DeepFaceLive/xlib/torch/device.py
2021-07-23 17:34:49 +04:00

140 lines
4.3 KiB
Python

from typing import List
class TorchDeviceInfo:
"""
Represents picklable torch device info
"""
def __init__(self, index=None, name=None, total_memory=None):
self._index : int = index
self._name : str = name
self._total_memory : int = total_memory
def __getstate__(self):
return self.__dict__.copy()
def __setstate__(self, d):
self.__init__()
self.__dict__.update(d)
def is_cpu(self) -> bool: return self._index == -1
def get_index(self) -> int:
return self._index
def get_name(self) -> str:
return self._name
def get_total_memory(self) -> int:
return self._total_memory
def __eq__(self, other):
if self is not None and other is not None and isinstance(self, TorchDeviceInfo) and isinstance(other, TorchDeviceInfo):
return self._index == other._index
return False
def __hash__(self):
return self._index
def __str__(self):
if self.is_cpu():
return "CPU"
else:
return f"[{self._index}] {self._name} [{(self._total_memory / 1024**3) :.3}Gb]"
def __repr__(self):
return f'{self.__class__.__name__} object: ' + self.__str__()
# class TorchDevicesInfo:
# """
# picklable list of TorchDeviceInfo
# """
# def __init__(self, devices : List[TorchDeviceInfo] = None):
# if devices is None:
# devices = []
# self._devices = devices
# def __getstate__(self):
# return self.__dict__.copy()
# def __setstate__(self, d):
# self.__init__()
# self.__dict__.update(d)
# def add(self, device_or_devices : TorchDeviceInfo):
# if isinstance(device_or_devices, TorchDeviceInfo):
# if device_or_devices not in self._devices:
# self._devices.append(device_or_devices)
# elif isinstance(device_or_devices, TorchDevicesInfo):
# for device in device_or_devices:
# self.add(device)
# def copy(self):
# return copy.deepcopy(self)
# def get_count(self): return len(self._devices)
# def get_largest_total_memory_device(self) -> TorchDeviceInfo:
# raise NotImplementedError()
# result = None
# idx_mem = 0
# for device in self._devices:
# mem = device.get_total_memory()
# if result is None or (mem is not None and mem > idx_mem):
# result = device
# idx_mem = mem
# return result
# def get_smallest_total_memory_device(self) -> TorchDeviceInfo:
# raise NotImplementedError()
# result = None
# idx_mem = sys.maxsize
# for device in self._devices:
# mem = device.get_total_memory()
# if result is None or (mem is not None and mem < idx_mem):
# result = device
# idx_mem = mem
# return result
# def __len__(self):
# return len(self._devices)
# def __getitem__(self, key):
# result = self._devices[key]
# if isinstance(key, slice):
# return self.__class__(result)
# return result
# def __iter__(self):
# for device in self._devices:
# yield device
# def __str__(self): return f'{self.__class__.__name__}:[' + ', '.join([ device.__str__() for device in self._devices ]) + ']'
# def __repr__(self): return f'{self.__class__.__name__}:[' + ', '.join([ device.__repr__() for device in self._devices ]) + ']'
_torch_devices = None
def get_cpu_device() -> TorchDeviceInfo:
return TorchDeviceInfo(index=-1, name='CPU', total_memory=0)
def get_available_devices(include_cpu=True, cpu_only=False) -> List[TorchDeviceInfo]:
"""
returns a list of available TorchDeviceInfo
"""
global _torch_devices
if _torch_devices is None:
import torch
devices = []
if not cpu_only:
for i in range (torch.cuda.device_count()):
device_props = torch.cuda.get_device_properties(i)
devices.append ( TorchDeviceInfo(index=i, name=device_props.name, total_memory=device_props.total_memory))
if include_cpu or cpu_only:
devices.append ( get_cpu_device() )
_torch_devices = devices
return _torch_devices