This commit is contained in:
iperov 2021-12-19 18:14:05 +04:00
parent 69f71ddecd
commit d40fce6a5a
4 changed files with 99 additions and 75 deletions

View file

@ -1,4 +1,69 @@
# from modelhub.onnx import YoloV5Face
# import numpy as np
# import cv2
# from xlib import path as lib_path
# from xlib import cv as lib_cv
# from xlib import face as lib_face
# from xlib.face import FRect
# from xlib import console as lib_con
# from xlib import onnxruntime as lib_ort
# from xlib.image import ImageProcessor
# from xlib.math import Affine2DUniMat
# face_det = YoloV5Face( YoloV5Face.get_available_devices()[0] )
# face_aligner = lib_ort.InferenceSession_with_device(r'D:\DevelopPPP\projects\DeepFaceLive\workspace_facealigner\FaceAligner.onnx', lib_ort.get_available_devices_info()[0])
# in_path = r'F:\DeepFaceLabCUDA9.2SSE\workspace линеус\data_dst'
# #r'F:\DeepFaceLabCUDA9.2SSE\workspace шиа тест\data_dst'
# out_path = Path(r'F:\DeepFaceLabCUDA9.2SSE\workspace шиа тест\data_dst_out')
# out_path.mkdir(parents=True, exist_ok=True)
# n = 0
# for filepath in lib_con.progress_bar_iterator( lib_path.get_files_paths(in_path, extensions=['.jpg', '.png']), ):
# img = lib_cv.imread(filepath)
# H,W,C = img.shape
# rects = face_det.extract (img, threshold=0.5)[0]
# if len(rects) == 0:
# continue
# rect = [ FRect.from_ltrb( (l/W, t/H, r/W, b/H) ) for l,t,r,b in rects ][0]
# cut_img, mat = rect.cut(img, coverage=1.4, output_size=224)
# align_mat = face_aligner.run(None, {'in': ImageProcessor(cut_img).to_ufloat32().get_image('NCHW')})[0]
# align_mat = Affine2DUniMat(align_mat.mean(0))
# align_mat = align_mat.invert().to_exact_mat(224,224,224,224)
# aligned_img = cv2.warpAffine(cut_img, align_mat, (224,224))
# screen = np.concatenate( [cut_img, aligned_img], 1)
# #lib_cv.imwrite( out_path / f'{n:04}.png', screen )
# n += 1
# cv2.imshow('', screen)
# cv2.waitKey(1)
# import code
# code.interact(local=dict(globals(), **locals()))
# import cv2
# import numpy as np
# from xlib.math import Affine2DMat

View file

@ -94,7 +94,7 @@ class FaceAlignerTrainerApp:
def set_random_warp(self, random_warp : bool):
self._random_warp = random_warp
self._training_generator.set_random_warp(random_warp)
def get_iteration(self) -> int: return self._iteration
def set_iteration(self, iteration : int):
self._iteration = iteration
@ -234,7 +234,7 @@ class FaceAlignerTrainerApp:
def main_loop(self):
while not self._is_quit:
if self._ev_request_reset_model.is_set():
self._ev_request_reset_model.clear()
self.reset_model(load=False)
@ -253,7 +253,7 @@ class FaceAlignerTrainerApp:
torch.cuda.empty_cache()
self._is_training = self._req_is_training
self._req_is_training = None
self.main_loop_training()
if self._is_training and self._last_save_time is not None:
@ -267,20 +267,20 @@ class FaceAlignerTrainerApp:
self.export()
print('Exporting done.')
dc.Diacon.get_current_dlg().recreate().set_current()
if self._ev_request_save.is_set():
self._ev_request_save.clear()
print('Saving...')
self.save()
print('Saving done.')
dc.Diacon.get_current_dlg().recreate().set_current()
if self._ev_request_quit.is_set():
self._ev_request_quit.clear()
self._is_quit = True
time.sleep(0.005)
def main_loop_training(self):
"""
separated function, because torch tensors refences must be freed from python locals
@ -288,36 +288,32 @@ class FaceAlignerTrainerApp:
if self._is_training or \
self._is_previewing_samples or \
self._ev_request_preview.is_set():
training_data = self._training_generator.get_next_data(wait=False)
if training_data is not None and \
training_data.resolution == self.get_resolution(): # Skip if resolution is different, due to delay
training_data.resolution == self.get_resolution(): # Skip if resolution is different, due to delay
if self._is_training:
self._model_optimizer.zero_grad()
if self._ev_request_preview.is_set() or \
self._is_training:
# Inference for both preview and training
img_aligned_shifted_t = torch.tensor(training_data.img_aligned_shifted).to(self._device)
shift_uni_mats_pred_t = self._model(img_aligned_shifted_t)#.view( (-1,2,3) )
if self._is_training:
# Training optimization step
# Training optimization step
shift_uni_mats_t = torch.tensor(training_data.shift_uni_mats).to(self._device)
loss_t = (shift_uni_mats_pred_t-shift_uni_mats_t).square().mean()*10.0
loss_t.backward()
self._model_optimizer.step()
loss = loss_t.detach().cpu().numpy()
rec_loss_history = self._loss_history.get('reconstruct', None)
if rec_loss_history is None:
rec_loss_history = self._loss_history['reconstruct'] = []
rec_loss_history.append(float(loss))
self.set_iteration( self.get_iteration() + 1 )
if self._ev_request_preview.is_set():
self._ev_request_preview.clear()
# Preview request
@ -325,7 +321,7 @@ class FaceAlignerTrainerApp:
pd.training_data = training_data
pd.shift_uni_mats_pred = shift_uni_mats_pred_t.detach().cpu().numpy()
self._new_preview_data = pd
if self._is_previewing_samples:
self._new_viewing_data = training_data
@ -348,7 +344,7 @@ class FaceAlignerTrainerApp:
dc.DlgChoice(short_name='l', row_def=f'| Print loss history | Last loss = {last_loss:.5f} ',
on_choose=self.on_main_dlg_print_loss_history ),
dc.DlgChoice(short_name='p', row_def='| Show current preview.',
on_choose=lambda dlg: (self._ev_request_preview.set(), dlg.recreate().set_current())),
@ -375,8 +371,6 @@ class FaceAlignerTrainerApp:
def on_main_dlg_quit(self, dlg):
self._ev_request_quit.set()
def on_main_dlg_print_loss_history(self, dlg):
max_lines = 20
for key in self._loss_history.keys():
@ -384,14 +378,16 @@ class FaceAlignerTrainerApp:
print(f'Loss history for: {key}')
d = len(lh) // max_lines
lh_len = len(lh)
if lh_len >= max_lines:
d = len(lh) // max_lines
lh_ar = np.array(lh[-d*max_lines:], np.float32)
lh_ar = lh_ar.reshape( (max_lines, d))
lh_ar_max, lh_ar_min, lh_ar_mean, lh_ar_median = lh_ar.max(-1), lh_ar.min(-1), lh_ar.mean(-1), np.median(lh_ar, -1)
lh_ar = np.array(lh[-d*max_lines:], np.float32)
lh_ar = lh_ar.reshape( (max_lines, d))
lh_ar_max, lh_ar_min, lh_ar_mean, lh_ar_median = lh_ar.max(-1), lh_ar.min(-1), lh_ar.mean(-1), np.median(lh_ar, -1)
print( '\n'.join( f'max:[{max_value:.5f}] min:[{min_value:.5f}] mean:[{mean_value:.5f}] median:[{median_value:.5f}]' for max_value, min_value, mean_value, median_value in zip(lh_ar_max, lh_ar_min, lh_ar_mean, lh_ar_median) ) )
print( '\n'.join( f'max:[{max_value:.5f}] min:[{min_value:.5f}] mean:[{mean_value:.5f}] median:[{median_value:.5f}]' for max_value, min_value, mean_value, median_value in zip(lh_ar_max, lh_ar_min, lh_ar_mean, lh_ar_median) ) )
dlg.recreate().set_current()
@ -401,7 +397,7 @@ class FaceAlignerTrainerApp:
dc.DlgChoice(short_name='v', row_def=f'| Previewing samples | {self._is_previewing_samples}',
on_choose=self.on_sample_generator_dlg_previewing_last_samples,
),
dc.DlgChoice(short_name='rw', row_def=f'| Random warp | {self.get_random_warp()}',
on_choose=lambda dlg: (self.set_random_warp(not self.get_random_warp()), dlg.recreate().set_current()) ),
@ -469,4 +465,4 @@ class DlgTorchDevicesInfo(dc.DlgChoices):
class PreviewData:
training_data : Data = None
shift_uni_mats_pred = None
shift_uni_mats_pred = None

View file

@ -152,43 +152,6 @@ class FaceAlignerNet(nn.Module):
aff_t = torch.cat([torch.cos(angle_t)*scale_t, -torch.sin(angle_t)*scale_t, tx_t,
torch.sin(angle_t)*scale_t, torch.cos(angle_t)*scale_t, ty_t,
], dim=-1).view(-1,2,3)
# from xlib.console import diacon
# diacon.Diacon.stop()
# import code
# code.interact(local=dict(globals(), **locals()))
return aff_t
# class CTSOT:
# def __init__(self, device_info : TorchDeviceInfo = None,
# state_dict : Union[dict, None] = None,
# training : bool = False):
# if device_info is None:
# device_info = get_cpu_device_info()
# self.device_info = device_info
# self._net = net = CTSOTNet()
# if state_dict is not None:
# net.load_state_dict(state_dict)
# if training:
# net.train()
# else:
# net.eval()
# self.set_device(device_info)
# def set_device(self, device_info : TorchDeviceInfo = None):
# if device_info is None or device_info.is_cpu():
# self._net.cpu()
# else:
# self._net.cuda(device_info.get_index())
# def get_state_dict(self):
# return self.net.state_dict()
# def get_net(self) -> CTSOTNet:
# return self._net

View file

@ -30,8 +30,9 @@ class TLU(nn.Module):
return torch.max(x, self.tau)
class BlurPool(nn.Module):
def __init__(self, filt_size=3, stride=2, pad_off=0):
def __init__(self, in_ch, filt_size=3, stride=2, pad_off=0):
super().__init__()
self.in_ch = in_ch
self.filt_size = filt_size
self.pad_off = pad_off
self.pad_sizes = [int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2)), int(1.*(filt_size-1)/2), int(np.ceil(1.*(filt_size-1)/2))]
@ -54,13 +55,12 @@ class BlurPool(nn.Module):
filt = torch.Tensor(a[:,None]*a[None,:])
filt = filt/torch.sum(filt)
self.register_buffer('filt', filt[None,None,:,:])
self.register_buffer('filt', filt[None,None,:,:].repeat(in_ch,1,1,1) )
self.pad = nn.ZeroPad2d(self.pad_sizes)
def forward(self, inp):
filt = self.filt.repeat((inp.shape[1],1,1,1))
return F.conv2d(self.pad(inp), filt, stride=self.stride, groups=inp.shape[1])
return F.conv2d(self.pad(inp), self.filt, stride=self.stride, groups=self.in_ch)
class ConvBlock(nn.Module):
@ -99,30 +99,30 @@ class XSegNet(nn.Module):
self.conv01 = ConvBlock(in_ch, base_ch)
self.conv02 = ConvBlock(base_ch, base_ch)
self.bp0 = BlurPool (filt_size=4)
self.bp0 = BlurPool (base_ch, filt_size=4)
self.conv11 = ConvBlock(base_ch, base_ch*2)
self.conv12 = ConvBlock(base_ch*2, base_ch*2)
self.bp1 = BlurPool (filt_size=3)
self.bp1 = BlurPool (base_ch*2, filt_size=3)
self.conv21 = ConvBlock(base_ch*2, base_ch*4)
self.conv22 = ConvBlock(base_ch*4, base_ch*4)
self.bp2 = BlurPool (filt_size=2)
self.bp2 = BlurPool (base_ch*4, filt_size=2)
self.conv31 = ConvBlock(base_ch*4, base_ch*8)
self.conv32 = ConvBlock(base_ch*8, base_ch*8)
self.conv33 = ConvBlock(base_ch*8, base_ch*8)
self.bp3 = BlurPool (filt_size=2)
self.bp3 = BlurPool (base_ch*8, filt_size=2)
self.conv41 = ConvBlock(base_ch*8, base_ch*8)
self.conv42 = ConvBlock(base_ch*8, base_ch*8)
self.conv43 = ConvBlock(base_ch*8, base_ch*8)
self.bp4 = BlurPool (filt_size=2)
self.bp4 = BlurPool (base_ch*8, filt_size=2)
self.conv51 = ConvBlock(base_ch*8, base_ch*8)
self.conv52 = ConvBlock(base_ch*8, base_ch*8)
self.conv53 = ConvBlock(base_ch*8, base_ch*8)
self.bp5 = BlurPool (filt_size=2)
self.bp5 = BlurPool (base_ch*8, filt_size=2)
self.dense1 = nn.Linear ( 4*4* base_ch*8, 512)
self.dense2 = nn.Linear ( 512, 4*4* base_ch*8)