code release

This commit is contained in:
iperov 2021-07-23 17:34:49 +04:00
commit a902f11f74
354 changed files with 826570 additions and 1 deletions

Binary file not shown.

View file

@ -0,0 +1,111 @@
from pathlib import Path
from typing import List
import numpy as np
from xlib import math as lib_math
from xlib.image import ImageProcessor
from xlib.onnxruntime import (InferenceSession_with_device, ORTDeviceInfo,
get_available_devices_info)
class CenterFace:
"""
CenterFace face detection model.
arguments
device_info ORTDeviceInfo
use CenterFace.get_available_devices()
to determine a list of avaliable devices accepted by model
raises
Exception
"""
@staticmethod
def get_available_devices() -> List[ORTDeviceInfo]:
# CenterFace ONNX model does not work correctly on CPU
# but it is much faster than Pytorch version
return get_available_devices_info(include_cpu=False)
def __init__(self, device_info : ORTDeviceInfo ):
if device_info not in CenterFace.get_available_devices():
raise Exception(f'device_info {device_info} is not in available devices for CenterFace')
path = Path(__file__).parent / 'CenterFace.onnx'
self._sess = sess = InferenceSession_with_device(str(path), device_info)
self._input_name = sess.get_inputs()[0].name
def extract(self, img, threshold : float = 0.5, fixed_window=0, min_face_size=40):
"""
arguments
img np.ndarray ndim 2,3,4
fixed_window(0) int size
0 mean don't use
fit image in fixed window
downscale if bigger than window
pad if smaller than window
increases performance, but decreases accuracy
returns a list of [l,t,r,b] for every batch dimension of img
"""
ip = ImageProcessor(img)
N,H,W,_ = ip.get_dims()
if fixed_window != 0:
fixed_window = max(64, max(1, fixed_window // 32) * 32 )
img_scale = ip.fit_in(fixed_window, fixed_window, pad_to_target=True, allow_upscale=False)
else:
ip.pad_to_next_divisor(64, 64)
img_scale = 1.0
img = ip.ch(3).swap_ch().to_uint8().as_float32().get_image('NCHW')
heatmaps, scales, offsets = self._sess.run(None, {self._input_name: img})
faces_per_batch = []
for heatmap, offset, scale in zip(heatmaps, offsets, scales):
faces = []
for face in self.refine(heatmap, offset, scale, H, W, threshold):
l,t,r,b,c = face
if img_scale != 1.0:
l,t,r,b = l/img_scale, t/img_scale, r/img_scale, b/img_scale
bt = b-t
if min(r-l,bt) < min_face_size:
continue
b += bt*0.1
faces.append( (l,t,r,b) )
faces_per_batch.append(faces)
return faces_per_batch
def refine(self, heatmap, offset, scale, h, w, threshold):
heatmap = heatmap[0]
scale0, scale1 = scale[0, :, :], scale[1, :, :]
offset0, offset1 = offset[0, :, :], offset[1, :, :]
c0, c1 = np.where(heatmap > threshold)
bboxlist = []
if len(c0) > 0:
for i in range(len(c0)):
s0, s1 = np.exp(scale0[c0[i], c1[i]]) * 4, np.exp(scale1[c0[i], c1[i]]) * 4
o0, o1 = offset0[c0[i], c1[i]], offset1[c0[i], c1[i]]
s = heatmap[c0[i], c1[i]]
x1, y1 = max(0, (c1[i] + o1 + 0.5) * 4 - s1 / 2), max(0, (c0[i] + o0 + 0.5) * 4 - s0 / 2)
x1, y1 = min(x1, w), min(y1, h)
bboxlist.append([x1, y1, min(x1 + s1, w), min(y1 + s0, h), s])
bboxlist = np.array(bboxlist, dtype=np.float32)
bboxlist = bboxlist[ lib_math.nms(bboxlist[:,0], bboxlist[:,1], bboxlist[:,2], bboxlist[:,3], bboxlist[:,4], 0.3), : ]
bboxlist = [x for x in bboxlist if x[-1] >= 0.5]
return bboxlist

Binary file not shown.

View file

@ -0,0 +1,58 @@
from pathlib import Path
from typing import List
from xlib.image import ImageProcessor
from xlib.onnxruntime import (InferenceSession_with_device, ORTDeviceInfo,
get_available_devices_info)
class FaceMesh:
"""
Google FaceMesh detection model.
arguments
device_info ORTDeviceInfo
use FaceMesh.get_available_devices()
to determine a list of avaliable devices accepted by model
raises
Exception
"""
@staticmethod
def get_available_devices() -> List[ORTDeviceInfo]:
return get_available_devices_info()
def __init__(self, device_info : ORTDeviceInfo):
if device_info not in FaceMesh.get_available_devices():
raise Exception(f'device_info {device_info} is not in available devices for FaceMesh')
path = Path(__file__).parent / 'FaceMesh.onnx'
self._sess = sess = InferenceSession_with_device(str(path), device_info)
self._input_name = sess.get_inputs()[0].name
self._input_width = 192
self._input_height = 192
def extract(self, img):
"""
arguments
img np.ndarray HW,HWC,NHWC uint8/float32
returns (N,468,3)
"""
ip = ImageProcessor(img)
N,H,W,_ = ip.get_dims()
h_scale = H / self._input_height
w_scale = W / self._input_width
feed_img = ip.resize( (self._input_width, self._input_height) ).to_ufloat32().ch(3).get_image('NHWC')
lmrks = self._sess.run(None, {self._input_name: feed_img})[0]
lmrks = lmrks.reshape( (N,468,3))
lmrks *= (w_scale, h_scale, 1)
return lmrks

Binary file not shown.

View file

@ -0,0 +1,89 @@
from pathlib import Path
from typing import List
import numpy as np
from xlib import math as lib_math
from xlib.image import ImageProcessor
from xlib.onnxruntime import (InferenceSession_with_device, ORTDeviceInfo,
get_available_devices_info)
class S3FD:
@staticmethod
def get_available_devices() -> List[ORTDeviceInfo]:
return get_available_devices_info()
def __init__(self, device_info : ORTDeviceInfo ):
if device_info not in S3FD.get_available_devices():
raise Exception(f'device_info {device_info} is not in available devices for S3FD')
path = Path(__file__).parent / 'S3FD.onnx'
self._sess = sess = InferenceSession_with_device(str(path), device_info)
self._input_name = sess.get_inputs()[0].name
def extract(self, img : np.ndarray, threshold=0.95, fixed_window=0, min_face_size=40):
"""
img HW,HWC,NHWC [0..255]
"""
ip = ImageProcessor(img)
if fixed_window != 0:
fixed_window = max(64, max(1, fixed_window // 32) * 32 )
img_scale = ip.fit_in(fixed_window, fixed_window, pad_to_target=True, allow_upscale=False)
else:
ip.pad_to_next_divisor(64, 64)
img_scale = 1.0
img = ip.ch(3).to_uint8().as_float32().apply( lambda img: img - [104,117,123]).get_image('NCHW')
batches_bbox = self._sess.run(None, {self._input_name: img})
faces_per_batch = []
for batch in range(img.shape[0]):
bbox = self.refine( [ x[batch] for x in batches_bbox ], threshold )
faces = []
for l,t,r,b,c in bbox:
if img_scale != 1.0:
l,t,r,b = l/img_scale, t/img_scale, r/img_scale, b/img_scale
bt = b-t
if min(r-l,bt) < min_face_size:
continue
b += bt*0.1
faces.append ( (l,t,r,b) )
faces_per_batch.append(faces)
return faces_per_batch
def refine(self, olist, threshold):
bboxlist = []
variances = [0.1, 0.2]
for i in range(len(olist) // 2):
ocls, oreg = olist[i * 2], olist[i * 2 + 1]
stride = 2**(i + 2) # 4,8,16,32,64,128
for hindex, windex in [*zip(*np.where(ocls[1, :, :] > threshold))]:
axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride
score = ocls[1, hindex, windex]
loc = np.ascontiguousarray(oreg[:, hindex, windex]).reshape((1, 4))
priors = np.array([[axc, ayc, stride * 4, stride * 4]])
bbox = np.concatenate((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])), 1)
bbox[:, :2] -= bbox[:, 2:] / 2
bbox[:, 2:] += bbox[:, :2]
x1, y1, x2, y2 = bbox[0]
bboxlist.append([x1, y1, x2, y2, score])
if len(bboxlist) != 0:
bboxlist = np.array(bboxlist)
bboxlist = bboxlist[ lib_math.nms(bboxlist[:,0], bboxlist[:,1], bboxlist[:,2], bboxlist[:,3], bboxlist[:,4], 0.3), : ]
bboxlist = [x for x in bboxlist if x[-1] >= 0.5]
return bboxlist

Binary file not shown.

View file

@ -0,0 +1,145 @@
from pathlib import Path
from typing import List
import numpy as np
from xlib import math as lib_math
from xlib.image import ImageProcessor
from xlib.onnxruntime import (InferenceSession_with_device, ORTDeviceInfo,
get_available_devices_info)
class YoloV5Face:
"""
YoloV5Face face detection model.
arguments
device_info ORTDeviceInfo
use YoloV5Face.get_available_devices()
to determine a list of avaliable devices accepted by model
raises
Exception
"""
@staticmethod
def get_available_devices() -> List[ORTDeviceInfo]:
return get_available_devices_info()
def __init__(self, device_info : ORTDeviceInfo ):
if device_info not in YoloV5Face.get_available_devices():
raise Exception(f'device_info {device_info} is not in available devices for YoloV5Face')
path = Path(__file__).parent / 'YoloV5Face.onnx'
self._sess = sess = InferenceSession_with_device(str(path), device_info)
self._input_name = sess.get_inputs()[0].name
def extract(self, img, threshold : float = 0.3, fixed_window=0, min_face_size=8, augment=False):
"""
arguments
img np.ndarray ndim 2,3,4
fixed_window(0) int size
0 mean don't use
fit image in fixed window
downscale if bigger than window
pad if smaller than window
increases performance, but decreases accuracy
min_face_size(8)
augment(False) bool augment image to increase accuracy
decreases performance
returns a list of [l,t,r,b] for every batch dimension of img
"""
ip = ImageProcessor(img)
_,H,W,_ = ip.get_dims()
if H > 2048 or W > 2048:
fixed_window = 2048
if fixed_window != 0:
fixed_window = max(32, max(1, fixed_window // 32) * 32 )
img_scale = ip.fit_in(fixed_window, fixed_window, pad_to_target=True, allow_upscale=False)
else:
ip.pad_to_next_divisor(64, 64)
img_scale = 1.0
ip.ch(3).to_ufloat32()
_,H,W,_ = ip.get_dims()
preds = self._get_preds(ip.get_image('NCHW'))
if augment:
rl_preds = self._get_preds( ip.flip_horizontal().get_image('NCHW') )
rl_preds[:,:,0] = W-rl_preds[:,:,0]
preds = np.concatenate([preds, rl_preds],1)
faces_per_batch = []
for pred in preds:
pred = pred[pred[...,4] >= threshold]
x,y,w,h,score = pred.T
l, t, r, b = x-w/2, y-h/2, x+w/2, y+h/2
keep = lib_math.nms(l,t,r,b, score, 0.5)
l, t, r, b = l[keep], t[keep], r[keep], b[keep]
faces = []
for l,t,r,b in np.stack([l, t, r, b], -1):
if img_scale != 1.0:
l,t,r,b = l/img_scale, t/img_scale, r/img_scale, b/img_scale
if min(r-l,b-t) < min_face_size:
continue
faces.append( (l,t,r,b) )
faces_per_batch.append(faces)
return faces_per_batch
def _get_preds(self, img):
N,C,H,W = img.shape
preds = self._sess.run(None, {self._input_name: img})
# YoloV5Face returns 3x [N,C*16,H,W].
# C = [cx,cy,w,h,thres, 5*x,y of landmarks, cls_id ]
# Transpose and cut first 5 channels.
pred0, pred1, pred2 = [pred.reshape( (N,C,16,pred.shape[-2], pred.shape[-1]) ).transpose(0,1,3,4,2)[...,0:5] for pred in preds]
pred0 = YoloV5Face.process_pred(pred0, W, H, anchor=[ [4,5],[8,10],[13,16] ] ).reshape( (N, -1, 5) )
pred1 = YoloV5Face.process_pred(pred1, W, H, anchor=[ [23,29],[43,55],[73,105] ] ).reshape( (N, -1, 5) )
pred2 = YoloV5Face.process_pred(pred2, W, H, anchor=[ [146,217],[231,300],[335,433] ] ).reshape( (N, -1, 5) )
return np.concatenate( [pred0, pred1, pred2], 1 )[...,:5]
@staticmethod
def process_pred(pred, img_w, img_h, anchor):
pred_h = pred.shape[-3]
pred_w = pred.shape[-2]
anchor = np.float32(anchor)[None,:,None,None,:]
_xv, _yv, = np.meshgrid(np.arange(pred_w), np.arange(pred_h), )
grid = np.stack((_xv, _yv), 2).reshape((1, 1, pred_h, pred_w, 2)).astype(np.float32)
stride = (img_w // pred_w, img_h // pred_h)
pred[..., [0,1,2,3,4] ] = YoloV5Face._np_sigmoid(pred[..., [0,1,2,3,4] ])
pred[..., 0:2] = (pred[..., 0:2]*2 - 0.5 + grid) * stride
pred[..., 2:4] = (pred[..., 2:4]*2)**2 * anchor
return pred
@staticmethod
def _np_sigmoid(x : np.ndarray):
"""
sigmoid with safe check of overflow
"""
x = -x
c = x > np.log( np.finfo(x.dtype).max )
x[c] = 0.0
result = 1 / (1+np.exp(x))
result[c] = 0.0
return result

View file

@ -0,0 +1,4 @@
from .CenterFace.CenterFace import CenterFace
from .FaceMesh.FaceMesh import FaceMesh
from .S3FD.S3FD import S3FD
from .YoloV5Face.YoloV5Face import YoloV5Face