import math import numpy as np import numpy.linalg as npla def rotation_matrix_to_euler(R : np.ndarray) -> np.ndarray: sy = math.sqrt(R[0,0] * R[0,0] + R[1,0] * R[1,0]) singular = sy < 1e-6 if not singular : x = math.atan2(R[2,1] , R[2,2]) y = math.atan2(-R[2,0], sy) z = math.atan2(R[1,0], R[0,0]) else : x = math.atan2(-R[1,2], R[1,1]) y = math.atan2(-R[2,0], sy) z = 0 return np.array([x, y, z]) def segment_length(p1 : np.ndarray, p2 : np.ndarray): """ p1 (2,) p2 (2,) """ return npla.norm(p2-p1) def segment_to_vector(p1 : np.ndarray, p2 : np.ndarray): """ p1 (2,) p2 (2,) """ x = p2-p1 x /= npla.norm(x) return x def intersect_two_line(a1, a2, b1, b2) -> np.ndarray: """ Returns the point of intersection of the lines (not segments) passing through a2,a1 and b2,b1. a1: [x, y] a point on the first line a2: [x, y] another point on the first line b1: [x, y] a point on the second line b2: [x, y] another point on the second line """ s = np.vstack([a1,a2,b1,b2]) # s for stacked h = np.hstack((s, np.ones((4, 1)))) # h for homogeneous l1 = np.cross(h[0], h[1]) # get first line l2 = np.cross(h[2], h[3]) # get second line x, y, z = np.cross(l1, l2) # point of intersection if z == 0: # lines are parallel return (float('inf'), float('inf')) return np.array( [x/z, y/z], np.float32 ) def polygon_area(poly : np.ndarray) -> float: """ calculate area of n-vertices polygon with non intersecting edges poly np.ndarray (n,2) """ return float( np.abs(np.sum( poly[:,0] * np.roll( poly[:,1], -1 ) - poly[:,1] * np.roll( poly[:,0], -1 ) ) / 2) )