = self.get_dtype()
self.to_ufloat32()
xp, sp, img = self._xp, self._sp, self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
if xp == np:
img_blur = cv2.medianBlur(img, size)
img = ne.evaluate('img*(1.0-power) + img_blur*power')
else:
img_blur = sp.ndimage.median_filter(img, size=(size,size,1) )
img = img*(1.0-power) + img_blur*power
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
self._img = img
self.to_dtype(dtype)
return self
def erode_blur(self, erode : int, blur : int, fade_to_border : bool = False) -> 'ImageProcessor':
"""
apply erode and blur to the image
erode int != 0
blur int > 0
fade_to_border(False) clip the image in order
to fade smoothly to the border with specified blur amount
"""
xp, sp = self._xp, self._sp
erode, blur = int(erode), int(blur)
img = self._img
dtype = img.dtype
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
img = xp.pad (img, ( (H,H), (W,W), (0,0) ) )
if erode > 0:
el = xp.asarray(cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)))
iterations = max(1,erode//2)
if self._xp == np:
img = cv2.erode(img, el, iterations = iterations )
else:
img = sp.ndimage.binary_erosion(img, el[...,None], iterations = iterations, brute_force=True ).astype(dtype)
elif erode < 0:
el = xp.asarray(cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(3,3)))
iterations = max(1,-erode//2)
if self._xp == np:
img = cv2.dilate(img, el, iterations = iterations )
else:
img = sp.ndimage.binary_dilation(img, el[...,None], iterations = iterations, brute_force=True).astype(dtype)
if fade_to_border:
h_clip_size = H + blur // 2
w_clip_size = W + blur // 2
img[:h_clip_size,:] = 0
img[-h_clip_size:,:] = 0
img[:,:w_clip_size] = 0
img[:,-w_clip_size:] = 0
if blur > 0:
sigma = blur * 0.125 * 2
if self._xp == np:
img = cv2.GaussianBlur(img, (0, 0), sigma)
else:
img = sp.ndimage.gaussian_filter(img, (sigma, sigma,0), mode='constant')
#if img.ndim == 2:
# img = img[...,None]
img = img[H:-H,W:-W]
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
self._img = img
return self
def rotate90(self) -> 'ImageProcessor':
self._img = self._xp.rot90(self._img, k=1, axes=(1,2) )
return self
def rotate180(self) -> 'ImageProcessor':
self._img = self._xp.rot90(self._img, k=2, axes=(1,2) )
return self
def rotate270(self) -> 'ImageProcessor':
self._img = self._xp.rot90(self._img, k=3, axes=(1,2) )
return self
def flip_horizontal(self) -> 'ImageProcessor':
"""
"""
self._img = self._img[:,:,::-1,:]
return self
def flip_vertical(self) -> 'ImageProcessor':
"""
"""
self._img = self._img[:,::-1,:,:]
return self
def pad(self, t_h, b_h, l_w, r_w) -> 'ImageProcessor':
"""
"""
xp = self._xp
img = self._img
img = xp.pad(img, ( (0,0), (t_h,b_h), (l_w,r_w), (0,0) ))
self._img = img
return self
def pad_to_next_divisor(self, dw=None, dh=None) -> 'ImageProcessor':
"""
pad image to next divisor of width/height
dw,dh int
"""
xp = self._xp
img = self._img
_,H,W,_ = img.shape
w_pad = 0
if dw is not None:
w_pad = W % dw
if w_pad != 0:
w_pad = dw - w_pad
h_pad = 0
if dh is not None:
h_pad = H % dh
if h_pad != 0:
h_pad = dh - h_pad
if w_pad != 0 or h_pad != 0:
img = xp.pad(img, ( (0,0), (0,h_pad), (0,w_pad), (0,0) ))
self._img = img
return self
def sharpen(self, factor : float, kernel_size=3) -> 'ImageProcessor':
xp = self._xp
img = self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
if xp == np:
blur = cv2.GaussianBlur(img, (kernel_size, kernel_size) , 0)
img = cv2.addWeighted(img, 1.0 + (0.5 * factor), blur, -(0.5 * factor), 0)
else:
raise
img = img.reshape( (H,W,N,C) ).transpose( (2,0,1,3) )
self._img = img
return self
def get_image(self, format) -> np.ndarray:
"""
returns image with desired format
format str examples:
NHWC, HWCN, NHW
if symbol in format does not exist, it will be got from 0 index
zero dim will be set to 1
"""
xp = self._xp
format = format.upper()
img = self._img
# First slice missing dims
N_slice = 0 if 'N' not in format else slice(None)
H_slice = 0 if 'H' not in format else slice(None)
W_slice = 0 if 'W' not in format else slice(None)
C_slice = 0 if 'C' not in format else slice(None)
img = img[N_slice, H_slice, W_slice, C_slice]
f = ''
if 'N' in format: f += 'N'
if 'H' in format: f += 'H'
if 'W' in format: f += 'W'
if 'C' in format: f += 'C'
if f != format:
# Transpose to target
d = { s:i for i,s in enumerate(f) }
transpose_order = [ d[s] for s in format ]
img = img.transpose(transpose_order)
return xp.ascontiguousarray(img)
def ch(self, TC : int) -> 'ImageProcessor':
"""
Clips or expands channel dimension to target channels
TC int >= 1
"""
xp = self._xp
img = self._img
N,H,W,C = img.shape
if TC <= 0:
raise ValueError(f'channels must be positive value, not {TC}')
if TC > C:
# Ch expand
img = img[...,0:1] # Clip to single ch first.
img = xp.repeat (img, TC, -1) # Expand by repeat
elif TC < C:
# Ch reduction clip
img = img[...,:TC]
self._img = img
return self
def to_grayscale(self) -> 'ImageProcessor':
"""
Converts 3 ch bgr to grayscale.
"""
img, xp = self._img, self._xp
_,_,_,C = img.shape
if C != 1:
dtype = self.get_dtype()
if C == 2:
img = img[...,:1]
elif C >= 3:
img = img[...,:3]
img = xp.dot(img, xp.array([0.1140, 0.5870, 0.2989], xp.float32)) [...,None]
img = img.astype(dtype)
self._img = img
return self
def resize(self, size : Tuple, interpolation : 'ImageProcessor.Interpolation' = None, new_ip=False ) -> 'ImageProcessor':
"""
resize to (W,H)
"""
xp, sp = self._xp, self._sp
img = self._img
N,H,W,C = img.shape
TW,TH = size
if W != TW or H != TH:
if interpolation is None:
interpolation = ImageProcessor.Interpolation.LINEAR
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
if self._xp == np:
img = cv2.resize (img, (TW, TH), interpolation=_cv_inter[interpolation])
else:
img = sp.ndimage.zoom(img, (TW/W, TH/H, 1), order=_scipy_order[interpolation])
img = img.reshape( (TH,TW,N,C) ).transpose( (2,0,1,3) )
if new_ip:
return ImageProcessor(img)
self._img = img
return self
def warpAffine(self, mat, out_width, out_height, interpolation : 'ImageProcessor.Interpolation' = None ) -> 'ImageProcessor':
"""
img HWC
"""
xp, sp, img = self._xp, self._sp, self._img
N,H,W,C = img.shape
img = img.transpose( (1,2,0,3) ).reshape( (H,W,N*C) )
if interpolation is None:
interpolation = ImageProcessor.Interpolation.LINEAR
if xp == np:
img = cv2.warpAffine(img, mat, (out_width, out_height), flags=_cv_inter[interpolation] )
else:
# AffineMat inverse
xp_mat = xp.get_array_module(mat)
mat = xp_mat.linalg.inv(xp_mat.concatenate( ( mat, xp_mat.array([[0,0,1]], xp_mat.float32)), 0) )[0:2,:]
mx, my = xp.meshgrid( xp.arange(0, out_width, dtype=xp.float32), xp.arange(0, out_height, dtype=xp.float32) )
coords = xp.concatenate( (mx[None,...], my[None,...], xp.ones( (1, out_height,out_width), dtype=xp.float32)), 0 )
mat_coords = xp.matmul (xp.asarray(mat), coords.reshape( (3,-1) ) ).reshape( (2,out_height,out_width))
img = xp.concatenate([sp.ndimage.map_coordinates( img[...,c], mat_coords[::-1,...], order=_scipy_order[interpolation], mode='opencv' )[...,None] for c in range(N*C) ], -1)
img = img.reshape( (out_height,out_width,N,C) ).transpose( (2,0,1,3) )
self._img = img
return self
def swap_ch(self) -> 'ImageProcessor':
"""swaps order of channels"""
self._img = self._img[...,::-1]
return self
def as_float32(self) -> 'ImageProcessor':
"""
change image format to float32
"""
xp = self._xp
self._img = self._img.astype(xp.float32)
return self
def as_uint8(self) -> 'ImageProcessor':
"""
change image format to uint8
"""
xp = self._xp
self._img = self._img.astype(xp.uint8)
return self
def to_dtype(self, dtype) -> 'ImageProcessor':
xp = self._xp
if dtype == xp.float32:
return self.to_ufloat32()
elif dtype == xp.uint8:
return self.to_uint8()
else:
raise ValueError('unsupported dtype')
def to_ufloat32(self) -> 'ImageProcessor':
"""
Convert to uniform float32
if current image dtype uint8, then image will be divided by / 255.0
otherwise no operation
"""
xp = self._xp
if self._img.dtype == xp.uint8:
self._img = self._img.astype(xp.float32)
self._img /= 255.0
return self
def to_uint8(self) -> 'ImageProcessor':
"""
Convert to uint8
if current image dtype is float32/64, then image will be multiplied by *255
"""
xp = self._xp
img = self._img
if img.dtype in [xp.float32, xp.float64]:
img *= 255.0
img[img < 0] = 0
img[img > 255] = 255
img = img.astype(xp.uint8, copy=False)
self._img = img
return self
class Interpolation(IntEnum):
LINEAR = 0
CUBIC = 1
_cv_inter = { ImageProcessor.Interpolation.LINEAR : cv2.INTER_LINEAR,
ImageProcessor.Interpolation.CUBIC : cv2.INTER_CUBIC }
_scipy_order = { ImageProcessor.Interpolation.LINEAR : 1,
ImageProcessor.Interpolation.CUBIC : 3 }